Skip to main content

Flower Petal-like Pattern on Soft Hydrogels during Vodka Spreading

  • Conference paper
  • First Online:
Colloids for Nano- and Biotechnology

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 135))

  • 2224 Accesses

Abstract

Flower petal-like pattern has been observed during Vodka spreading on gel surfaces. Since the spreading kinetics vanishes within a few seconds, the flower petal-like pattern is extremely impressive like shooting-up of fireworks. This pattern can be formed when ethanol/water mixtures having more than %[vol.]25 of ethanol are used as spreading liquid and soft gels with storage modulus less than 104 Pa are used as underlying substrates. The origin of this phenomenon is discussed in terms of instability of leading edge of spreading liquid on soft hydrogels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Liesegang RE (1896) Naturwiss Wochenschr 11:353

    Google Scholar 

  2. Saffman PG, Taylor G, FRS (1958) Proc R Soc London A 245:312

    Google Scholar 

  3. Matar OK, Troian SM (1999) Phys Fluids 11:3232

    Article  CAS  Google Scholar 

  4. Waner MRE, Craster RV, Matar OK (2004) J Fluid Mech 510:169

    Article  CAS  Google Scholar 

  5. Darhuber AA, Troian SM (2001) J Appl Phys 90:3602

    Article  CAS  Google Scholar 

  6. Kotonis MA, Muthukumar M (1992) Macromolecules 25:1716–1724

    Article  Google Scholar 

  7. Tong P, Goldburg WI, Huang JS, Witten TA (1990) Phys Rev Lett 65(22):2780

    Article  Google Scholar 

  8. Smith DE, Wu XZ, Libchaber A, Moses E, Witten T (1992) Phys Rev A 45(3):R2165

    Article  CAS  Google Scholar 

  9. Yamazaki S, Kawaguchi M, Kato T (2002) J Colloid Interf Sci 254:396

    Article  CAS  Google Scholar 

  10. Antal T, Droz M, Magnin J, Racz Z (1999) Phys Rev Lett 83(15):2880

    Article  CAS  Google Scholar 

  11. Lebedeva MI, Vlachos DG, Tsapatsis M (2004) Phys Rev Lett 92(8):088301-1

    Google Scholar 

  12. Nicolis G, Prigogine I (1977) Self-Organization in Nonequilibrium Systems. Wiley, New York

    Google Scholar 

  13. Nishikawa T, Nonomura M, Arai K, Hayashi J, Sawadaishi T, Nishiura Y, Hara M, Shimomura M (2003) Langmuir 19:6193

    Article  CAS  Google Scholar 

  14. IBM Research News (2003) http://www.research.ibm.com/resources/news/20031208_selfassembly.shtml

  15. Kaneko D, Tada T, Kurokawa T, Gong JP, Osada Y (2005) Adv Mater 17(5):535

    Article  CAS  Google Scholar 

  16. Gong JP, Osada Y (1998) J Chem Phys 109:8062

    Article  CAS  Google Scholar 

  17. Gong JP, Kurokawa T, Narita T, Kagata G, Osada Y, Nishimura G, Kinjo M (2001) J Am Chem Soc 123:5528

    Google Scholar 

  18. Kagata G, Gong JP, Osada Y (2002) J Phys Chem B 106:4596

    Article  CAS  Google Scholar 

  19. Kaneko D, Gong JP, Zrínyi M, Osada Y (2005) J Polym Sci B 43:562–572

    Article  CAS  Google Scholar 

  20. Szabo D, Akiyoshi S, Matsunaga T, Gong JP, Osada Y, Zrinyi M (2000) J Chem Phys 113:8253

    Article  CAS  Google Scholar 

  21. Poulard C, Guena G, Cazabat AM, Boudaoud A, Ben Amar M (2005) Langmuir 21:8226

    Article  CAS  Google Scholar 

  22. Deegan RD (2000) Phys Rev E 61:475

    Article  CAS  Google Scholar 

  23. Trolan SM, Herbolzheimer E, Safran SA, Joanny JF (1989) Europhys Lett 10:25

    Article  Google Scholar 

  24. Kumaran V, Fredrickson GH, Pincus P (1994) J Phys II France 4:893

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daisaku Kaneko or Jian Ping Gong .

Editor information

Zoltán D. Hórvölgyi Éva Kiss

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kaneko, D., Furukawa, H., Tanaka, Y., Osada, Y., Gong, J. (2008). Flower Petal-like Pattern on Soft Hydrogels during Vodka Spreading. In: Hórvölgyi, Z.D., Kiss, É. (eds) Colloids for Nano- and Biotechnology. Progress in Colloid and Polymer Science, vol 135. Springer, Berlin, Heidelberg. https://doi.org/10.1007/2882_2008_110

Download citation

Publish with us

Policies and ethics