Skip to main content

Utilization of the thermodynamic extremal principle for modelling in material science

  • Chapter
Moving Interfaces in Crystalline Solids

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 453))

  • 620 Accesses

Abstract

Modelling represents an important tool in the material science. It can simulate the technological steps as well as predict the material properties. A lot of technological steps are performed as well as several parts are operating at elevated temperatures. Under these conditions the thermodynamics of irreversible processes can describe successfully the processes occurring in the material. Each model represents a simplification of the reality and should be concentrated on the effects of the most interest. In many cases the system can be described by a set of the most characteristic parameters, the evolution of which we are interested in. In the classical way, the evolution of the parameters is obtained by solution of the phenomenological equations given by laws of irreversible thermodynamics. In an alternative way the laws of irreversible thermodynamics can be described by an extremal principle. Some examples of modelling in material science based on application of the extremal principle are presented in this chapter. It is demonstrated, that the application of the extremal principle represents a systematic way, how some models can effectively be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bazarov I. P., Gevorkyan E. V., Nikolaev P. N. (1989) Non-Equilibrium Thermodynamics and Physical Kinetics. Moscow University Press, Moscow (in Russian).

    Google Scholar 

  • Callen H. B. (1960). Thermodynamics. Wiley, New York.

    MATH  Google Scholar 

  • Fischer F. D., Simha N. K., Svoboda J. (2003). Kinetics of diffusional phase transformation in multicomponent elastic-plastic materials. ASME J Eng Mat & Technology 125:266–276.

    Article  Google Scholar 

  • Fischer F. D., Svoboda J., Fratzl P. A thermodynamic approach to grain growth and coarsening. Philos. Mag. 83:1075–1093.

    Google Scholar 

  • Glicksman M. E. (2000). Diffusion in Solids. New York: John Wiley & Sons, Inc.

    Google Scholar 

  • Groot S. R., Mazur P. (1962). Non-Equilibrium Thermodynamics. North-Holland, Amsterdam.

    Google Scholar 

  • Hartmann M. A., Weinkammer R., Fratzl P., Svoboda J., Fischer F. D. (2003). Onsager’s coefficients and diffusion laws — a study based on Monte-Carlo simulations, to be published.

    Google Scholar 

  • Hillert M. (1965). On the theory of normal and abnormal grain growth. Acta metall. 13:227–238.

    Article  Google Scholar 

  • Kozeschnik E., Svoboda J., Fratzl P., Fischer F. D. (2004). Modelling of kinetics in multi-component multi-phase multi-particle systems II. — Numerical solution and application, Mater. Sci. Eng. A, in press.

    Google Scholar 

  • Krielaart G. (1995). Primary ferrite formation from supersaturated austenite, Ph. D. thesis, TU-Delft.

    Google Scholar 

  • Lee B. J., Oh K. H. (1996). Numerical treatment of the moving interface in diffusional reactions. Z. Metallkd. 87:195–204.

    Google Scholar 

  • Lidiard A. B. (1986). A note on Manning’s relations for concentrated multicomponent alloys. Acta metall. 34:1487–1490.

    Article  Google Scholar 

  • Lücke, K., Stüwe, H. P. (1971). On the theory of impurity controlled grain boundary motion. Acta metall. 19:1087–1099.

    Article  Google Scholar 

  • Manning J. R. (1971). Correlation factors for diffusion in nondilute alloys Phys. Rew. B4:1111–1121.

    Article  Google Scholar 

  • Moleko L. K., Allnatt A. R., Allnatt E. L. (1989). A self-consistent theory of matter transport in a random lattice gas and some simulation results. Philos. Mag. A59:141–160.

    Google Scholar 

  • Onsager L. (1931). Reciprocal relations in irreversible processes. I. Phys. Rev. 37:405–426.

    Article  MATH  Google Scholar 

  • Prigogine I. (1967). Introduction to Thermodynamics of Irreversible Processes, 3rd edn. Interscience, New York.

    Google Scholar 

  • Shewmon P.. (1989). Diffusion in Solids. The Minerals, Metals & Materials Society, Warrendale.

    Google Scholar 

  • Svoboda J., Turek I. (1991). On diffusion-controlled evolution of closed solid-state thermodynamic systems at constant temperature and pressure. Philos. Mag. B64:749–759.

    Google Scholar 

  • Svoboda J., Fischer F. D., Fratzl P., Kroupa A. (2002). Diffusion in multi-component systems with no or dense sources and sinks for vacancies. Acta mater. 50:1369–1381.

    Article  Google Scholar 

  • Svoboda J., Fischer F. D., Gamsjäger E. (2002a). Influence of solute segregation and drag on properties of migrating interfaces. Acta mater. 50:967–977.

    Article  Google Scholar 

  • Svoboda J., Gamsjäger E., Fischer F. D., Fratzl P. (2004). Application of the thermodynamic extremal principle to the diffusional phase transformations, Acta mater. 52:959–967.

    Article  Google Scholar 

  • Svoboda J., Fischer F. D., Fratzl P., Kozeschnik E. (2004a). Modelling of kinetics in multi-component multi-phase multi-particle systems I. — Theory. Mater. Sci. Eng. A, in press.

    Google Scholar 

  • Ziegler H. (1961). Zwei Extremalprinzien der irreversiblen Thermodynamik. Ing.-Arch. 30:410–416.

    Article  MathSciNet  Google Scholar 

  • Ziegler H. (1963). in I.N. Sneddon and R. Hill eds., Progress in Solid Mechanics, Vol. 4, North-Holland, Amsterdam. 93–193.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 CISM, Udine

About this chapter

Cite this chapter

Svoboda, J. (2004). Utilization of the thermodynamic extremal principle for modelling in material science. In: Fischer, F.D. (eds) Moving Interfaces in Crystalline Solids. CISM International Centre for Mechanical Sciences, vol 453. Springer, Vienna. https://doi.org/10.1007/3-211-27404-9_3

Download citation

  • DOI: https://doi.org/10.1007/3-211-27404-9_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-23899-8

  • Online ISBN: 978-3-211-27404-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics