Skip to main content

Minimization of empirical error over perceptron networks

  • Conference paper
Adaptive and Natural Computing Algorithms
  • 976 Accesses

Abstract

Supervised learning by perceptron networks is investigated a minimization of empirical error functional. Input/output functions minimizing this functional require the same number m of hidden units as the size of the training set. Upper bounds on rates of convergence to zero of infima over networks with n hidden units (where n is smaller than m) are derived in terms of a variational norm. It is shown that fast rates are guaranteed when the sample of data defining the empirical error can be interpolated by a function, which may have a rather large Sobolev-type seminorm. Fast convergence is possible even when the seminorm depends exponentially on the input dimension.

This work was partially supported by GA čR grant 201/05/0557.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aronszajn, N. (1950). Theory of reproducing kernels. Transactions of AMS, 68: 337–404.

    Article  MATH  MathSciNet  Google Scholar 

  2. Barron, A. R. (1992). Neural net approximation. In: Proceedings of the 7th Yale Workshop on Adaptive and Learning Systems (pp. 69–72).

    Google Scholar 

  3. Cheang, G. H. L., Barron, A. R. (2000). A better approximation for balls. Journal of Approximation Theory 104:183–203.

    Article  MathSciNet  Google Scholar 

  4. Cucker, F. and Smale, S. (2001). On the mathematical foundations of learning. Bulletin of AMS 39: 1–49.

    Article  MathSciNet  Google Scholar 

  5. Donahue, M. J., Gurvits, L., Darken, C, Sontag, E. (1997). Rates of convex approximation in non-Hilbert spaces. Constructive Approximation 13: 187–220.

    Article  MathSciNet  Google Scholar 

  6. Ito, Y. (1992). Finite mapping by neural networks and truth functions. Math. Scientist 17: 69–77.

    MATH  Google Scholar 

  7. Kainen, P. C, Kůrková, V. (1993). Quasiorthogonal dimension of Euclidean spaces. Applied Math. Letters 6:7–10, 1993.

    Article  Google Scholar 

  8. Kainen, P. C, Kůrková, V., Vogt, A. (2004). A Sobolev-type upper bound for rates of approximation by linear combinations of plane waves. Research Report ICS-2003-900, Institute of Computer Science, Prague.

    Google Scholar 

  9. Kůrková, V. (2003). High-dimensional approximation and optimization by neural networks. Chapter 4 In: Advances in Learning Theory: Methods, Models and Applications. (Eds. J. Suykens et al.) (pp. 69–88). IOS Press, Amsterdam.

    Google Scholar 

  10. Kůrková, V. (2004). Learning from data as an inverse problem. In: Proceedings of COMPSTAT 2004 (Ed. J. Antoch) (pp. 1377–1384). Physica-Verlag, Heidelberg.

    Google Scholar 

  11. Kůrková, V., Sanguineti, M. (2004). Error estimates for approximate optimization by the extended Ritz method. SI AM Journal on Optimization (to appear).

    Google Scholar 

  12. Kůrková, V., Sanguineti, M. (2004). Learning with generalization capability by kernel methods of bounded complexity. Journal of Complexity (to appear).

    Google Scholar 

  13. Kůrková, V., Savický, P., Hlaváčková, K. (1998). Representations and rates of approximation of real-valued Boolean functions by neural networks. Neural Networks 11:651–659.

    Article  Google Scholar 

  14. Poggio T., Smale, S. (2003). The mathematics of learning: dealing with data. Notices of AMS 50: 536–544.

    MathSciNet  Google Scholar 

  15. Shläfli, L. (1950). Gesamelte mathematische abhandlungen. Band 1. Basel, Verlag Birkhäuzer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag/Wien

About this paper

Cite this paper

Kůrková, V. (2005). Minimization of empirical error over perceptron networks. In: Ribeiro, B., Albrecht, R.F., Dobnikar, A., Pearson, D.W., Steele, N.C. (eds) Adaptive and Natural Computing Algorithms. Springer, Vienna. https://doi.org/10.1007/3-211-27389-1_12

Download citation

  • DOI: https://doi.org/10.1007/3-211-27389-1_12

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-24934-5

  • Online ISBN: 978-3-211-27389-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics