Skip to main content

Use of Metabolic Pathway Flux Information in Anticancer Drug Design

  • Conference paper
  • First Online:
Oncogenes Meet Metabolism

Part of the book series: Ernst Schering Foundation Symposium Proceedings ((SCHERING FOUND,volume 2007/4))

Abstract

The metabolic phenotype of tumor cells promote the proliferative state, which indicates that (a) cell transformation is associated with the activation of specific metabolic substrate channels toward nucleic acid synthesis and (b) increased expression phosphorylation, allosteric or transcriptional regulation of intermediary metabolic enzymes and their substrate availability together mediate unlimited growth. It is evident that cell transformation due to various K-ras point mutations is associated with the activation of specific metabolic substrate channels that increase glucose channeling toward nucleic acid synthesis. Therefore, phosphorylation, allosteric and transcriptional regulation of intermediary metabolic enzymes and their substrate availability together mediate cell transformation and growth. In this review, we summarize opposite changes in metabolic phenotypes induced by various cell-transforming agents, and tumor growth-inhibiting drugs or phytochemicals, or novel synthetic antileukemic drugs such as imatinib mesylate (Gleevec). Metabolic enzymes that further incite growth signaling pathways and thus promote malignant cell transformation serve as high-efficacy nongenetic novel targets for cancer therapies.

This article is to commemorate Dr. Boros, Ferenc János, a dedicated physician to his patients, a loving father and a memorable brother to the authors. Dr. Boros passed away of cancer in 2006 and this article is dedicated to his memory and to those who have suffered from this illness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bares R, Klever P, Hauptmann S et al (1994) F-18 fluorodeoxyglucose PET in vivo evaluation of pancreatic glucose metabolism for detection of pancreatic cancer. Radiology 192:79–86

    CAS  PubMed  Google Scholar 

  • Boren J, Cascante M, Marin S et al (2001) Gleevec (STI571) influences metabolic enzyme activities and glucose carbon flow toward nucleic acid and fatty acid synthesis in myeloid tumor cells. J Biol Chem 276:37747–37753

    CAS  PubMed  Google Scholar 

  • Boros LG, Puigjaner J, Cascante M et al (1997) Oxythiamine and dehydroepiandrosterone inhibit the nonoxidative synthesis of ribose and tumor cell proliferation. Cancer Res 57:4242–4248

    CAS  PubMed  Google Scholar 

  • Boros LG, Comin B, Boren J et al (2000a) Overexpression of transketolase: a mechanism by which thiamine supplementation promotes cancer growth (abstract). Proc Am Assoc Cancer Res 41:666

    Google Scholar 

  • Boros LG, Lee W-NP, Hidvegi M et al (2000b) Metabolic effects of fermented wheat germ extract with anti-tumor properties in cultured MIA pancreatic adenocarcinoma cells. Pancreas 21:433

    Google Scholar 

  • Boros LG, Torday JS, Lim S et al (2000c) Transforming growth factor beta2 promotes glucose carbon incorporation into nucleic acid ribose through the nonoxidative pentose cycle in lung epithelial carcinoma cells. Cancer Res 60:1183–1185

    CAS  PubMed  Google Scholar 

  • Boros LG, Bassilian S, Lim S et al (2001a) Genistein inhibits nonoxidative ribose synthesis in MIA pancreatic adenocarcinoma cells: a new mechanism of controlling tumor growth. Pancreas 22:1–7

    Article  CAS  PubMed  Google Scholar 

  • Boros LG, Lapis K, Szende B et al (2001b) Wheat germ extract decreases glucose uptake and RNA ribose formation but increases fatty acid synthesis in MIA pancreatic adenocarcinoma cells. Pancreas 23:141–147

    Article  CAS  PubMed  Google Scholar 

  • Chesney J, Mitchell R, Benigni F et al (1999) An inducible gene product for 6-phosphofructo-2-kinase with an AU-rich instability element: role in tumor cell glycolysis and the Warburg effect. Proc Natl Acad Sci U S A 96:3047–3052

    Article  CAS  PubMed  Google Scholar 

  • El-Zarruk AA, van den Berg HW (1999) The anti-proliferative effects of tyrosine kinase inhibitors towards tamoxifen-sensitive and tamoxifen-resistant human breast cancer cell lines in relation to the expression of epidermal growth factor receptors (EGF-R) and the inhibition of EGF-R tyrosine kinase. Cancer Lett 142:185–193

    Article  CAS  PubMed  Google Scholar 

  • Hojo M, Morimoto T, Maluccio M et al (1999) Cyclosporine induces cancer progression by a cell-autonomous mechanism. Nature 397:530–534

    Article  CAS  PubMed  Google Scholar 

  • Horecker BL (1965) Pathways of carbohydrate metabolism and their physiological significance. J Chem Educ 42:244–253

    Article  CAS  PubMed  Google Scholar 

  • Horecker BL, Domagk G, Hiatt HH (1958) A comparison of C14-labeling patterns in deoxyribose and ribose in mammalian cells. Arch Biochem Biophys 78:510–517

    Article  CAS  PubMed  Google Scholar 

  • Issa JP (2000) The epigenetics of colorectal cancer. Ann N Y Acad Sci 910:140–153

    Article  CAS  PubMed  Google Scholar 

  • Jakab F, Mayer A, Hoffmann A et al (2000) First clinical data of a natural immunomodulator in colorectal cancer. Hepatogastroenterology 47:393–395

    CAS  PubMed  Google Scholar 

  • Jung I, Messing E (2000) Molecular mechanisms and pathways in bladder cancer development and progression. Cancer Control 7:325–334

    CAS  PubMed  Google Scholar 

  • Katz J, Rognstad R (1967) The labeling of pentose phosphate from glucose-14C and estimation of the rates of transaldolase, transketolase, the contribution of the pentose cycle and ribose phosphate synthesis. Biochemistry 6:2227–2247

    Article  CAS  PubMed  Google Scholar 

  • Katz J, Lee W-NP, Wals PA et al (1989) Studies of glycogen synthesis and the Krebs cycle by mass isotopomer analysis with U-13C-glucose in rats. J Biol Chem 264:12994–13001

    CAS  PubMed  Google Scholar 

  • Kingsley-Hickman PB, Ross B, Krick T (1990) Hexose monophosphate shunt measurement in cultured cells with [1-13C]glucose: correction for endogenous carbon sources using [6-13C]Glucose. Anal Biochem 185:235–237

    Article  CAS  PubMed  Google Scholar 

  • Krebs ET Jr, Krebs ET Sr, Beard HH (1950) The unitarian or trophoblastic thesis of cancer. Med Rec 163:150–171

    Google Scholar 

  • Kunz-Schughart LA, Doetsch J, Mueller-Klieser W et al (2000) Proliferative activity and tumorigenic conversion: impact on cellular metabolism in 3-dimensional culture. Am J Physiol Cell Physiol 278:C765–C780

    CAS  PubMed  Google Scholar 

  • Largaespada DA (2000) Genetic heterogeneity in acute myeloid leukemia: maximizing information flow from MuLV mutagenesis studies. Leukemia 14:1174–1184

    Article  CAS  PubMed  Google Scholar 

  • Lee WN, Bergner EA, Guo ZK (1992) Mass isotopomer pattern and precursor–product relationship. Biol Mass Spectrom 21:114–122

    Article  CAS  PubMed  Google Scholar 

  • Lee W-NP (1993) Analysis of tricarboxylic acid cycle using mass isotopomer ratios. J Biol Chem 268:25522–25526

    CAS  PubMed  Google Scholar 

  • Lee W-NP, Byerley LO, Bassilian S et al (1995) Isotopomer study of lipogenesis in human hepatoma cells in culture: contribution of carbon and reducing hydrogen from glucose. Anal Biochem 226:100–112

    Article  CAS  PubMed  Google Scholar 

  • Lian F, Bhuiyan M, Li YW et al (1998) Genistein-induced G2-M arrest, p21WAF1 upregulation and apoptosis in a non-small-cell lung cancer cell line. Nutr Cancer 31:184–191

    Article  CAS  PubMed  Google Scholar 

  • Martin AM, Weber BL (2000) Genetic and hormonal risk factors in breast cancer. J Natl Cancer Inst 92:1126–1135

    Article  CAS  PubMed  Google Scholar 

  • Oku T, Tjuvajev JG, Miyagawa T et al (1998) Tumor growth modulation by sense and antisense vascular endothelial growth factor gene expression: effects on angiogenesis, vascular permeability, blood volume, blood flow, fluorodeoxyglucose uptake and proliferation of human melanoma intracerebral xenografts. Cancer Res 58:4185–4192

    CAS  PubMed  Google Scholar 

  • Osthus RC, Shim H, Kim S et al (2000) Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem 275:21797–21800

    Article  CAS  PubMed  Google Scholar 

  • Ozen M, Pathak S (2000) Genetic alterations in human prostate cancer: a review of current literature. Anticancer Res 20:1905–1912

    CAS  PubMed  Google Scholar 

  • Rais B, Comin B, Puigjaner J et al (1999) Oxythiamine and dehydroepiandrosterone induce a G1 phase cycle arrest in Ehrlich's tumor cells through inhibition of the pentose cycle. FEBS Lett 456:113–118

    Article  CAS  PubMed  Google Scholar 

  • Raylman RR, Fisher SJ, Brown RS et al (1995) Fluorine-18-fluorodeoxyglucose-guided breast cancer surgery with a positron-sensitive probe: validation in preclinical studies. J Nucl Med 36:1869–1874

    CAS  PubMed  Google Scholar 

  • Sakai Y, Yanagisawa A, Shimada M et al (2000) K-ras gene mutations and loss of heterozygosity at the p53 gene locus relative to histological characteristics of mucin-producing tumors of the pancreas. Hum Pathol 31:795–803

    Article  CAS  PubMed  Google Scholar 

  • Shim H, Chun YS, Lewis BC et al (1998) A unique glucose-dependent apoptotic pathway induced by c-Myc. Proc Natl Acad Sci U S A 95:1511–1516

    Article  CAS  PubMed  Google Scholar 

  • Spitz DR, Sim JE, Ridnour LA et al (2000) Glucose deprivation-induced oxidative stress in human tumor cells. A fundamental defect in metabolism? Ann N Y Acad Sci 899:349–362

    Article  CAS  PubMed  Google Scholar 

  • Strauss LG, Conti PS (1991) The application of PET in clinical oncology. J Nucl Med 32:623–648

    CAS  PubMed  Google Scholar 

  • Szabo C, Masiello A, Ryan JF et al (2000) The Breast Cancer Information Core: database design, structure and scope. Hum Mutat 16:123–131

    Article  CAS  PubMed  Google Scholar 

  • Torizuka T, Tamaki N, Inokuma T et al (1995) In vivo assessment of glucose metabolism in hepatocellular carcinoma with FDG-PET J Nucl Med 36:1811–1817

    CAS  Google Scholar 

  • Waltron RT, Rozengurt E (2000) Oxidative stress induces protein kinase D activation in intact cell: involvement of Src and dependence on protein kinase C. J Biol Chem 275:17114–17121

    Article  Google Scholar 

  • Warburg O (1930) The metabolism of tumors. London, Costable

    Google Scholar 

  • Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  CAS  PubMed  Google Scholar 

  • Yatsuoka T, Sunamura M, Furukawa T et al (2000) Association of poor prognosis with loss of 12q, 17p and 18q and concordant loss of 6q/17p and 12q/18q in human pancreatic ductal adenocarcinoma. Am J Gastroenterol 95:2080–2085

    Article  CAS  PubMed  Google Scholar 

  • Zhou JR, Gugger ET, Tanaka T et al (1999) Soybean phytochemicals inhibit the growth of transplantable human prostate carcinoma and tumor angiogenesis in mice. J Nutr 129:1628–1635

    CAS  PubMed  Google Scholar 

  • Zwerschke W, Mazurek S, Massimi P et al (1999) Modulation of type M2 pyruvate kinase activity by the human papillomavirus type 16 E7 oncoprotein. Proc Natl Acad Sci U S A 96:1291–1296

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was, in part, supported by the PHS M01-RR00425 of the General Clinical Research Unit, by NIH-AT00151, by P01-CA42710 of the UCLA Clinical Nutrition Research Unit Stable Isotope Core, its 009826-00-00 Preliminary Feasibility grant to LGB and by P01 AT003960-01 UCLA Center for Excellence in Pancreatic Diseases, Metabolomics Core, and a grant from the Hirshberg Foundation for Pancreatic Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Boros .

Editor information

G. Kroemer D. Mumberg H. Keun B. Riefke T. Steger-Hartmann K. Petersen

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boros, L.G., Boros, T.F. (2008). Use of Metabolic Pathway Flux Information in Anticancer Drug Design. In: Kroemer, G., Mumberg, D., Keun, H., Riefke, B., Steger-Hartmann, ., Petersen, K. (eds) Oncogenes Meet Metabolism. Ernst Schering Foundation Symposium Proceedings, vol 2007/4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/2789_2008_094

Download citation

  • DOI: https://doi.org/10.1007/2789_2008_094

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79477-6

  • Online ISBN: 978-3-540-79478-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics