Skip to main content

Nanolayer Coatings

  • Conference paper
  • First Online:
Colloids for Nano- and Biotechnology

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 135))

Abstract

Langmuir–Blodgett and self assembled molecular layers of hydroxamic and phosphonic acids deposited onto metal surfaces were studied in corrosive aqueous solution with and without corrosion relevant microorganisms. The role of intermolecular interaction, molecular layer thickness, self assembled molecular layer (SAM) formation time as well as the alkyl chain length in the anticorrosion processes and in the microbiological adhesion was in the focus of our experiments. Langmuir films characterized by isotherms and Brewster angle microscopy (BAM) were deposited as Langmuir–Blodgett (LB) layers onto copper and iron surfaces. The SAM layer formation was followed by sum frequency vibration (SFG) and infrared (IRRAS) spectroscopy, the morphology of the LB and SAM films was visualized by atomic force microscopy (AFM), and the change in the wettability was characterized by contact angle values measured in pure water on metals (with and without nanocoatings). The anticorrosion efficiency of the nanofilms was confirmed by electrochemical as well as by AFM measurements. The decrease in the microbial adhesion caused by the nanolayers was visualized by epifluorescence microscopy and enumerated by microbiological technique. Correlation was found between the metal surface energy and the number of adhered corrosion relevant microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gaines GL (1966) Insoluble Nanolayers at liquid/gas interfaces. Interscience, New York

    Google Scholar 

  2. Petty MC (1996) Langmuir–Blodgett films. An Introduction. Cambridge Univ Press, Cambridge

    Book  Google Scholar 

  3. Roberts GG (1990) Langmuir–Blodgett Films. Plenum Press, New York

    Google Scholar 

  4. Ulman A (1991) An Introduction to Ultrathin Organic Films, from LB to Self Assembly. Academic Press, San Diego

    Google Scholar 

  5. Schwartz DK (1997) Surf Sci Rep 27:241

    Article  CAS  Google Scholar 

  6. Roberts GG (1985) Adv Phys 34:475

    Article  CAS  Google Scholar 

  7. Swalen JD, Allara DL, Andrade JD et al. (1987) Langmuir 3:932

    Article  CAS  Google Scholar 

  8. Petersen IR (1994) In: Mahler G, May V, Schreiber M (eds) The Molecular Electronic Handbook. Marcel Decker, New York

    Google Scholar 

  9. Mohai M, Kiss É, Tóth A, Szalma J, Bertóti I (2002) Surf Interf Anal 34:772

    Article  CAS  Google Scholar 

  10. Allara DL, Nuzzo RG (1985) Langmuir 1:45 and 52

    Article  CAS  Google Scholar 

  11. Slotter NE, Porter MD, Bright TB, Allara DL (1986) Chem Phys Lett 132:93

    Article  Google Scholar 

  12. Thoughton EB (1988) Langmuir 4:365

    Article  Google Scholar 

  13. Laibinis PE (1991) J Am Chem Soc 113:7152

    Article  CAS  Google Scholar 

  14. Laibinis PE, Whitesides AM (1992) J Am Chem Soc 114:9022

    Article  CAS  Google Scholar 

  15. Jennings GK, Munkro JM, Yong TH, Laibinis PE (1998) Langmuir 14:6130

    Article  CAS  Google Scholar 

  16. Van Alsten JG (1999) Langmuir 15:7605

    Article  CAS  Google Scholar 

  17. Lossen H (1869) Justus Liebigs Ann Chem 150:134

    Google Scholar 

  18. Miller MJ (1989) Chem Rev 89:1563

    Article  CAS  Google Scholar 

  19. Nagarajan K, Rajappa S, Rajagopalam P et al. (1991) Indian J Chem B 30:222

    Google Scholar 

  20. Nakamura S, Inouye Y (1989) Kagaku Zokan (Kyoto) 116

    Google Scholar 

  21. Schmetzer J, Stetter J, Hammann I, Homeyer B (1982) Eur Pat 50, p 283

    Google Scholar 

  22. Farkas E, Megyeri K, Somsák L, Kovács LJ (1998) Inorg Biochem 70:41

    Article  CAS  Google Scholar 

  23. Farkas E, Enyedi ÉA, Csóka H (1999) Polyhedron 18:23910

    Article  Google Scholar 

  24. Farkas E, Enyedi ÉA, Csóka H (2000) J Inorg Biochem 79:205

    Article  CAS  Google Scholar 

  25. Farkas É, Enyedi A, Zékány L, Deák G (2001) J Inorg Biochem 83:107

    Article  CAS  Google Scholar 

  26. Shaban A, Kálmán E, Telegdi J (1998) J Electrochim Acta 43:159

    Article  CAS  Google Scholar 

  27. Alaghta A, Felhõsi I, Telegdi J, Bertóti I, Kálmán E (2007) Corr Sci 49:2754

    Article  CAS  Google Scholar 

  28. Folkers JP, Gorman CB, Laibinis PE et al. (1995) Langmuir 11:813

    Article  CAS  Google Scholar 

  29. Deng H, Nanjo H, Qian P et al. (2008) Electrochim Acta 53:2972

    Article  CAS  Google Scholar 

  30. Telegdi J, Rigó T, Kálmán E (2005) J Electroanal Chem 582:191

    Article  CAS  Google Scholar 

  31. Telegdi J, Rigó T, Kálmán E (2004) Corr Eng Sci Technol 39:65

    Article  CAS  Google Scholar 

  32. Telegdi J, Rigó T, Beczner J, Kálmán E (2005) Surf Eng 21:1

    Article  CAS  Google Scholar 

  33. Hauser CR, Renfrow WB (1971) Org Synth Collect 2.67

    Google Scholar 

  34. Baret F, Hasmonay H, Firpo J et al. (1982) Chem Phys Lipids 30:177

    Article  CAS  Google Scholar 

  35. Seoane R, Miòones J, Conde O et al. (2000) J Phys Chem B 104:7735

    Article  CAS  Google Scholar 

  36. Kang YS, Lee DK, Kim YS (2001) Synth Met 117:165

    Article  CAS  Google Scholar 

  37. Betts JJ, Pethica BA (1956) Trans Faraday Soc 52:1581

    Article  CAS  Google Scholar 

  38. De Boer JH (1945) The Dynamical Characters of Adsorption. Oxford Univ Press, London

    Google Scholar 

  39. Jasper JJ (1972) J Phys Chem Ref Data 1:841

    Article  CAS  Google Scholar 

  40. Engelking J, Wittemann M, Rehahn M, Menzel H (2000) Langmuir 16:3407

    Article  CAS  Google Scholar 

  41. Schnitter M, Engelking J, Heise A, Miller RD, Menzel H (2000) Macromol Chem Phys 201:1504

    Article  CAS  Google Scholar 

  42. Umemura J, Takeda S, Hasegawa T, Takenaka T (1993) J Mol Struct 297:57

    Article  CAS  Google Scholar 

  43. Kimura F, Umemura J, Takenaka T (1986) Langmuir 2:96

    Article  CAS  Google Scholar 

  44. Holland RF, Nielsen JR (1962) J Mol Spectrosc 9:436

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Telegdi .

Editor information

Zoltán D. Hórvölgyi Éva Kiss

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Telegdi, J., Rigó, T., Pfeifer, É., Keszthelyi, T., Kálmán, E. (2008). Nanolayer Coatings. In: Hórvölgyi, Z.D., Kiss, É. (eds) Colloids for Nano- and Biotechnology. Progress in Colloid and Polymer Science, vol 135. Springer, Berlin, Heidelberg. https://doi.org/10.1007/2882_2008_098

Download citation

Publish with us

Policies and ethics