Skip to main content

FTIR and 1H NMR Studies on the Structure of Water Solubilized by Reverse Aggregates of Dodecyltrimethylammonium Bromide; Didodecyldimethylammonium Bromide, and Their Mixtures in Organic Solvents

  • Conference paper
  • First Online:
Surface and Interfacial Forces – From Fundamentals to Applications

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 134))

Abstract

The structure of water solubilized by the reverse aggregates of dodecyltrimethylammonium bromide, DoMe3ABr in chloroform/n-heptane; di-dodecyldimethylammonium bromide, Do2Me2ABr, in n-heptane, and mixture of the two surfactants in the latter solvent has been probed by FTIR and 1H NMR. The ν OD band of solubilized HOD (4% D2O in H2O) has been recorded as a function of [water]/[surfactant] molar ratio, W/S. Curve fitting of this band showed the presence of a small peak at (2375 ± 12) cm−1 and a major one at (2521 ± 7) cm−1; the latter corresponds to (92.5 ± 1) % of the total peak area. As a function of increasing W/S, ν OD decreases, its full width at half-height increases and its area linearly increases over the W/S range investigated. Observed 1H NMR chemical shift, δ obs, of solubilized water, and the CH 2–N+(CH3)3, CH2–N+(CH 3)3 groups of DoMe3ABr change smoothly as a function of increasing W/S. Similar trends have been observed for Do2Me2ABr-solubilized water, and for water solubilized by a mixture of DoMe3ABr plus Do2Me2ABr. δ obs for H2O-D2O mixtures solubilized by DoMe3ABr were measured as a function of the deuterium content of the aqueous nano-droplet. These data were employed to calculate the so called deuterium/protium “fractionation factor”, φ M, of the reverse aggregate-solubilized water. Plots of a function of δ obs (for HOD; CH 2–N+(CH3)3, and CH2–N+(CH 3)3) versus the atom fraction of deuterium in the aqueous nano-droplet were strictly linear, indicating that the value of φ M is unity. The results of both techniques show that reverse aggregate-solubilized water does not seem to coexist in “layers” of different structures, as suggested, e.g., by the multi-state water solubilization model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aliotta F, Migliardo P, Donato DI, Liveri VT, Bardez E, Larry B (1992) Prog Colloid Polym Sci 89:258

    Article  CAS  Google Scholar 

  2. Amico P, D'Angelo M, Onori G, Santucci A (1995) Nuovo Cimento 17D:1053

    Article  CAS  Google Scholar 

  3. Armarego WLF, Perrin DD (1998) Purification of Laboratory Chemicals. Butterworth-Heinemann, Oxford

    Google Scholar 

  4. Attwood D, Florence AT (1984) Surfactant Systems: Their Chemistry, Pharmacy, and Biology. Chapman and Hall, London

    Google Scholar 

  5. Baianu IC, Boden M, Lightowlers D, Mortimer M (1978) Chem Phys Lett 54:169

    Article  CAS  Google Scholar 

  6. Belletête M, Droucher GJ (1989) J Colloid Interf Sci 134:289

    Article  Google Scholar 

  7. Belletête M, Lachapelle M, Droucher G (1990) J Phys Chem 94:5337

    Article  Google Scholar 

  8. Bockris JO, Reddy AKN (1973) Modern Electrochemistry. Plenum Press, New York

    Google Scholar 

  9. Boden N, Mortimer M (1978) J Chem Soc Faraday Trans 2 74:353

    Article  CAS  Google Scholar 

  10. Boicelli CA, Giomini M, Giuliani AM (1984) Appl Spectrosc 38:537

    Article  CAS  Google Scholar 

  11. Bumajdad A, Eastoe J, Griffiths P, Steytler DC, Heenan RK, Lu JR, Timmins P (1999) Langmuir 15:5271

    Article  CAS  Google Scholar 

  12. Bumajdad A, Eastoe J, Zaki MI, Heenan RK, Pasupulety L (2007) J Colloid Interf Sci 312:68

    Article  CAS  Google Scholar 

  13. Candau F, Leong YS, Fitch RM (1985) J Polym Sci 23:195

    Google Scholar 

  14. Candau F, Leong YS, Poyet G, Candau SJ (1984) J Colloid Interf Sci 101:167

    Article  CAS  Google Scholar 

  15. Candau F, Zekhini Z, Durand JP (1986) J Colloid Interf Sci 114:398

    Article  CAS  Google Scholar 

  16. Carey DM, Korenowski GM (1998) J Chem Phys 108:2669

    Article  CAS  Google Scholar 

  17. Christopher DJ, Yarwood J, Belton PS, Hills B (1992) J Colloid Interf Sci 152:465

    Article  CAS  Google Scholar 

  18. Compton SV, Compton DAC, Coleman PB (eds) (1993) Practical Sampling Techniques in Infrared Analysis. CRC Press, Boca Raton, p 217

    Google Scholar 

  19. D'Angelo M, Onori G, Santucci A (1994) J Phys Chem 98:3189–3193

    Article  Google Scholar 

  20. D'Aprano A, Lizzio A, Liveri VT, Aliotta F, Vasi C, Migliardo P (1988) J Phys Chem 92:4436

    Article  Google Scholar 

  21. Derome A (1987) Modern NMR Techniques for Chemistry Research. Pergamon Press, Oxford

    Google Scholar 

  22. Efimov YY, Naberukhin YI (1978) Mol Phys 36:973

    Article  CAS  Google Scholar 

  23. Eicke H-F, Kvita P (1984) In: Luisi LP, Straub BE (eds) Reverse Micelles: Biological and Technological Relevance of Amphiphilic Structures in Apolar Media. Plenum Press, New York, p 21

    Google Scholar 

  24. El Seoud OA, Hinze W (eds) (1994) Organized Assemblies in Chemical Analysis. JAI Press, Greenwich, p 1

    Google Scholar 

  25. El Seoud OA (1997) J Mol Liq 72:85

    Article  Google Scholar 

  26. El Seoud OA, El Seoud M, Mickiewicz JA (1994) J Colloid Interf Sci 163:87

    Article  Google Scholar 

  27. El Seoud OA, Novaki LP (1998) Prog Colloid Polym Sci 109:42

    Article  Google Scholar 

  28. El Seoud OA, Okano LT, Novaki LP, Barlow GK (1996) Ber Bunsenges Phys Chem 100:1147

    Google Scholar 

  29. Enderby JE, Neilson GW (1979) Water—A Comprehensive Treatise. Plenum Press, New York

    Google Scholar 

  30. Enders H, Nimtz G (1984) Ber Bunsenges Phys Chem 88:512

    CAS  Google Scholar 

  31. Feitosa E, Agostinho Neto A, Chaimovich H (1993) Langmuir 9:702–707

    Article  CAS  Google Scholar 

  32. Fendler JH (1982) Membrane Mimetic Chemistry. Wiley, New York

    Google Scholar 

  33. Gandour RD, Coyne M, Stella VJ, Schowen RL (1980) J Org Chem 45:1733

    Article  CAS  Google Scholar 

  34. Giammona G, Goffredi F, Liveri VT, Vassallo G (1992) J Colloid Interf Sci 152:465

    Article  Google Scholar 

  35. Goba RD, Kon-no K, Kandori K, Kitahara A (1983) J Colloid Interf Sci 93:293

    Article  Google Scholar 

  36. Goto A, Yoshioka H, Kishimoto H, Fujita T (1992) Langmuir 8:441

    Article  CAS  Google Scholar 

  37. Jain TK, Varshney M, Maitra A (1989) J Phys Chem 93:7409

    Article  CAS  Google Scholar 

  38. Jarret RM, Saunders M (1985) J Am Chem Soc 107:2648

    Article  CAS  Google Scholar 

  39. Jeffrey GA (1997) An Introduction to Hydrogen Bonding. Oxford University Press, New York

    Google Scholar 

  40. Kon-no K, Kitatahara A, El Seoud OA, Schick M (eds) (1987) Nonionic Surfactants: Physical Chemistry. Marcel Dekker, New York, p 185

    Google Scholar 

  41. Kristiansson O, Eriksson A, Lindberg J (1984) Acta Chem Scand A38:609

    Article  CAS  Google Scholar 

  42. Langevin D (1984) In: Luisi LP, Straub BE (eds) Reverse Micelles: Biological and Technological Relevance of Amphiphilic Structures in Apolar Media. Plenum Press, New York, p 287

    Google Scholar 

  43. Leonidis EB, Hatton TA (1989) Langmuir 5:741

    Article  Google Scholar 

  44. Lianos P, Thomas JK (1986) J Colloid Interf Sci 117:505

    Article  Google Scholar 

  45. Lindgren J, Hermansson K, Wójcik MJ (1993) J Phys Chem 97:5254

    Google Scholar 

  46. Lis LJ, McAlister M, Fuller N, Rand RP, Parsegian VA (1982) Biophys J 37:657

    CAS  Google Scholar 

  47. Lucas M, De Trobriand A, Ceccaldi M (1975) J Phys Chem 79:913

    Article  CAS  Google Scholar 

  48. MacDonald H, Bedwell B, Gulari E (1986) Langmuir 2:704

    Article  CAS  Google Scholar 

  49. Maddams WF (1980) Appl Spectrosc 34:2451

    Article  Google Scholar 

  50. Maitra A, Jain TK, Shervani Z (1990) Colloid Surf 47:255

    Article  CAS  Google Scholar 

  51. Marcus Y (1994) Biophys Chem 51:111

    Article  CAS  Google Scholar 

  52. Marcus Y (1997) Ion Properties. Marcel Dekker, New York

    Google Scholar 

  53. Mikenda W (1986) Monatsh Chem 117:977

    Article  CAS  Google Scholar 

  54. Monduzzi M, Caboi F, Larché F, Olsson U (1997) Langmuir 13:2184–2190

    Article  CAS  Google Scholar 

  55. Monosmith WB, Walrafen GE (1984) J Chem Phys 81:669

    Article  CAS  Google Scholar 

  56. Mundy WC, Gutierrez L, Spedding FH (1973) J Chem Phys 59:2173

    Article  CAS  Google Scholar 

  57. Nakayama H, Yamanobe M, Baba K (1991) Bull Chem Soc Japan 64:3023

    Article  CAS  Google Scholar 

  58. Novaki LP, El Seoud OA (1997) Ber Bunsenges Phys Chem 101:1928

    CAS  Google Scholar 

  59. Novaki LP, El Seoud OA (1998) J Colloid Interf Sci 202:391

    Article  CAS  Google Scholar 

  60. Novaki LP, El Seoud OA, Lopes JCD (1997) Ber Bunsenges Phys Chem 101:1928

    CAS  Google Scholar 

  61. Novaki LP, Pires PAR, El Seoud OA (2000) Colloid Polym Sci 278:143

    Article  CAS  Google Scholar 

  62. Ohtaki H, Radani T (1993) Chem Rev 93:1157

    Article  CAS  Google Scholar 

  63. Onori G, Santucci A (1993) J Phys Chem 97:5430

    Article  CAS  Google Scholar 

  64. Pacynko WF, Yarwood J, Tiddy GJT (1987) Liq Cryst 2:201

    Article  CAS  Google Scholar 

  65. Piletic IR, Moilanen DE, Spry DB, Levinger NE, Fayer MD (2006) J Phys Chem A 110:4985

    Article  CAS  Google Scholar 

  66. Profio PD, Germani R, Onori G, Santucci A, Savelli G, Bunton CA (1998) Langmuir 14:768

    Article  Google Scholar 

  67. Rabie HR, Vera JH (1997) J Phys Chem B 101:10295

    Article  CAS  Google Scholar 

  68. Reck RA, Horwood HJ, Ralston AM (1947) J Org Chem 12:517

    Article  CAS  Google Scholar 

  69. Rosenfeld DE, Schmuttenmaer CA (2006) J Phys Chem B 110:14304

    Article  CAS  Google Scholar 

  70. Scherer JR (1978) In: Clark RJH, Hester RE (eds) Advances in Infrared and Raman Spectroscopy, Vol 5. Wiley, New York, p 149

    Google Scholar 

  71. Schiffer J, Hornig DF (1968) J Chem Phys 49:4150

    Article  CAS  Google Scholar 

  72. Schowen KB, Gandour RD, Schowen RL (eds) (1978) Transition States for Biochemical Processes. Plenum Press, New York, p 225

    Google Scholar 

  73. Senior WA, Verrall RE (1969) J Phys Chem 73:4242

    Article  CAS  Google Scholar 

  74. Sokolowska A (1991) J Raman Spectrosc 22:31

    Article  CAS  Google Scholar 

  75. Sokolowska A, Kecki Z (1986) J Raman Spectrosc 17:29

    Article  CAS  Google Scholar 

  76. Teleman O, Joensson B, Engstroem S (1987) Mol Phys 60:193

    Article  CAS  Google Scholar 

  77. Tiddy GJT (1979) Nucl Magn Reson 8:174

    Article  CAS  Google Scholar 

  78. Tiddy GJT (1980) Phys Rep 57:1

    Article  CAS  Google Scholar 

  79. Uskokovic V, Drofenik M (2006) J Magn Magn Mater 303:214–220

    Article  CAS  Google Scholar 

  80. Uskokovic V, Drofenik M (2007) Adv Colloid Interf Sci 133:23

    Article  CAS  Google Scholar 

  81. Vandeginste BGM, De Galan L (1975) Anal Chem 47:2124

    Article  CAS  Google Scholar 

  82. Waldron RD (1957) J Chem Phys 26:809

    Article  CAS  Google Scholar 

  83. Wall TT, Hornig DF (1965) J Chem Phys 43:2079

    Article  CAS  Google Scholar 

  84. Wall TT, Hornig DF (1967) J Chem Phys 47:784

    CAS  Google Scholar 

  85. Walrafen GE (1968) J Chem Phys 48:244

    Article  CAS  Google Scholar 

  86. Wiafe-Akenten J, Bansil R (1983) J Chem Phys 78:7132

    Article  CAS  Google Scholar 

  87. Wills HA, Van der Maas JH, Miller RGJ (1987) Laboratory Methods in Vibrational Spectroscopy. Wiley, New York

    Google Scholar 

  88. Yoshioka H, Kazama S (1983) J Colloid Interf Sci 95:240

    Article  CAS  Google Scholar 

  89. Yoshioka H (1983) J Colloid Interf Sci 95:81

    Article  CAS  Google Scholar 

  90. Zhou G-W, Li G-Z, Chen W-J (2002) Langmuir 18:4566

    Article  CAS  Google Scholar 

  91. Zhou N, Li Q, Wu J, Chen J, Weng S, Xu G (2001) Langmuir 17:4505

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar A. El Seoud .

Editor information

Günter K. Auernhammer Hans-Jürgen Butt Doris Vollmer

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

El Seoud, O.A., Pires, P.A.R. (2008). FTIR and 1H NMR Studies on the Structure of Water Solubilized by Reverse Aggregates of Dodecyltrimethylammonium Bromide; Didodecyldimethylammonium Bromide, and Their Mixtures in Organic Solvents. In: Auernhammer, G.K., Butt, HJ., Vollmer, D. (eds) Surface and Interfacial Forces – From Fundamentals to Applications. Progress in Colloid and Polymer Science, vol 134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/2882_2008_078

Download citation

Publish with us

Policies and ethics