Skip to main content

Self-Association of Phosphorylase Kinase under Molecular Crowding Conditions

  • Conference paper
  • First Online:
Analytical Ultracentrifugation VIII

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 131))

Abstract

Self-association of phosphorylase kinase (PhK) has been studied using analytical ultracentrifugation and dynamic light scattering under the conditions of molecular crowding arising from the presence of high concentrations of osmolyte. Sedimentation velocity analysis shows that in accordance with the predictions of molecular crowding theory, trimethylamine N-oxide (TMAO) greatly favours self-association of PhK induced by α and α . On the contrary, proline suppresses this process, probably, due to its specific interaction with PhK. We have also established that α-crystallin, a protein possessing chaperone-like activity, counteracts the self-association of PhK under molecular crowding conditions. Using dynamic light scattering we have shown that the increase in the light scattering intensity accompanying self-association of PhK is due to the formation of particles having hydrodynamic radius of hundreds of nanometers. The hydrodynamic radius of the start associates (seeds of association) was found to be approximately 80 nm. TMAO facilitates the formation of the associates of larger size whereas proline and α-crystallin suppress self-association of PhK.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Krebs EG, Graves DJ, Fisher EH (1959) J Biol Chem 234:2867–2873

    CAS  Google Scholar 

  2. Brushia RJ, Walsh DA (1999) Frontiers Biosci 4:618–641

    Google Scholar 

  3. Livanova NB (1993) Biochemistry (Moscow) 58:1677–1684

    CAS  Google Scholar 

  4. Cohen P (1973) Eur J Biochem 34:1–14

    Article  CAS  Google Scholar 

  5. Nadeaw OW, Traxler KW, Fee LR, Baldwin BA, Carlson GM (1999) Biochemistry 38:2551–2559

    Article  Google Scholar 

  6. Wilkinson DA, Fitzgerald TJ, Marion TN, Carlson GM (1999) J Protein Chem 18:157–164

    Article  CAS  Google Scholar 

  7. Chebotareva NA, Andreeva IE, Makeeva VF, Kurganov BI, Livanova NB, Harding SE (2002) Progr Colloid Polym Sci 119:70–76

    Article  CAS  Google Scholar 

  8. Carlson GM, King MM (1982) FASEB J 41:869

    Google Scholar 

  9. Ellis RJ (2001) Trends Biochem Sci 26:597–604

    Article  CAS  Google Scholar 

  10. Ellis RJ, Minton AP (2003) Nature 425:27–28

    Article  CAS  Google Scholar 

  11. Minton AP (1997) Curr Opin Biotechnol 8:65–69

    Article  CAS  Google Scholar 

  12. Minton AP (1998) 295:127–149

    Google Scholar 

  13. Minton AP (2001) J Biol Chem 276:10577–10580

    Article  CAS  Google Scholar 

  14. Ralston GB (1990) J Chem Educ 67:857–860

    Article  CAS  Google Scholar 

  15. Zimmerman SB, Minton AP (1993) Annu Rev Biophys Biomol Struct 22:27–65

    Article  CAS  Google Scholar 

  16. Chebotareva NA, Kurganov BI, Livanova NB (2004) Biochemistry (Moscow) 69:1239–1251

    CAS  Google Scholar 

  17. Bolen DW, Baskakov IV (2001) J Mol Biol 310:955–963

    Article  CAS  Google Scholar 

  18. Yancey PH, Somero GN (1979) Biochem J 183:317–323

    CAS  Google Scholar 

  19. Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Science 217:1214–1222

    Article  CAS  Google Scholar 

  20. Wang A, Bolen DW (1997) Biochemistry 36:9101–9108

    Article  CAS  Google Scholar 

  21. Burg MB, Peters EM (1997) Am J Physiology 273:F1048–F1053

    CAS  Google Scholar 

  22. Chebotareva NA, Harding SE, Winzor DJ (2001) Eur J Biochem 268:506–513

    Article  CAS  Google Scholar 

  23. Chebotareva NA, Andreeva IE, Makeeva VF, Livanova NB, Kurganov BI (2004) J Mol Recognit 17:426–432

    Article  CAS  Google Scholar 

  24. Chebotareva NA, Kurganov BI, Harding SE, Winzor DJ (2005) Biophys Chem 113:61–66

    Article  CAS  Google Scholar 

  25. Samuel D, Kumar TK, Ganesh G, Jayaraman G, Yang PW, Chang MM, Trivedi VD, Wang SL, Hwang KC, Chang DK, Yu C (2000) Protein Sci 9(2):344–352

    Article  CAS  Google Scholar 

  26. Aerts T, Wang QH, Tatarkova S, Clauwaert J (1995) Prog Colloid Polym Sci 99:94–100

    Article  CAS  Google Scholar 

  27. van Houdt J, Aerts T, Clauwaert J (1997) Prog Colloid Polym Sci 107:88–95

    Article  Google Scholar 

  28. Augusteyn RC, Stevens A (1998) Prog Polymer Sci 23:375–413

    Article  CAS  Google Scholar 

  29. Augusteyn RC (2004) Clin Exp Optom 87:6:356–366

    Article  Google Scholar 

  30. Horwitz J (1992) Proc Natl Acad Sci USA 89:10449–10453

    Article  CAS  Google Scholar 

  31. Treweek TM, Morris AM, Carver JA (2003) Aust J Chem 56:357–367

    Article  CAS  Google Scholar 

  32. Haynes JI2, Duncan MK, Piatigorsky J (1996) Dev Dyn 207:75–88

    Article  CAS  Google Scholar 

  33. Benjamin IJ, Shelton J, Garry DJ, Richardson JA (1997) Dev Dyn 208:75–84

    Article  CAS  Google Scholar 

  34. Golenhofen N, Perng MD, Quinlan RA, Drenckhahn D (2004) Histohem Cell Biol 122:415–425

    Article  CAS  Google Scholar 

  35. Thomson JA, Augusteyn RC (2004) Curr Eye Res 7:563–569

    Article  Google Scholar 

  36. Spektor A, Li L-K, Augusteyn RC, Schneider A, Freund T (1971) Biochem J 124:337–343

    Google Scholar 

  37. Thomson JA, Augusteyn RC (1983) Exp Eye Res 37:367–377

    Article  CAS  Google Scholar 

  38. Schuck P (2000) Biophys J 78:1606–1619

    Article  CAS  Google Scholar 

  39. Schuck P, Perugini MA, Gonzales NR, Howlett GJ, Schubert D (2002) Biophys J 82:1096–1111

    Article  CAS  Google Scholar 

  40. Morozov VE, Eronina TB, Andreeva IE, Silonova GV, Soloviyova NV, Schors EI, Livanova NB, Poglazov BF (1989) Biokhimiya 54:448–455 (in Russian)

    CAS  Google Scholar 

  41. Laemmli UK (1970) Nature 227:680–685

    Article  CAS  Google Scholar 

  42. Putilina T, Skouri-Panet F, Prat K, Lubsen NH, Tardieu A (2003) J Biol Chem 278:13747–13756

    Article  CAS  Google Scholar 

  43. Minton AP (2000) Curr Opinion Struct Biol 10:34–39

    Article  CAS  Google Scholar 

  44. Andreeva IE, Makeeva VF, Livanova NB, Kurganov BI (1995) Biochemistry (Moscow), 60:1009–1016

    Google Scholar 

  45. Livanova NB, Kurganov BI, Andreeva IE, Makeeva VF, Poglazov BF (1995) In: Poglazov BF, Kurganov BI, Kritsky MS, Gladilin KL (eds) Evolutionary Biochemistry and Related Areas of Physicochemical Biology. Bach Institute of Biochemistry and ANCO, Moscow, p 543–580

    Google Scholar 

  46. Shearwin KE, Winzor DJ (1988) Biophys Chem 31:287–294

    Article  CAS  Google Scholar 

  47. Cann JR, Coombs RO, Howlett GR, Jacobsen MP, Winzor DJ (1994) Biochemistry 33:10185–10190

    Article  CAS  Google Scholar 

  48. Shtilerman MD, Ding TT, Lansbury PT Jr (2002) Biochemistry 41:3855–3860

    Article  CAS  Google Scholar 

  49. Patel CN, Noble SM, Weatherly GT, Trypathy A, Winzor DJ, Pielak GJ (2002) Protein Science 11:997–1003

    Article  CAS  Google Scholar 

  50. Lin MY, Linsday HM, Weitz DA, Ball RC, Klein R, Meakin P (1989) Proc R Soc 423:71–87

    Article  CAS  Google Scholar 

  51. Creighton TE (1993) Proteins. Structures and Molecular Properties. WH Freeman and Co, New York

    Google Scholar 

  52. Weitz DA, Olivera M (1984) Phys Rev Lett 52:1433–1436

    Article  CAS  Google Scholar 

  53. Weitz DA, Lin MY, Sandroff CJ (1985) Surface Sci 158:147–164

    Article  CAS  Google Scholar 

  54. Weitz DA, Lin MY (1986) Phys Rev Lett 57:2037–2040

    Article  CAS  Google Scholar 

  55. Hall D, Minton AP (2003) Biochim Biophys Acta 1649:127–139

    CAS  Google Scholar 

  56. Weitz DA, Huang JS, Lin MY, Sung J (1985) Phys Rev Lett 54:1416–1419

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the Russian Foundation for Basic Research (grant 05-04-48691), Programs “Molecular and Cell Biology” of the Presidium of the Russian Academy of Sciences, the Program for the Support of the Leading Scientific Schools in Russia (grant 813.2003.4), and by INTAS (grant 03-51-4813).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia A. Chebotareva .

Editor information

Christine Wandrey Helmut Cölfen

Rights and permissions

Reprints and permissions

About this paper

Cite this paper

Chebotareva, N.A., Meremyanin, A.V., Makeeva, V.F., Kurganov, B.I. Self-Association of Phosphorylase Kinase under Molecular Crowding Conditions. In: Wandrey, C., Cölfen, H. (eds) Analytical Ultracentrifugation VIII. Progress in Colloid and Polymer Science, vol 131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/2882_007

Download citation

Publish with us

Policies and ethics