Skip to main content

Strategies to Induce Nuclear Reprogramming

  • Conference paper
  • First Online:
Cancer Stem Cells

Part of the book series: Springer Series on Biofilms ((SCHERING FOUND,volume 2006/5))

Abstract

The cloning of mammals from adult donor cells has demonstrated that the oocyte can reprogram a differentiated nucleus into a pluripotent embryonic state. Reprogramming of committed cells into pluripotent cells can also be achieved by the explantation of germ line cells and by the fusion of differentiated cells with embryonic cells. The future challenge will be to stably convert a differentiated cell into embryonic stem (ES) cells by the transient expression of defined genes. Recent findings suggest that the exposure of adult cells to a few defined factors can indeed induce a pluripotent-like state resembling that of ES cells. This approach may allow for the generation of patient-specific stem cells in order to study and treat degenerative diseases without recourse to nuclear transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrews PW (2002) From teratocarcinomas to embryonic stem cells. Philos Trans R Soc Lond B Biol Sci 357:405–417

    Article  PubMed  Google Scholar 

  • Blau HM, Blakely BT (1999) Plasticity of cell fate: insights from heterokaryons. Semin Cell Dev Biol 10:267–272

    Article  CAS  PubMed  Google Scholar 

  • Blelloch RH, Hochedlinger K, Yamada Y, Brennan C, Kim M, Mintz B, Chin L, Jaenisch R (2004) Nuclear cloning of embryonal carcinoma cells. Proc Natl Acad Sci USA 101:13985–13990

    CAS  PubMed  Google Scholar 

  • Brambrink T, Hochedlinger K, Bell G, Jaenisch R (2006) ES cells derived from cloned and fertilized blastocysts are transcriptionally and functionally indistinguishable. Proc Natl Acad Sci USA 103:933–938

    Article  CAS  PubMed  Google Scholar 

  • Briggs R, King TJ (1957) Changes in the nuclei of differentiating endoderm cells as revealed by nuclear transplantation. J Morphol 100:269–311

    Article  Google Scholar 

  • Byrne JA, Simonsson S, Western PS, Gurdon JB (2003) Nuclei of adult mammalian somatic cells are directly reprogrammed to oct-4 stem cell gene expression by amphibian oocytes. Curr Biol 13:1206–1213

    Article  CAS  PubMed  Google Scholar 

  • Cheong HT, Takahashi Y, Kanagawa H (1993) Birth of mice after transplantation of early cell-cycle-stage embryonic nuclei into enucleated oocytes. Biol Reprod 48:958–963

    Article  CAS  PubMed  Google Scholar 

  • Chung Y, Klimanskaya I, Becker S, Marh J, Lu SJ, Johnson J, Meisner L, Lanza R (2006) On-line medical direction: a prospective study. Nature 439:216–219

    Article  CAS  PubMed  Google Scholar 

  • Cowan CA, Atienza J, Melton DA, Eggan K (2005) Application of computer tomography-oriented criteria for stroke subtype classification in a prospective study. Science 309:1369–1373

    Article  CAS  PubMed  Google Scholar 

  • Do JT, Scholer HR (2004) Nuclei of embryonic stem cells reprogram somatic cells. Stem Cells 22:941–949

    Article  CAS  PubMed  Google Scholar 

  • Durcova-Hills G, Adams IR, Barton SC, Surani MA, McLaren A (2006) The role of exogenous fibroblast growth factor-2 on the reprogramming of primordial germ cells into pluripotent stem cells. Stem Cells 24:1441–1449

    Article  CAS  PubMed  Google Scholar 

  • Eggan K, Akutsu H, Loring J, Jackson-Grusby L, Klemm M, Rideout WM, 3rd Yanagimachi R, Jaenisch R (2001) Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation. Proc Natl Acad Sci USA 98:6209–6214

    Article  CAS  PubMed  Google Scholar 

  • Eggan K, Baldwin K, Tackett M, Osborne J, Gogos J, Chess A, Axel R, Jaenisch R (2004) Mice cloned from olfactory sensory neurons. Nature 428:44–49

    Article  CAS  PubMed  Google Scholar 

  • Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  CAS  PubMed  Google Scholar 

  • Guan K, Nayernia K, Maier LS, Wagner S, Dressel R, Lee JH, Nolte J, Wolf F, Li M, Engel W, Hasenfuss G (2006) Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 440:1199–1203

    Article  CAS  PubMed  Google Scholar 

  • Hajkova P, Erhardt S, Lane N, Haaf T, El-Maarri O, Reik W, Walter J, Surani MA (2002) Epigenetic reprogramming in mouse primordial germ cells. Mech Dev 117:15–23

    Article  CAS  PubMed  Google Scholar 

  • Hiiragi T, Solter D (2005) Reprogramming is essential in nuclear transfer. Mol Reprod Dev 70:417–421

    Article  CAS  PubMed  Google Scholar 

  • Hochedlinger K, Jaenisch R (2002) Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature 415:1035–1038

    Article  CAS  PubMed  Google Scholar 

  • Hochedlinger K, Jaenisch R (2006) Nuclear reprogramming and pluripotency. Nature 441:1061

    Article  CAS  PubMed  Google Scholar 

  • Hochedlinger K, Blelloch R, Brennan C, Yamada Y, Kim M, Chin L, Jaenisch R (2004) Reprogramming of a melanoma genome by nuclear transplantation. Genes Dev 18:1875–1885

    Article  CAS  PubMed  Google Scholar 

  • Hochedlinger K, Yamada Y, Beard C, Jaenisch R (2005) Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 121:465–477

    Article  CAS  PubMed  Google Scholar 

  • Holm TM, Jackson-Grusby L, Brambrink T, Yamada Y, Rideout WM 3rd, Jaenisch R (2005) Global loss of imprinting leads to widespread tumorigenesis in adult mice. Cancer Cell 8:275–285

    Article  CAS  PubMed  Google Scholar 

  • Inoue K, Wakao H, Ogonuki N, Miki H, Seino K, Nambu-Wakao R, Noda S, Miyoshi H, Koseki H, Taniguchi M, Ogura A (2005) Generation of cloned mice by direct nuclear transfer from natural killer T cells. Curr Biol 15:1114–1118

    Article  CAS  PubMed  Google Scholar 

  • Kanatsu-Shinohara M, Inoue K, Lee J, Yoshimoto M, Ogonuki N, Miki H, Baba S, Kato T, Kazuki Y, Toyokuni S, Toyoshima M, Niwa O, Oshimura M, Heike T, Nakahata T, Ishino F, Ogura A, Shinohara T (2004) Generation of pluripotent stem cells from neonatal mouse testis. Cell 119:1001–1012

    Article  CAS  PubMed  Google Scholar 

  • Labosky PA, Barlow DP, Hogan BL (1994) mag-1, a homolog of Drosophila mago nashi, regulates hermaphrodite germ-line sex determination in Caenorhabditis elegans. Development 120:3197–3204

    CAS  PubMed  Google Scholar 

  • Lee J, Inoue K, Ono R, Ogonuki N, Kohda T, Kaneko-Ishino T, Ogura A, Ishino F (2002) Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells. Development 129:1807–1817

    Article  CAS  PubMed  Google Scholar 

  • Li J, Ishii T, Feinstein P, Mombaerts P (2004) Odorant receptor gene choice is reset by nuclear transfer from mouse olfactory sensory neurons. Nature 428:393–399

    Article  CAS  PubMed  Google Scholar 

  • Li L, Connelly MC, Wetmore C, Curran T, Morgan JI (2003) Mouse embryos cloned from brain tumors. Cancer Res 63:2733–2736

    CAS  PubMed  Google Scholar 

  • Maherli N, Sridharan R, Xie W, Utikal J, Eminli S, Arnold K, Stadtfeld M, Yachechko R, Tchieu J, Jaenisch R, Plath K, Hochedlinger K (2007) Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1:55–70

    Article  Google Scholar 

  • Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638

    Article  CAS  PubMed  Google Scholar 

  • Matsui Y, Zsebo K, Hogan BL (1992) Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70:841–847

    Article  CAS  PubMed  Google Scholar 

  • Matsumura H, Tada M, Otsuji T, Yasuchika K, Nakatsuji N, Surani A, Tada T (2007) Targeted chromosome elimination from ES-somatic hybrid cells. Nat Methods 4:23–25

    Article  CAS  PubMed  Google Scholar 

  • Miller RA, Ruddle FH (1976) Pluripotent teratocarcinoma-thymus somatic cell hybrids. Cell 9:45–55

    Article  CAS  PubMed  Google Scholar 

  • Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113:631–642

    Article  CAS  PubMed  Google Scholar 

  • Munsie MJ, Michalska AE, O'Brien CM, Trounson AO, Pera MF, Mountford PS (2000) Isolation of pluripotent embryonic stem cells from reprogrammed adult mouse somatic cell nuclei. Curr Biol 10:989–992

    Article  CAS  PubMed  Google Scholar 

  • Ogonuki N, Inoue K, Yamamoto Y, Noguchi Y, Tanemura K, Suzuki O, Nakayama H, Doi K, Ohtomo Y, Satoh M, Nishida A, Ogura A (2002) Early death of mice cloned from somatic cells. Nat Genet 30:253–254

    Article  CAS  PubMed  Google Scholar 

  • Ogura A, Inoue K, Ogonuki N, Noguchi A, Takano K, Nagano R, Suzuki O, Lee J, Ishino F, Matsuda J (2000) Production of male cloned mice from fresh, cultured, and cryopreserved immature Sertoli cells. Biol Reprod 62:1579–1584

    Article  CAS  PubMed  Google Scholar 

  • Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature

    Google Scholar 

  • Oshima RG, McKerrow J, Cox D (1981) Murine embryonal carcinoma hybrids: decreased ability to spontaneously differentiate as a dominant trait. J Cell Physiol 109:195–204

    Article  CAS  PubMed  Google Scholar 

  • Resnick JL, Bixler LS, Cheng L, Donovan PJ (1992) Long-term proliferation of mouse primordial germ cells in culture. Nature 359:550–551

    Article  CAS  PubMed  Google Scholar 

  • Rideout WM, Wakayama T, Wutz A, Eggan K, Jackson-Grusby L, Dausman J, Yanagimachi R, Jaenisch R (2000) Generation of mice from wild-type and targeted ES cells by nuclear cloning. Nat Genet 24:109–110

    Article  CAS  PubMed  Google Scholar 

  • Rideout WM, 3rd Hochedlinger K, Kyba M, Daley GQ, Jaenisch R (2002) Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell 109:17–27

    Article  CAS  PubMed  Google Scholar 

  • Rossant J, McBurney MW (1982) The developmental potential of a euploid male teratocarcinoma cell line after blastocyst injection. J Embryol Exp Morphol 70:99–112

    CAS  PubMed  Google Scholar 

  • Rousset JP, Bucchini D, Jami J (1983) Hybrids between F9 nullipotent teratocarcinoma and thymus cells produce multidifferentiated tumors in mice. Dev Biol 96:331–336

    Article  CAS  PubMed  Google Scholar 

  • Silva J, Chambers I, Pollard S, Smith A (2006) Nanog promotes transfer of pluripotency after cell fusion. Nature 441:997–1001

    Article  CAS  PubMed  Google Scholar 

  • Stewart CL, Gadi I, Bhatt H (1994) Stem cells from primordial germ cells can reenter the germ line. Dev Biol 161:626–628

    Article  CAS  PubMed  Google Scholar 

  • Stewart MH, Bosse M, Chadwick K, Menendez P, Bendall SC, Bhatia M (2006) Clonal isolation of hESCs reveals heterogeneity within the pluripotent stem cell compartment. Nat Methods 3:807–815

    Article  CAS  PubMed  Google Scholar 

  • Stewart TA, Mintz B (1982) Recurrent germ-line transmission of the teratocarcinoma genome from the METT-1 culture line to progeny in vivo. J Exp Zool 224:465–469

    Article  CAS  PubMed  Google Scholar 

  • Sullivan S, Waterfall M, Gallagher EJ, McWhir J, Pells S (2006) Quantification of cell fusion by flow cytometry. Methods Mol Biol 325:81–97

    PubMed  Google Scholar 

  • Tada M, Tada T, Lefebvre L, Barton SC, Surani MA (1997) Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. EMBO J 16:6510–6520

    Article  CAS  PubMed  Google Scholar 

  • Tada M, Takahama Y, Abe K, Nakatsuji N, Tada T (2001) Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol 11:1553–1558

    Article  CAS  PubMed  Google Scholar 

  • Tada M, Morizane A, Kimura H, Kawasaki H, Ainscough JF, Sasai Y, Nakatsuji N, Tada T (2003) Pluripotency of reprogrammed somatic genomes in embryonic stem hybrid cells. Dev Dyn 227:504–510

    Article  CAS  PubMed  Google Scholar 

  • Tada T, Tada M, Hilton K, Barton SC, Sado T, Takagi N, Surani MA (1998) Epigenotype switching of imprintable loci in embryonic germ cells. Dev Genes Evol 207:551–561

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  • Tamashiro KL, Wakayama T, Akutsu H, Yamazaki Y, Lachey JL, Wortman MD, Seeley RJ, D'Alessio DA, Woods SC, Yanagimachi R, Sakai RR (2002) Cloned mice have an obese phenotype not transmitted to their offspring. Nat Med 8:262–267

    Article  CAS  PubMed  Google Scholar 

  • Wakayama T, Yanagimachi R (1999) Cloning of male mice from adult tail-tip cells. Nat Genet 22:127–128

    Article  CAS  PubMed  Google Scholar 

  • Wakayama T, Perry AC, Zuccotti M, Johnson KR, Yanagimachi R (1998) Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394:369–374

    Article  CAS  PubMed  Google Scholar 

  • Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature

    Google Scholar 

  • Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813

    Article  CAS  PubMed  Google Scholar 

  • Xie H, Ye M, Feng R, Graf T (2004) Stepwise reprogramming of B cells into macrophages. Cell 117:663–676

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki Y, Low EW, Marikawa Y, Iwahashi K, Bartolomei MS, McCarrey JR, Yanagimachi R (2005) Adult mice cloned from migrating primordial germ cells. Proc Natl Acad Sci USA 102:11361–11366

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Vodyanik MA, He P, Slukvin II, Thomson JA (2005) Human embryonic stem cells reprogram myeloid precursors following cell-cell fusion. Stem Cells 24:168–176

    Article  PubMed  Google Scholar 

  • Zwaka TP, Thomson JA (2005) A germ cell origin of embryonic stem cells? Development 132:227–233

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Hochedlinger .

Editor information

O.D. Wiestler B. Haendler D. Mumberg

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this paper

Cite this paper

Eminli, S., Jaenisch, R., Hochedlinger, K. (2007). Strategies to Induce Nuclear Reprogramming. In: Wiestler, O., Haendler, B., Mumberg, D. (eds) Cancer Stem Cells. Springer Series on Biofilms, vol 2006/5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/2789_2007_045

Download citation

  • DOI: https://doi.org/10.1007/2789_2007_045

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70852-0

  • Online ISBN: 978-3-540-70853-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics