Skip to main content

Temperature Induced DNA Compaction in a Nonionic Lamellar Phase

  • Conference paper
  • First Online:
  • 2212 Accesses

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 135))

Abstract

A nonionic lamellar phase was prepared using C10E3 in buffer solution at pH = 7.6. A suitable T4DNA concentration around 5 wt % was immobilized in a lamellar phase with 40 wt % C10E3. The mixed system was investigated at two temperatures, 25 and 5 °C by using cryo-fracture TEM direct imaging, fluorescence microscopy and small-angle X-ray scattering. The surprising results where obtained showing that the DNA conformation can be tuned to compacted and extended state at 25 and 5 °C, respectively. Additionally, DNA is aligned with a preferential orientation in the direction of the flow by simply injecting the sample in a capillary.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Matthew LL, Spicer PT (2005) Bicontinuous liquid crystals. Taylor & Francis, New York

    Google Scholar 

  2. Chernik GG (1999) Curr Opin Colloid Interf Sci 4:381

    Article  CAS  Google Scholar 

  3. Kato T (2002) Science 295:2414

    Article  CAS  Google Scholar 

  4. Goldberg M, Langer R, Jia XQ (2007) J Biomater Sci Polym Ed 18:241

    Article  CAS  Google Scholar 

  5. Hamley IW, Castelletto V (2007) Angew Chem Int Ed 46:4442

    Article  CAS  Google Scholar 

  6. Radler JO, Koltover I, Salditt T, Safinya CR (1997) Science 275:810

    Article  CAS  Google Scholar 

  7. Artzner F, Zantl R, Rapp G, Radler JO (1998) Phys Rev Lett 81:5015

    Article  CAS  Google Scholar 

  8. Salditt T, Koltover I, Radler JO, Safinya CR (1997) Phys Rev Lett 79:2582

    Article  CAS  Google Scholar 

  9. Ruckert M, Otting G (2000) J Am Chem Soc 122:7793

    Article  CAS  Google Scholar 

  10. Mitchell DJ, Tiddy GJT, Waring L, Bostock T, McDonald MP (1983) J Chem Soc Faraday Trans I 79:975

    Article  CAS  Google Scholar 

  11. Baciu M, Olsson U, Leaver MS, Holmes MC (2006) J Phys Chem B 110:8184

    Article  CAS  Google Scholar 

  12. Imai M, Saeki A, Teramoto T, Kawaguchi A, Nakaya K, Kato T, Ito K (2001) J Chem Phys 115:10525

    Article  CAS  Google Scholar 

  13. Mecke A, Dittrich C, Meier W (2006) Soft Matter 2:751

    Article  CAS  Google Scholar 

  14. Salamat G, Kaler EW (1999) Langmuir 15:5414

    Article  CAS  Google Scholar 

  15. Danino D, Bernheim-Groswasser A, Talmon Y (2001) Colloids Surf A: Physicochem Eng Asp 183:113

    Article  Google Scholar 

  16. Bulut S, González-Pérez A, Olsson U (2008) Langmuir 24:22

    Article  CAS  Google Scholar 

  17. Cerenius Y, Stahl K, Svensson LA, Ursby T, Oskarsson A, Albertsson J, Liljas A (2000) J Synchrotron Radiat 7:203

    Article  CAS  Google Scholar 

  18. Ali AA, Mulley BA (1978) J Pharm Pharmacol 30:205

    CAS  Google Scholar 

  19. Medronho B, Miguel MG, Olsson U (2007) Langmuir 23:5270

    Article  CAS  Google Scholar 

  20. Nettesheim F, Zipfel J, Olsson U, Renth F, Lindner P, Richtering W (2003) Langmuir 19:3603

    Article  CAS  Google Scholar 

  21. Dias RS, Pais A, Miguel MG, Lindman B (2004) Colloids Surf A: Physicochem Eng Asp 250:115

    Article  CAS  Google Scholar 

  22. Minewaki K, Kato T, Yoshida H, Imai M, Ito K (2001) Langmuir 17:1864

    Article  CAS  Google Scholar 

  23. Le TD, Olsson U, Mortensen K (2000) Physica B 276:379

    Article  Google Scholar 

  24. Le TD, Olsson U, Mortensen K, Zipfel J, Richtering W (2001) Langmuir 17:999

    Article  CAS  Google Scholar 

  25. Von Berlepsch H, De Vries R (2000) Eur Phys J E 1:141

    Article  CAS  Google Scholar 

  26. Von Berlepsch H, Burger C, Dautzenberg H (1998) Phys Rev E 58:7549

    Article  Google Scholar 

  27. Budker VG, Slattum PM, Monahan SD, Wolff JA (2002) Biophys J 82:1570

    Article  CAS  Google Scholar 

  28. Osfouri S, Stano P, Luisi PL (2005) J Phys Chem B 109:19929

    Article  CAS  Google Scholar 

  29. Baggerjorgensen H, Olsson U, Iliopoulos I (1995) Langmuir 11:1934

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo González-Pérez .

Editor information

Zoltán D. Hórvölgyi Éva Kiss

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

González-Pérez, A., Bulut, S., Olsson, U., Lindman, B. (2008). Temperature Induced DNA Compaction in a Nonionic Lamellar Phase. In: Hórvölgyi, Z.D., Kiss, É. (eds) Colloids for Nano- and Biotechnology. Progress in Colloid and Polymer Science, vol 135. Springer, Berlin, Heidelberg. https://doi.org/10.1007/2882_2008_106

Download citation

Publish with us

Policies and ethics