Skip to main content

Phase Separation in Binary Alloys - Modeling Approaches

  • Chapter
Book cover Moving Interfaces in Crystalline Solids

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 453))

  • 664 Accesses

Abstract

The physical principles and modern modeling approaches for phase separation in binary alloys are reviewed. A fundamental distinction between the different simulation models is their description of the moving interface during the separation process. The interface between the phases is either atomically rough, or a diffuse interface with a smooth transition between the phases, or finally a sharp geometric interface with a discontinuous jump of the bulk properties of one phase to the other. Advantages and disadvantages of the these microscopic, mesoscopic and macroscopic modeling approaches are presented. Concerning examples given some emphasis is put on the influence of elastic interactions caused by a misfit between the phases on the transformation process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  • Abinandanan, T. A., Haider, F. and Martin, G. (1998). Computer simulations of diffusional phase transformations: Monte Carlo algorithm and application to precipitation of ordered phases. Acta Materialia 46: 4243–4255.

    Article  Google Scholar 

  • Aichmayer, B., Fratzl, P., Puri, S. and Sailer, G. (2003). Surface-directed spinodal decomposition on a macroscopic scale in a nitrogen and carbon alloyed steel. Physical Review Letters 91: 015701/1–4.

    Article  Google Scholar 

  • Akaiwa, N., Thornton, K. and Voorhees, P. W. (2001). Large-scale simulations of microstructural evolution in elastically stressed solids. Journal of Computational Physics 173:61–86.

    Article  MATH  Google Scholar 

  • Apel, M., Boettger, B., Diepers, H. J. and Steinbach, I. (2002). 2D and 3D phase-field simulations of lamella and fibrous eutectic growth. Journal of Crystal Growth 237: 154–158.

    Article  Google Scholar 

  • Asta, M. and Foiles, S. M. (1996). Embedded-atom-method effective-pair-interaction study of the structural and thermodynamic properties of Cu-Ni, Cu-Ag, and Au-Ni solid solutions. Physical Review B 53: 2389–2404.

    Article  Google Scholar 

  • Athenes, M., Bellon, P. and Martin, G. (1997). Identification of novel diffusion cycles in B2 ordered phases by Monte Carlo simulation. Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties 76: 565–585.

    Google Scholar 

  • Athenes, M., Bellon, P. and Martin, G. (2000). Effects of atomic mobilities on phase separation kinetics: A Monte-Carlo study. Acta Materialia 48: 2675–2688.

    Article  Google Scholar 

  • Athenes, M., Bellon, P., Martin, G. and Haider, F. (1996). A Monte-Carlo study of B2 ordering and precipitation via vacancy mechanism in bcc lattices. Acta Materialia 44: 4739–4748.

    Article  Google Scholar 

  • Becker, R. (1938). Die Keimbildung bei der Ausscheidung in metallischen Mischkristallen. Annalen der Physik 32: 128–140.

    Google Scholar 

  • Bellon, P. (2003). Kinetic Monte Carlo simulations in crystalline alloys: principles and selected applications. In Finel, A. e. a., Eds. NATO Sci. Ser. II Math., Thermodynamics, Microstructures and Plasticity, Kluwer Academic. 395–409.

    Google Scholar 

  • Binder, K. (1997). Applications of Monte Carlo methods to statistical physics. Reports on Progress in Physics 60: 487–559.

    Article  Google Scholar 

  • Binder, K. (1998). Spinodal decomposition in confined geometry. Journal of Non-Equilibrium Thermodynamics 23: 1–44.

    Article  MATH  Google Scholar 

  • Binder, K., Billotet, C. and Mirold, P. (1978). Theory of Spinodal Decomposition in Solid and Liquid Binary-Mixtures. Zeitschrift Fur Physik B-Condensed Matter 30: 183–195.

    Google Scholar 

  • Binder, K. and Fratzl, P. (2001). Spinodal decomposition. In Kostorz, G., Eds. Phase Transformations in Materials, Wiley-VCH. Chapter 6, 409–480.

    Google Scholar 

  • Binder, K. and Heermann, D. W. (2002). Monte Carlo simulation in statistical physics: an introduction. Berlin; New York: Springer.

    MATH  Google Scholar 

  • Binder, K. and Stauffer, D. (1974). Theory for Slowing Down of Relaxation and Spinodal Decomposition of Binary-Mixtures. Physical Review Letters 33: 1006–1009.

    Article  Google Scholar 

  • Blaschko, O. and Fratzl, P. (1983). Experimental-Observation of a Time-Scaling Characteristic in Alloy Decomposition in the Alznmg System. Physical Review Letters 51: 288–291.

    Article  Google Scholar 

  • Boettinger, W. J., Warren, J. A., Beckermann, C. and Karma, A. (2002). Phase-field simulation of solidification. Annual Review of Materials Research 32: 163–194.

    Article  Google Scholar 

  • Bortz, A. B., Kalos, M. H. and Lebowitz, J. L. (1975). New Algorithm for Monte-Carlo Simulation of Ising Spin Systems. Journal of Computational Physics 17: 10–18.

    Article  Google Scholar 

  • Bortz, A. B., Kalos, M. H., Lebowitz, J. L. and Zendejas, M. A. (1974). Time Evolution of a Quenched Binary Alloy-Computer-Simulation of a 2-Dimensional Model System. Physical Review B 10: 535–541.

    Article  Google Scholar 

  • Cahn, J. W. (1961). On Spinodal Decomposition. Acta Metallurgica 9: 795–801.

    Article  Google Scholar 

  • Cahn, J. W. (1968). 1967 Institute of Metals Lecture Spinodal Decomposition. Transactions of the Metallurgical Society of Aime 242: 166-&.

    Google Scholar 

  • Cahn, J. W. and Hilliard, J. E. (1958). Free Energy of a Nonuniform System. 1. Interfacial Free Energy. Journal of Chemical Physics 28: 258–267.

    Article  Google Scholar 

  • Cahn, J. W. and Hilliard, J. E. (1959). Free Energy of a Nonuniform System. 3. Nucleation in a 2-Component Incompressible Fluid. Journal of Chemical Physics 31: 688–699.

    Article  Google Scholar 

  • Cahn, R. W. and Haasen, P. (1983). Physical metallurgy. Amsterdam: North-Holland Physics Publishing.

    Google Scholar 

  • Chandler, D. (1987). Introduction to modern statistical mechanics. New York: Oxford University Press.

    Google Scholar 

  • Chen, L. Q. (2002). Phase-field models for microstructure evolution. Annual Review of Materials Research 32: 113–140.

    Article  Google Scholar 

  • Chen, L. Q. and Khachaturyan, A. G. (1991). Computer-Simulation of Structural Transformations During Precipitation of an Ordered Intermetallic Phase. Acta Metallurgica Et Materialia 39: 2533–2551.

    Article  Google Scholar 

  • Chen, L. Q., Wolverton, C., Vaithyanathan, V. and Liu, Z. K. (2001). Modeling solid-state phase transformations and microstructure evolution. Mrs Bulletin 26: 197–202.

    Google Scholar 

  • Cook, H. E. (1970). Brownian Motion in Spinodal Decomposition. Acta Metallurgica 18: 297-&.

    Article  Google Scholar 

  • Cook, H. E. and De Fontaine, D. (1969). On Elastic Free Energy of Solid Solutions. I. Microscopic Theory. Acta Metallurgica 17: 915–924.

    Article  Google Scholar 

  • Eshelby, J. D. (1957). The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences 241: 376–396.

    MATH  MathSciNet  Google Scholar 

  • Eshelby, J. D. (1959). The Elastic Field Outside an Ellipsoidal Inclusion. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences 252: 561–569.

    MATH  MathSciNet  Google Scholar 

  • Fan, D. and Chen, L. Q. (1997). Computer simulation of grain growth using a continuum field model. Acta Materialia 45: 611–622.

    Article  Google Scholar 

  • Fischer, D. and Nielaba, P. (2000). Phase diagram of a model alloy with lattice misfit. Physica a-Statistical Mechanics and Its Applications 279: 287–295.

    Article  Google Scholar 

  • Fischer, F. D. and Simha, N. K. (2004). Thermodynamics and kinetics of phase and twin boundaries. In Eds. This book ##, Udine: CISM.

    Google Scholar 

  • Fratzl, P. (2003). Small-angle scattering in materials science-a short review of applications in alloys, ceramics and composite materials. Journal of Applied Crystallography 36: 397–404.

    Article  Google Scholar 

  • Fratzl, P., Lebowitz, J. L., Penrose, O. and Amar, J. (1991). Scaling Functions, Self-Similarity, and the Morphology of Phase-Separating Systems. Physical Review B 44: 4794–4811.

    Article  Google Scholar 

  • Fratzl, P. and Penrose, O. (1994). Kinetics of Spinodal Decomposition in the Ising-Model with Vacancy Diffusion. Physical Review B 50: 3477–3480.

    Article  Google Scholar 

  • Fratzl, P. and Penrose, O. (1995). Ising-Model for Phase-Separation in Alloys with Anisotropic Elastic Interaction. 1. Theory. Acta Metallurgica Et Materialia 43: 2921–2930.

    Article  Google Scholar 

  • Fratzl, P. and Penrose, O. (1996). Ising model for phase separation in alloys with anisotropic elastic interaction. 2. A computer experiment. Acta Materialia 44: 3227–3239.

    Article  Google Scholar 

  • Fratzl, P. and Penrose, O. (1997). Competing mechanisms for precipitate coarsening in phase separation with vacancy dynamics. Physical Review B 55: R6101–R6104.

    Article  Google Scholar 

  • Fratzl, P., Penrose, O. and Lebowitz, J. L. (1999). Modeling of phase separation in alloys with coherent elastic misfit. Journal of Statistical Physics 95: 1429–1503.

    Article  MATH  MathSciNet  Google Scholar 

  • Fratzl, P., Penrose, O., Weinkamer, R. and Zizak, I. (2000). Coarsening in the Ising model with vacancy dynamics. Physica A 279: 100–109.

    Article  Google Scholar 

  • Gerold, V. and Kern, J. (1987). The Determination of Atomic Interaction Energies in Solid-Solutions from Short-Range Order Coefficients-an Inverse Monte-Carlo Method. Acta Metallurgica 35: 393–399.

    Article  Google Scholar 

  • Gunton, J. D. (1999). Homogeneous nucleation. Journal of Statistical Physics 95: 903–923.

    Article  MATH  Google Scholar 

  • Gupta, H., Weinkamer, R., Fratzl, P. and Lebowitz, J. L. (2001). Microscopic computer simulations of directional coarsening in face-centered cubic alloys. Acta Materialia 49: 53–63.

    Article  Google Scholar 

  • Heermann, D. W., Li, Y. X. and Binder, K. (1996). Scaling solutions and finite-size effects in the Lifshitz-Slyozov theory. Physica A 230: 132–148.

    Article  Google Scholar 

  • Hu, S. Y. and Chen, L. Q. (2001). Solute segregation and coherent nucleation and growth near a dislocation-A phase-field model integrating defect and phase microstructures. Acta Materialia 49: 463–472.

    Article  Google Scholar 

  • Huse, D. A. (1986). Corrections to Late-Stage Behavior in Spinodal Decomposition-Lifshitz-Slyozov Scaling and Monte-Carlo Simulations. Physical Review B 34: 7845–7850.

    Article  Google Scholar 

  • Ikeda, H. and Matsuda, H. (1993). Effects of Difference in Elastic-Moduli between Constituents on Spinodal Decomposition Processes. Materials Transactions Jim 34: 651–657.

    Google Scholar 

  • Inden, G. (2001). Atomic odering. In Kostorz, G., Eds. Phase Transformations in Materials, Wiley-VCH. Chapter 8, 519–581.

    Google Scholar 

  • Kampmann, R. and Wagner, R. (1984). In Haasen, P., Gerold, V., Wagner, R. and Ashby, M. F., Eds. Decomposition of Alloys: the Early Stages, Oxford: Pergamon Press. 91–103.

    Google Scholar 

  • Kantelhardt, J. W., Koscielny-Bunde, E., Rego, H. H. A., Havlin, S. and Bunde, A. (2001). Detecting long-range correlations with detrended fluctuation analysis. Physica A 295: 441–454.

    Article  MATH  Google Scholar 

  • Khachaturyan, A. G. (1965). On Theory of Modulated Structures in Binary Solid Solutions. Soviet Physics Crystallography, Ussr 10: 248-&.

    Google Scholar 

  • Khachaturyan, A. G. (1983). Theory of structural transformations in solids. New York: Wiley.

    Google Scholar 

  • Kikuchi, R. and Sato, H. (1972). Diffusion-Coefficient in an Ordered Binary Alloy. Journal of Chemical Physics 57: 4962–4979.

    Article  Google Scholar 

  • Laberge, C. A., Fratzl, P. and Lebowitz, J. L. (1995). Elastic Effects on Phase Segregation in Alloys with External Stresses. Physical Review Letters 75: 4448–4451.

    Article  Google Scholar 

  • Laberge, C. A., Fratzl, P. and Lebowitz, J. L. (1997). Microscopic model for directional coarsening of precipitates in alloys under external load. Acta Materialia 45: 3949–3962.

    Article  Google Scholar 

  • Langer, J. S. and Schwartz, A. J. (1980). Kinetics of Nucleation in near-Critical Fluids. Physical Review A 21: 948–958.

    Article  MathSciNet  Google Scholar 

  • Lebowitz, J. L., Marro, J. and Kalos, M. H. (1982). Dynamical Scaling of Structure-Function in Quenched Binary-Alloys. Acta Metallurgica 30: 297–310.

    Article  Google Scholar 

  • Lee, J. K. (1998). Elastic stress and microstructural evolution. Materials Transactions Jim 39: 114–132.

    Google Scholar 

  • Lengeler, B. (2001). Coherence in X-ray physics. Naturwissenschaften 88: 249–260.

    Article  Google Scholar 

  • Lifshitz, I. M. and Slyozov, V. V. (1961). The Kinetics of Precipitation from Supersaturated Solid Solutions. Journal of Physics and Chemistry of Solids 19: 35–50.

    Article  Google Scholar 

  • Lochte, L., Gitt, A., Gottstein, G. and Hurtado, I. (2000). Simulation of the evolution of GP zones in Al-Cu alloys: An extended Cahn-Hilliard approach. Acta Materialia 48: 2969–2984.

    Article  Google Scholar 

  • Marro, J., Bortz, A. B., Kalos, M. H. and Lebowitz, J. L. (1975). Time Evolution of a Quenched Binary Alloy. 2. Computer-Simulation of a 3-Dimensional Model System. Physical Review B 12:2000–2011.

    Article  Google Scholar 

  • Marro, J., Lebowitz, J. L. and Kalos, M. H. (1979). Computer-Simulation of the Time Evolution of a Quenched Model Alloy in the Nucleation Region. Physical Review Letters 43: 282–285.

    Article  Google Scholar 

  • Mirold, P. and Binder, K. (1977). Theory for Initial-Stages of Grain-Growth and Unmixing Kinetics of Binary-Alloys. Acta Metallurgica 25: 1435–1444.

    Article  Google Scholar 

  • Nielaba, P., Fratzl, P. and Lebowitz, J. L. (1999). Growth of ordered domains in a computer model alloy with lattice misfit. Journal of Statistical Physics 95: 23–43.

    Article  MATH  Google Scholar 

  • Nishimori, H. and Onuki, A. (1990). Pattern-Formation in Phase-Separating Alloys with Cubic Symmetry. Physical Review B 42: 980–983.

    Article  Google Scholar 

  • Novotny, M. A. (1995). A new approach to an old algorithm for the simulation of Ising-like systems. Computers in Physics 9: 46–52.

    Article  Google Scholar 

  • Onsager, L. (1944). Crystal statistics. I. A two-dimensional model with an order-disorder transition. Physical Review 65: 117–149.

    Article  MATH  MathSciNet  Google Scholar 

  • Onuki, A. and Nishimori, H. (1991). Anomalously Slow Domain Growth Due to a Modulus Inhomogeneity in Phase-Separating Alloys. Physical Review B 43: 13649–13652.

    Article  Google Scholar 

  • Orlikowski, D., Sagui, C., Somoza, A. and Roland, C. (1999). Large-scale simulations of phase separation of elastically coherent binary alloy systems. Physical Review B 59: 8646–8659.

    Article  Google Scholar 

  • Orlikowski, D., Sagui, C., Somoza, A. M. and Roland, C. (2000). Two-and three-dimensional simulations of the phase separation of elastically coherent binary alloys subject to external stresses. Physical Review B 62: 3160–3168.

    Article  Google Scholar 

  • Pareige, C., Soisson, F., Martin, G. and Blavette, D. (1999). Ordering and phase separation in Ni-Cr-Al: Monte Carlo simulations vs three-dimensional atom probe. Acta Materialia 47: 1889–1899.

    Article  Google Scholar 

  • Paris, O., Fahrmann, M., Fahrmann, E., Pollock, T. M. and Fratzl, P. (1997). Early stages of precipitate rafting in a single crystal Ni-Al-Mo model alloy investigated by small-angle X-ray scattering and TEM. Acta Materialia 45: 1085–1097.

    Article  Google Scholar 

  • Porta, M., Vives, E. and Castan, T. (1999). Vacancy-assisted domain growth in asymmetric binary alloys: A Monte Carlo study. Physical Review B 60: 3920–3927.

    Article  Google Scholar 

  • Press, W. H. (1997). Numerical recipes in C: the art of scientific computing. Cambridge Cambridgeshire; New York: Cambridge University Press.

    Google Scholar 

  • Raabe, D. (1998). Computational materials science-the simulation of materials microstructures and properties. Weinheim: Wiley-VCH.

    Google Scholar 

  • Rao, M., Kalos, M. H., Lebowitz, J. L. and Marro, J. (1976). Time Evolution of a Quenched Binary Alloy. 3. Computer-Simulation of a 2-Dimensional Model System. Physical Review B 13:4328–4335.

    Article  Google Scholar 

  • Rautiainen, T. T. and Sutton, A. P. (1999). Influence of the atomic diffusion mechanism on morphologies, kinetics, and the mechanisms of coarsening during phase separation. Phys Rev B 59: 13681–13692.

    Article  Google Scholar 

  • Roussel, J. M. and Bellon, P. (2001). Vacancy-assisted phase separation with asymmetric atomic mobility: Coarsening rates, precipitate composition, and morphology. Physical Review B 6318: art. no.-184114.

    Google Scholar 

  • Rubin, G. and Khachaturyan, A. G. (1999). Three-dimensional model of precipitation of ordered intermetallics. Acta Materialia 47: 1995–2002.

    Article  Google Scholar 

  • Sagui, C., Orlikowski, D., Somoza, A. M. and Roland, C. (1998). Three-dimensional simulations of Ostwald ripening with elastic effects. Physical Review E 58: R4092–R4095.

    Article  Google Scholar 

  • Schweika, W. (1998). Disordered alloys: diffuse scattering and Monte Carlo simulations. Berlin; New York: Springer.

    MATH  Google Scholar 

  • Socrate, S. and Parks, D. M. (1993). Numerical Determination of the Elastic Driving Force for Directional Coarsening in Ni-Superalloys. Acta Metallurgica Et Materialia 41: 2185–2209.

    Article  Google Scholar 

  • Soisson, F. and Martin, G. (2000). Monte Carlo simulations of the decomposition of metastable solid solutions: Transient and steady-state nucleation kinetics. Physical Review B 62: 203–214.

    Article  Google Scholar 

  • Stadler, L.-M., Sepiol, B., Weinkamer, R., Hartmann, M., Fratzl, P., Kantelhardt, J. W., Zotone, F., Grübel, G. and Vogl, G. (2003). Long-term correlations distinguish coarsening mechanisms in alloys. Physical Review B 68: 180101R-1–4.

    Article  Google Scholar 

  • Sur, A., Lebowitz, J. L., Marro, J. and Kalos, M. H. (1977). Time Evolution of a Quenched Binary Alloy. 4. Computer-Simulation of a 3-Dimensional Model System. Physical Review B 15:3014–3026.

    Article  Google Scholar 

  • Thornton, K., Agren, J. and Voorhees, P. W. (2003). Modelling the evolution of phase boundaries in solids at the meso-and nanoscales. Acta Materialia 51: 5675–5710.

    Article  Google Scholar 

  • Thornton, K., Akaiwa, N. and Voorhees, P. W. (2001). Dynamics of late-stage phase separation in crystalline solids. Phys Rev Lett 86: 1259–1262.

    Article  Google Scholar 

  • Vaithyanathan, V. and Chen, L. Q. (2000). Coarsening kinetics of delta’-A13Li precipitates: Phase-field simulation in 2D and 3D. Scripta Materialia 42: 967–973.

    Article  Google Scholar 

  • Vaithyanathan, V., Wolverton, C. and Chen, L. Q. (2002). Multiscale modeling of precipitate microstructure evolution. Physical Review Letters 88:-.

    Google Scholar 

  • Vives, E. and Planes, A. (1993). Ordering Kinetics by Vacancies. International Journal of Modern Physics C-Physics and Computers 4: 701–720.

    Article  Google Scholar 

  • Voorhees, P. W. (1985). The Theory of Ostwald Ripening. Journal of Statistical Physics 38: 231–252.

    Article  Google Scholar 

  • Voorhees, P. W. (1992). Ostwald Ripening of 2-Phase Mixtures. Annual Review of Materials Science 22: 197–215.

    Article  Google Scholar 

  • Wagner, C. (1961). Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald Reifung). Zeitschrift für Elektrochemie 65: 581–591.

    Google Scholar 

  • Wagner, R., Kampmann, R. and Voorhees, P. W. (2001). Homogeneous second-phase precipitation. In Kostorz, G., Eds. Phase Transformations in Materials, Wiley-VCH. Chapter 5, 309–407.

    Google Scholar 

  • Wang, Y., Chen, L. Q. and Khachaturyan, A. G. (1993). Kinetics of Strain-Induced Morphological Transformation in Cubic Alloys with a Miscibility Gap. Acta Metallurgica Et Materialia 41: 279–296.

    Article  Google Scholar 

  • Wang, Y., Chen, L. Q. and Khachaturyan, A. G. (1996). Modeling of dynamical evolution of micro/mesoscopic morphological patterns in coherent phase transformations. In Kirchner, H. O. and al., e., Eds. Computer Simulation in Materials Science, Kluwer Academic Publishers. 325–371.

    Google Scholar 

  • Wang, Y. and Khachaturyan, A. G. (1997). Three-dimensional field model and computer modeling of martensitic transformations. Acta Materialia 45: 759–773.

    Article  Google Scholar 

  • Wang, Y. U., Jin, Y. M., Cuitino, A. M. and Khachaturyan, A. G. (2001). Nanoscale phase field microelasticity theory of dislocations: Model and 3D simulations. Acta Materialia 49: 1847–1857.

    Article  Google Scholar 

  • Wang, Y. U., Jin, Y. M. M. and Khachaturyan, A. G. (2003). Phase field microelasticity modeling of dislocation dynamics near free surface and in heteroepitaxial thin films. Acta Materialia 51: 4209–4223.

    Article  Google Scholar 

  • Weinkamer, R. and Fratzl, P. (2003). By which mechanism does coarsening in phase-separating alloys proceed? Europhysics Letters 61:261–267.

    Article  Google Scholar 

  • Weinkamer, R., Fratzl, P., Gupta, H., Penrose, O. and Lebowitz, J. L. (2004). Using kinetic Monte Carlo simulations to study phase separation in alloys. Phase Transitions submitted

    Google Scholar 

  • Weinkamer, R., Fratzl, P., Sepiol, B. and Vogl, G. (1998). Monte Carlo simulation of diffusion in a B2-ordered model alloy. Physical Review B 58: 3082–3088.

    Article  Google Scholar 

  • Weinkamer, R., Fratzl, P., Sepiol, B. and Vogl, G. (1999). Monte Carlo simulations of Mossbauer spectra in diffusion investigations. Physical Review B 59: 8622–8625.

    Article  Google Scholar 

  • Weinkamer, R., Gupta, H., Fratzl, P. and Lebowitz, J. L. (2000). Dynamics of mesoscopic precipitate lattices in phase-separating alloys under external load. Europhysics Letters 52: 224–230.

    Article  Google Scholar 

  • Wolverton, C., Zunger, A. and Schonfeld, B. (1997). Invertible and non-invertible alloy Ising problems. Solid State Communications 101: 519–523.

    Article  Google Scholar 

  • Yaldram, K. and Binder, K. (1991). Monte-Carlo Simulation of Phase-Separation and Clustering in the Abv Model. Journal of Statistical Physics 62: 161–175.

    Article  Google Scholar 

  • Yaldram, K. and Binder, K. (1991). Spinodal Decomposition of a 2-Dimensional Model Alloy with Mobile Vacancies. Acta Metallurgica Et Materialia 39: 707–717.

    Article  Google Scholar 

  • Yaldram, K. and Binder, K. (1991). Unmixing of Binary-Alloys by a Vacancy Mechanism of Diffusion-a Computer-Simulation. Zeitschrift Fur Physik B-Condensed Matter 82: 405–418.

    Article  Google Scholar 

  • Zhu, J. Z., Liu, Z. K., Vaithyanathan, V. and Chen, L. Q. (2002). Linking phase-field model to CALPHAD: application to precipitate shape evolution in Ni-base alloys. Scripta Materialia 46: 401–406.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 CISM, Udine

About this chapter

Cite this chapter

Fratzl, P., Weinkamer, R. (2004). Phase Separation in Binary Alloys - Modeling Approaches. In: Fischer, F.D. (eds) Moving Interfaces in Crystalline Solids. CISM International Centre for Mechanical Sciences, vol 453. Springer, Vienna. https://doi.org/10.1007/3-211-27404-9_2

Download citation

  • DOI: https://doi.org/10.1007/3-211-27404-9_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-23899-8

  • Online ISBN: 978-3-211-27404-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics