Skip to main content

NMR Study of Poly(γ-Glutamic Acid) and Partially Benzylated Poly(γ-Glutamic Acid): Nanoparticles in Solution

  • Conference paper
  • First Online:
Colloids for Nano- and Biotechnology

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 135))

  • 2215 Accesses

Abstract

Poly(γ-glutamic acid) (γ-PGA) and its partially benzylamidated (hydrophobized) derivatives were prepared and studied in solution by means of dynamic light scattering (DLS), 1D, 2D and PGSE NMR in order to determine the structure, size and aggregation in solution. By pH potentiometric titrations in aqueous solution the apparent pK ≈ 4 of γ-PGA was determined. The measured diffusion coefficients as a function of pH showed the swelling of γ-PGA by deprotonation of carboxyls. DLS measurements showed a certain degree of aggregation even in dilute solution. The degree of aggregation is increased in the presence H2PO4 and HPO4 2 buffer anions. Benzylamidation of 30–50% of caboxylates resulted in folded structure of the BzPGA, probably spherical like nanoparticles, verified by NMR diffusiometry and 2D NOE spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ivánovics G, Bruckner V (1937) Z Immunitätsforsch 90:304

    Google Scholar 

  2. Ivánovics G, Erdös L (1937) Z Immunitätsforsch 90:5

    Google Scholar 

  3. Sung M-H, Park C, Kim C-J, Poo H, Soda K, Ashiuchi M (2005) Chem Rec 5:352

    Article  CAS  Google Scholar 

  4. Shih I-L, Van YT (2001) Bioresour Technol 79:207

    Article  CAS  Google Scholar 

  5. Shi F, Xu ZN, Cen PL (2006) Appl Biochem Biotechnol 133:271

    Article  CAS  Google Scholar 

  6. Shi F, Xu ZH, Cen PL (2007) Sci China Ser B: Chem 50:291

    Article  CAS  Google Scholar 

  7. Chen X, Chen S, Sun M, Yu Z (2005) Bioresour Technol 96:1872

    Article  CAS  Google Scholar 

  8. Ashiuchi M, Kamei T, Misono H (2003) J Mol Catal B 23:101

    Article  CAS  Google Scholar 

  9. Taniguch M, Kato K, Shimauchi A, Ping X, Nakayama H, Fujita K, Tanaka T, Tarui Y, Hirasawa E (2005) J Biosci Bioeng 99:245

    Article  CAS  Google Scholar 

  10. Akagi T, Baba M, Akashi M (2007) Polymer 48:6429

    Article  CAS  Google Scholar 

  11. Nishikawa T, Akiyoshi K, Sunamato J (1994) Macromolecules 27:7654

    Article  CAS  Google Scholar 

  12. Harada A, Kataoka K (1999) Science 283:65

    Article  CAS  Google Scholar 

  13. Kukula H, Schlaad H, Antonietti M, Förster S (2002) J Am Chem Soc 124:1658

    Article  CAS  Google Scholar 

  14. Matsusaki M, Hiwatari K, Higashi M, Kaneko T, Akashi M, Chem Lett 33:398

    Google Scholar 

  15. Akagi T, Kaneko T, Kida T, Akashi M (2005) J Control Drug Rel 108:226

    Article  CAS  Google Scholar 

  16. Novák L, Bányai I, Fleischer-Radu ÉJ, Borbély J (2007) Biomacromolecules 8:1624

    Article  CAS  Google Scholar 

  17. Yao J, Xu H, Wang J, Jiang M, Ouyang P (2007) J Biomater Sci Polym Ed 19:193

    Article  Google Scholar 

  18. Kunioka M (2003) Macromol Biosci 4:324

    Article  CAS  Google Scholar 

  19. Bodnár M, Kjoniksen A-L, Monár RM, Hartman JF, Daróczi L, Nyström J, Borbély J (2008) J Hazard Mater 153:1185

    Google Scholar 

  20. Thill A, Spalla O (2003) Colloid Surf A: Physicochem Eng Asp 217:143

    Article  CAS  Google Scholar 

  21. Thill A. Spalla O (2005) J Colloid Interf Sci 291:477–488

    Article  CAS  Google Scholar 

  22. Jin H. Nishiyama Y, Wada M, Kuga S (2004) Colloid Surf A: Physicochem Eng Asp 240:63

    Article  CAS  Google Scholar 

  23. Dilorio A, Mark S, Tongue PA (2003) US Pat. 6 533 938 B1, Worchester Polytechnic Institute, USA

    Google Scholar 

  24. Kállay C, Várnagy K, Micera G, Sanna D, Sóvágó I (2005) J Inorg Biochem 99:1514

    Article  CAS  Google Scholar 

  25. Borbély M, Nagasaki Y, Borbély J, Fan K, Bhogle A, Sevoian M (1994) Polym Bull 32:127

    Article  Google Scholar 

  26. Wu D, Chen A, Johnson CSJ (1995) J Magn Reson A 115:260

    Article  CAS  Google Scholar 

  27. Mills J (1973) J Phys Chem 77:685

    Article  CAS  Google Scholar 

  28. Gran G (1950) Acta Chem Scand 4:559

    Article  CAS  Google Scholar 

  29. Irving HM, Miles MG, Pettit LD (1967) Anal Chim Acta 38:475

    Article  CAS  Google Scholar 

  30. Gans V, Sabatini A, Vacca A (1985) J Chem Soc Dalton Trans 1196

    Google Scholar 

  31. Herbelin A, Westall J (1996) Oregon State University, Oregon, FITEQL 3.2. Computer program

    Google Scholar 

  32. Provencher SW (1982) Comput Phys Commun 27:213

    Article  Google Scholar 

  33. Rydon HN (1964) J Chem Soc 1328

    Google Scholar 

  34. Zanuy D, Alemán C, Munoz-Guerra S (1998) Int J Biol Macromol 23:175

    Article  CAS  Google Scholar 

  35. Guinier A (1939) Ann Phys 12:161

    CAS  Google Scholar 

  36. Strucksberg KH, Rosenkranz T, Fitter J (2007) Biochim Biophys Acta 1774:1591

    CAS  Google Scholar 

  37. Tayyab S, Haq SK, Aziz MA, Khan MM, Muzammil S (1999) Int J Biol Macromol 26:173

    Article  CAS  Google Scholar 

  38. Rusoa JM, Taboadaa P, Varelaa LM, Attwood D Mosqueraa V (2001) Biophys Chem 92:141

    Article  Google Scholar 

  39. Juranic N, Zsolnai Z, Macura S, in: Batta G, Kövér KE, Szántay CJ (Eds.) Methods for Structure Elucidation ny High-Resolution NMR. Vol. 8, Elsevier, Amsterdam, Lausanne, New York, Oxford, Shannon, Singapore, Tokyo p. 265

    Google Scholar 

  40. Macura S, Farmer II BT, Brown LR (1986) J Magn Reson 70:493

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Bányai .

Editor information

Zoltán D. Hórvölgyi Éva Kiss

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nagy, Z., Novák, L., Kozma, C., Berka, M., Bányai, I. (2008). NMR Study of Poly(γ-Glutamic Acid) and Partially Benzylated Poly(γ-Glutamic Acid): Nanoparticles in Solution. In: Hórvölgyi, Z.D., Kiss, É. (eds) Colloids for Nano- and Biotechnology. Progress in Colloid and Polymer Science, vol 135. Springer, Berlin, Heidelberg. https://doi.org/10.1007/2882_2008_112

Download citation

Publish with us

Policies and ethics