Skip to main content

Advances in Understanding the Auditory Brain of Songbirds

  • Chapter
  • First Online:
Book cover Insights from Comparative Hearing Research

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 49))

Abstract

Songbirds, like humans, have the ability to memorize and learn auditory input in order to shape their own vocalization. Such abilities imply that the songbird brain, not unlike the human brain, is built to process and discriminate complex sounds.

In this chapter, the strategy that songbirds use to learn their songs is reviewed, highlighting its dependence on auditory feedback for successful song learning. The elements of birdsong are explained, followed by a short description of analytical tools commonly used by songbird neurophysiologists to analyze auditory-driven neural spiking responses. These tools are used to discuss the patterns of auditory processing that occur in the songbird’s brain, beginning with the auditory midbrain and thalamic structures that are common to all birds and moving up to the primary and secondary auditory areas in the songbird cerebrum involved in the discrimination of behaviorally relevant complex sounds in birdsong.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akutagawa, E., & Konishi, M. (2010). New brain pathways found in the vocal control system of a songbird. The Journal of Comparative Neurology, 518(15), 3086–3100.

    Article  PubMed  Google Scholar 

  • Amin, N., Grace, J. A., & Theunissen, F. E. (2004). Neural response to bird’s own song and tutor song in the zebra finch field L and caudal mesopallium. Journal of Comparative Physiology A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 190(6), 469–489.

    Google Scholar 

  • Amin, N., Doupe, A. J., & Theunissen, F. E. (2007). Development of selectivity for natural sounds in the songbird auditory forebrain. Journal of Neurophysiology, 97(5), 3517–3531.

    Article  PubMed  Google Scholar 

  • Amin, N., Gill, P., & Theunissen, F. E. (2010). Role of the zebra finch auditory thalamus in generating complex representations for natural sounds. Journal of Neurophysiology, 104(2), 784–798.

    Article  PubMed  Google Scholar 

  • Aronov, D., Andalman, A. S., & Fee, M. S. (2008). A specialized forebrain circuit for vocal babbling in the juvenile songbird. Science, 320(5876), 630–634.

    Article  CAS  PubMed  Google Scholar 

  • Atiani, S., Elhilali, M., David, Stephen V, Fritz, J. B., & Shamma, S. A. (2009). Task difficulty and performance induce diverse adaptive patterns in gain and shape of primary auditory cortical receptive fields. Neuron, 61(3), 467–480.

    Google Scholar 

  • Bar-Yosef, O., & Nelken, I. (2007). The effects of background noise on the neural responses to natural sounds in cat primary auditory cortex. Frontiers in Computational Neuroscience, 1(November), 3.

    Google Scholar 

  • Bauer, E. E., Coleman, M. J., Roberts, T. F., Roy, A., Prather, J. F., & Mooney, R. (2008). A synaptic basis for auditory-vocal integration in the songbird. The Journal of Neuroscience, 28(6), 1509–1522.

    Article  CAS  PubMed  Google Scholar 

  • Biederman-Thorson, M. (1970). Auditory evoked responses in the cerebrum (field L) and ovoid nucleus of the ring dove. Brain Research, 24(2), 235–245.

    Article  CAS  PubMed  Google Scholar 

  • Bigalke-Kunz, B., Rübsamen, R., & Dörrscheidt, G. J. (1987). Tonotopic organization and functional characterization of the auditory thalamus in a songbird, the European starling. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 161(2), 255–265.

    Google Scholar 

  • Blättler, F., & Hahnloser, R. H. R. (2011). An efficient coding hypothesis links sparsity and selectivity of neural responses. PLoS ONE, 6(10), e25506.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bolhuis, J. J., Zijlstra, G. G., den Boer-Visser, A. M., & Van Der Zee, E. A. (2000). Localized neuronal activation in the zebra finch brain is related to the strength of song learning. Proceedings of the National Academy of Sciences of the USA, 97(5), 2282–2285.

    Article  CAS  PubMed  Google Scholar 

  • Boumans, T., Gobes, S. M. H., Poirier, C., Theunissen, F. E., Vandersmissen, L., Pintjens, W., Verhoye, M., Bolhuis, J. J., & Van der Londen, A. (2008). Functional MRI of auditory responses in the zebra finch forebrain reveals a hierarchical organisation based on signal strength but not selectivity. PLoS ONE, 3(9), e3184.

    Article  PubMed Central  PubMed  Google Scholar 

  • Brainard, M. S., & Doupe, A. J. (2002). What songbirds teach us about learning. Nature, 417(6886), 351–358.

    Article  CAS  PubMed  Google Scholar 

  • Brenowitz, E. A. (2002). Birdsong: Integrating physics, physiology, and behavior. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 188(11–12), 827–828.

    Google Scholar 

  • Brenowitz, E. A., & Beecher, M. D. (2005). Song learning in birds: Diversity and plasticity, opportunities and challenges. Trends in Neurosciences, 28(3), 127–132.

    Article  CAS  PubMed  Google Scholar 

  • Catchpole, C. K., & Slater, P. J. B. (2008). Bird Song: Biological Themes and Variations (2nd ed.). Cambridge, U.K.: Cambridge University Press.

    Book  Google Scholar 

  • Chew, S. J., Mello, C. V., Nottebohm, F. N., Jarvis, E. D., & Vicario, D. S. (1995). Decrements in auditory responses to a repeated conspecific song are long-lasting and require two periods of protein synthesis in the songbird forebrain. Proceedings of the National Academy of Sciences of the USA, 92(8), 3406–3410.

    Article  CAS  PubMed  Google Scholar 

  • Chew, S. J., Vicario, D. S., & Nottebohm, F. N. (1996). A large-capacity memory system that recognizes the calls and songs of individual birds. Proceedings of the National Academy of Sciences of the USA, 93(5), 1950–1955.

    Article  CAS  PubMed  Google Scholar 

  • Christianson, G. B., Sahani, M., & Linden, J. F. (2011). Depth-dependent temporal response properties in core auditory cortex. Journal of Neuroscience, 31(36), 12837–12848.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clayton, N. S. (1989). The effects of cross-fostering on selective song learning in estrildid finches. Behaviour, 109(3), 163–175.

    Article  Google Scholar 

  • Doupe, A. J. (1997). Song- and order-selective neurons in the songbird anterior forebrain and their emergence during vocal development. The Journal of Neuroscience, 17(3), 1147–1167.

    CAS  PubMed  Google Scholar 

  • Durand, S. E., Tepper, J. M., & Cheng, M. F. (1992). The shell region of the nucleus ovoidalis: A subdivision of the avian auditory thalamus. The Journal of Comparative Neurology, 323(4), 495–518.

    Article  CAS  PubMed  Google Scholar 

  • Eggermont, J. J. (2006). Properties of correlated neural activity clusters in cat auditory cortex resemble those of neural assemblies. Journal of Neurophysiology, 96(2), 746–764.

    PubMed  Google Scholar 

  • Fortune, E. S., & Margoliash, D. (1992). Cytoarchitectonic organization and morphology of cells of the field L complex in male zebra finches (Taenopygia guttata). The Journal of Comparative Neurology, 325(3), 388–404.

    Article  CAS  PubMed  Google Scholar 

  • Fortune, E. S., & Margoliash, D. (1995). Parallel pathways and convergence onto HVc and adjacent neostriatum of adult zebra finches (Taeniopygia guttata). The Journal of Comparative Neurology, 360(3), 413–441.

    Article  CAS  PubMed  Google Scholar 

  • Foster, E. F., & Bottjer, S. W. (1998). Axonal connections of the high vocal center and surrounding cortical regions in juvenile and adult male zebra finches. The Journal of Comparative Neurology, 397(1), 118–138.

    Article  CAS  PubMed  Google Scholar 

  • Gentner, T. Q. (2004). Neural systems for individual song recognition in adult birds. Annals of the New York Academy of Sciences, 1016, 282–302.

    Article  CAS  PubMed  Google Scholar 

  • Gentner, T. Q., & Margoliash, D. (2003). Neuronal populations and single cells representing learned auditory objects. Nature, 424(6949), 669–674.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grace, J. A., Amin, N., Singh, N. C., & Theunissen, F. E. (2003). Selectivity for conspecific song in the zebra finch auditory forebrain. Journal of Neurophysiology, 89(1), 472–487.

    Article  PubMed  Google Scholar 

  • Hahnloser, R. H. R., & Kotowicz, A. (2010). Auditory representations and memory in birdsong learning. Current Opinion in Neurobiology, 20(3), 332–339.

    Article  CAS  PubMed  Google Scholar 

  • Hromádka, T., Deweese, M. R., & Zador, A. M. (2008). Sparse representation of sounds in the unanesthetized auditory cortex. PLoS Biology, 6(1), e16.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hsu, A., Woolley, S. M. N., Fremouw, T. E., & Theunissen, F. E. (2004). Modulation power and phase spectrum of natural sounds enhance neural encoding performed by single auditory neurons. The Journal of Neuroscience, 24(41), 9201–9211.

    Article  CAS  PubMed  Google Scholar 

  • Immelmann, K. (1969). Song development in the zebra finch and other estrildid finches. In R. A. Hinde (Ed.), Bird vocalizations (pp. 61–74). Cambridge, U.K.: Cambridge University Press.

    Google Scholar 

  • Jarvis, E. D. (2004). Learned birdsong and the neurobiology of human language. Annals of the New York Academy of Sciences, 1016, 749–777.

    Article  PubMed Central  PubMed  Google Scholar 

  • Jarvis, E. D. (2007). Neural systems for vocal learning in birds and humans: A synopsis. Journal of Ornithology, 148(1), 35–44.

    Article  PubMed Central  PubMed  Google Scholar 

  • Jarvis, E. D., & Nottebohm, F. N. (1997). Motor-driven gene expression. Proceedings of the National Academy of Sciences of the USA, 94(8), 4097–4102.

    Article  CAS  PubMed  Google Scholar 

  • Jeanne, J. M., Thompson, J. V., Sharpee, T. O., & Gentner, T. Q. (2011). Emergence of learned categorical representations within an auditory forebrain circuit. The Journal of Neuroscience, 31(7), 2595–2606.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jeong, J. K., Terleph, T. A., Burrows, K., Tremere, L. A., & Pinaud, R. (2011). Expression and rapid experience-dependent regulation of type-A GABAergic receptors in the songbird auditory forebrain. Developmental Neurobiology, 71(10), 803–817. Karten, H. J. (1968). The ascending auditory pathway in the pigeon (Columba livia). II. Telencephalic projections of the nucleus ovoidalis thalami. Brain Research, 11(1), 134–153.

    Google Scholar 

  • Keller, G. B., & Hahnloser, R. H. R. (2009). Neural processing of auditory feedback during vocal practice in a songbird. Nature, 457(7226), 187–190.

    Article  CAS  PubMed  Google Scholar 

  • Kelley, D. B., & Nottebohm, F. N. (1979). Projections of a telencephalic auditory nucleus-field L-in the canary. The Journal of Comparative Neurology, 183(3), 455–469.

    Article  CAS  PubMed  Google Scholar 

  • Kim, G., & Doupe, A. J. (2011). Organized representation of spectrotemporal features in songbird auditory forebrain. The Journal of Neuroscience, 31(47), 16977–16990.

    Article  CAS  PubMed  Google Scholar 

  • Knudsen, D., & Gentner, T. Q. (2010). Mechanisms of song perception in oscine birds. Brain and Language, 115(1), 59–68.

    Article  PubMed Central  PubMed  Google Scholar 

  • Knudsen, E. I. (1999). Mechanisms of experience-dependent plasticity in the auditory localization pathway of the barn owl. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 185(4), 305–321.

    Google Scholar 

  • Konishi, M. (1965). The role of auditory feedback in the control of vocalization in the white-crowned sparrow. Zeitschrift für Tierpsychologie, 22(7), 770–783.

    Google Scholar 

  • Konishi, M. (1970). Comparative neurophysiological studies of hearing and vocalizations in songbirds. Zeitschrift für Vergleichende Physiologie, 66(3), 257–272.

    Google Scholar 

  • Konishi, M. (1985). Birdsong: From behavior to neuron. Annual Review of Neuroscience, 8, 125–170.

    Article  CAS  PubMed  Google Scholar 

  • Krützfeldt, N. O. E., Logerot, P., Kubke, M. F., & Wild, J. M. (2010). Connections of the auditory brainstem in a songbird, Taeniopygia guttata. I. Projections of nucleus angularis and nucleus laminaris to the auditory torus. The Journal of Comparative Neurology, 518(11), 2109–2134.

    Google Scholar 

  • Lei, H., & Mooney, R. (2010). Manipulation of a central auditory representation shapes learned vocal output. Neuron, 65(1), 122–134.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leppelsack, H. J. (1974). Funktionelle Eigenschaften der Hörbahn im Feld L des Neostriatum caudale des Staren (Sturnus vulgaris L., Aves). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 88(3), 271–320.

    Google Scholar 

  • Leppelsack, H. J., & Vogt, M. (1976). Responses of auditory neurons in the forebrain of a songbird to stimulation with species-specific sounds. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 107(3), 263–274.

    Google Scholar 

  • Lewicki, M. S. (1996). Intracellular characterization of song-specific neurons in the zebra finch auditory forebrain. The Journal of Neuroscience, 16(18), 5855–5863.

    CAS  PubMed  Google Scholar 

  • Lewicki, M. S., & Arthur, B. J. (1996). Hierarchical organization of auditory temporal context sensitivity. The Journal of Neuroscience, 16(21), 6987–6998.

    CAS  PubMed  Google Scholar 

  • Linden, J. F., Liu, R. C., Sahani, M., Schreiner, C. E., & Merzenich, M. M. (2003). Spectrotemporal structure of receptive fields in areas AI and AAF of mouse auditory cortex. Journal of Neurophysiology, 90(4), 2660–2675.

    Article  PubMed  Google Scholar 

  • Logerot, P., Krützfeldt, N. O. E., Wild, J. M., & Kubke, M. F. (2011). Subdivisions of the auditory midbrain (N. mesencephalicus lateralis, pars dorsalis) in zebra finches using calcium-binding protein immunocytochemistry. PLoS ONE, 6(6), e20686.

    Google Scholar 

  • Maney, D., & Pinaud, R. (2010). Estradiol-dependent modulation of auditory processing and selectivity in songbirds. Frontiers in Neuroendocrinology, 32(3), 287–302.

    Article  PubMed Central  PubMed  Google Scholar 

  • Margoliash, D. (1983). Acoustic parameters underlying the responses of song-specific neurons in the white-crowned sparrow. The Journal of Neuroscience, 3(5), 1039–1057.

    CAS  PubMed  Google Scholar 

  • Margoliash, D. (1986). Preference for autogenous song by auditory neurons in a song system nucleus of the white-crowned sparrow. The Journal of Neuroscience, 6(6), 1643–1661.

    CAS  PubMed  Google Scholar 

  • Marler, P. (1970a). A comparative approach to vocal learning: Song development in white-crowned sparrows. Journal of Comparative and Physiological Psychology, 71(2, Pt.2), 1–25.

    Google Scholar 

  • Marler, P. (1970b). Birdsong and speech development: Could there be parallels? American scientist, 58(6), 669–673.

    CAS  PubMed  Google Scholar 

  • Marler, P. (2004). Bird calls: Their potential for behavioral neurobiology. Annals of the New York Academy of Sciences, 1016, 31–44.

    Article  PubMed  Google Scholar 

  • Marler, P., & Peters, S. (1982). Structural changes in song ontogeny in the swamp sparrow Melospiza georgiana. The Auk, 99(3), 446–458.

    Google Scholar 

  • Meliza, C. D., Chi, Z., & Margoliash, D. (2010). Representations of conspecific song by starling secondary forebrain auditory neurons: toward a hierarchical framework. Journal of Neurophysiology, 103(3), 1195–1208.

    Article  PubMed  Google Scholar 

  • Mello, C. V., Vicario, D. S., & Clayton, D. F. (1992). Song presentation induces gene expression in the songbird forebrain. Proceedings of the National Academy of Sciences of the USA, 89(15), 6818–6822.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell, J. A., & Hall, G. (1984). Paleostriatal lesions and instrumental learning in the pigeon. The Quarterly Journal of Experimental Psychology B: Comparative and Physiological Psychology, 36(2), 93–117.

    CAS  PubMed  Google Scholar 

  • Mooney, R. (2000). Different subthreshold mechanisms underlie song selectivity in identified HVc neurons of the zebra finch. The Journal of Neuroscience, 20(14), 5420–5436.

    CAS  PubMed  Google Scholar 

  • Müller, C. M., & Leppelsack, H. J. (1985). Feature extraction and tonotopic organization in the avian auditory forebrain. Experimental Brain Research, 59(3), 587–599.

    Article  PubMed  Google Scholar 

  • Nagel, K. I., & Doupe, A. J. (2006). Temporal processing and adaptation in the songbird auditory forebrain. Neuron, 51(6), 845–859.

    Article  CAS  PubMed  Google Scholar 

  • Nagel, K. I., & Doupe, A. J. (2008). Organizing principles of spectro-temporal encoding in the avian primary auditory area field L. Neuron, 58(6), 938–955.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nagel, K. I., Kim, G., McLendon, H., & Doupe, A. (2011). A bird brain’s view of auditory processing and perception. Hearing Research, 273(1–2), 123–133.

    Article  PubMed Central  PubMed  Google Scholar 

  • Nottebohm, F. N. (1970). Ontogeny of bird song. Science, 167(3920), 950–956.

    Article  CAS  PubMed  Google Scholar 

  • Nottebohm, F. N., Kelley, D. B., & Paton, J. A. (1982). Connections of vocal control nuclei in the canary telencephalon. The Journal of Comparative Neurology, 207(4), 344–357.

    Article  CAS  PubMed  Google Scholar 

  • Pinaud, R., & Mello, C. V. (2007). GABA immunoreactivity in auditory and song control brain areas of zebra finches. Journal of Chemical Neuroanatomy, 34(1–2), 1–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reiner, A., Perkel, D. J., Bruce, L. L., Butler, A. B., Csillag, A., Kuenzel, W., Medina, L., Paxinos, G., Shimizu, T., Striedter, G., Wild, M., Ball, G. F., Durand, S., Gütürkün, O., Lee, D. W., Mello, C. V., Powers, A., White, S. A., Hough, G., Kubikova, L., Smulders, T. V., Wada, K., Dugas-Ford., J., Husband, S., Yamamoto, K., Yu, J., Siang, C., & Jarvis, E. D. (2004). Revised nomenclature for avian telencephalon and some related brainstem nuclei. The Journal of Comparative Neurology, 473(3), 377–414.

    Google Scholar 

  • Rose, M. (1914). Über die cytoarchitektonische Gliederung des Vorderhirns der Vögel. Journal für Psychologie und Neurologie, 21(November), 278–352.

    Google Scholar 

  • Rothschild, G., Nelken, I., & Mizrahi, A. (2010). Functional organization and population dynamics in the mouse primary auditory cortex. Nature Neuroscience, 13(3), 353–360.

    Article  CAS  PubMed  Google Scholar 

  • Scheich, H., Langner, G., & Bonke, D. (1979). Responsiveness of units in the auditory neostriatum of the guinea fowl (Numida meleagris) to species-specific calls and synthetic stimuli. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 132(3), 257–276.

    Google Scholar 

  • Schumacher, J. W., Schneider, D. M., & Woolley, S. M. N. (2011). Anesthetic state modulates excitability but not spectral tuning or neural discrimination in single auditory midbrain neurons. Journal of Neurophysiology, 106(2), 500–514.

    Article  PubMed  Google Scholar 

  • Sen, K., Theunissen, F. E., & Doupe, A. J. (2001). Feature analysis of natural sounds in the songbird auditory forebrain. Journal of Neurophysiology, 86(3), 1445–1458.

    CAS  PubMed  Google Scholar 

  • Shaevitz, S. S., & Theunissen, F. E. (2007). Functional connectivity between auditory areas field L and CLM and song system nucleus HVC in anesthetized zebra finches. Journal of Neurophysiology, 98(5), 2747–2764.

    Article  PubMed  Google Scholar 

  • Sherman, P. W., Reeve, H. K., & Pfennig, D. W. (1997). Recognition systems. In J. R. Krebs & N. B. Davies (Eds.), Behavioral ecology (4th ed., pp. 69–96). Oxford: Blackwell.

    Google Scholar 

  • Swets, J. A. (1961). Detection theory and psychophysics: A review. Psychometrika, 26(1), 49–63.

    Article  CAS  PubMed  Google Scholar 

  • Terleph, T. A., Mello, C. V., & Vicario, D. S. (2006). Auditory topography and temporal response dynamics of canary caudal telencephalon. Journal of Neurobiology, 66(3), 281–292.

    Article  PubMed  Google Scholar 

  • Terleph, T. A., Mello, C. V., & Vicario, D. S. (2007). Species differences in auditory processing dynamics in songbird auditory telencephalon. Developmental Neurobiology, 67(11), 1498–1510.

    Article  PubMed  Google Scholar 

  • Theunissen, F. E., & Shaevitz, S. S. (2006). Auditory processing of vocal sounds in birds. Current Opinion in Neurobiology, 16(4), 400–407.

    Article  CAS  PubMed  Google Scholar 

  • Theunissen, F. E., Sen, K., & Doupe, A. J. (2000). Spectral-temporal receptive fields of nonlinear auditory neurons obtained using natural sounds. The Journal of Neuroscience, 20(6), 2315–2331.

    CAS  PubMed  Google Scholar 

  • Theunissen, F. E., David, S V, Singh, N C, Hsu, A., Vinje, W. E., & Gallant, J. L. (2001). Estimating spatio-temporal receptive fields of auditory and visual neurons from their responses to natural stimuli. Network, 12(3), 289–316.

    CAS  PubMed  Google Scholar 

  • Theunissen, F. E., Amin, N., Shaevitz, S. S., Woolley, S. M. N., Fremouw, T., & Hauber, M. E. (2004a). Song selectivity in the song system and in the auditory forebrain. Annals of the New York Academy of Sciences, 1016, 222–245.

    Article  PubMed  Google Scholar 

  • Theunissen, F. E., Woolley, S. M. N., Hsu, A, & Fremouw, T. (2004b). Methods for the analysis of auditory processing in the brain. Annals of the New York Academy of Sciences, 1016, 187–207.

    Article  PubMed  Google Scholar 

  • Thompson, J. V., & Gentner, T. Q. (2010). Song recognition learning and stimulus-specific weakening of neural responses in the avian auditory forebrain. Journal of Neurophysiology, 103(4), 1785–1797.

    Article  PubMed  Google Scholar 

  • Tremere, L. A, Jeong, J. K., & Pinaud, R. (2009). Estradiol shapes auditory processing in the adult brain by regulating inhibitory transmission and plasticity-associated gene expression. The Journal of Neuroscience, 29(18), 5949–5963.

    Google Scholar 

  • Vates, G. E., Broome, B. M., Mello, C. V., & Nottebohm, F. N. (1996). Auditory pathways of caudal telencephalon and their relation to the song system of adult male zebra finches. The Journal of Comparative Neurology, 366(4), 613–642.

    Article  CAS  PubMed  Google Scholar 

  • Wilbrecht, L., & Nottebohm, F. N. (2003). Vocal learning in birds and humans. Mental Retardation and Developmental Disabilities Research Reviews, 9(3), 135–148.

    Article  PubMed  Google Scholar 

  • Wild, J. M., Krützfeldt, N. O. E., & Kubke, M. F. (2010). Connections of the auditory brainstem in a songbird, Taeniopygia guttata. III. Projections of the superior olive and lateral lemniscal nuclei. The Journal of Comparative Neurology, 518(11), 2149–2167.

    Google Scholar 

  • Woolley, S. M. N., & Casseday, J. H. (2004). Response properties of single neurons in the zebra finch auditory midbrain: Response patterns, frequency coding, intensity coding, and spike latencies. Journal of Neurophysiology, 91(1), 136–151.

    Article  PubMed  Google Scholar 

  • Woolley, S. M. N., & Casseday, J. H. (2005). Processing of modulated sounds in the zebra finch auditory midbrain: Responses to noise, frequency sweeps, and sinusoidal amplitude modulations. Journal of Neurophysiology, 94(2), 1143–1157.

    Article  PubMed  Google Scholar 

  • Woolley, S. M. N., Fremouw, T. E., Hsu, A., & Theunissen, F. E. (2005). Tuning for spectro-temporal modulations as a mechanism for auditory discrimination of natural sounds. Nature Neuroscience, 8(10), 1371–1379.

    Article  CAS  PubMed  Google Scholar 

  • Woolley, S. M. N., Gill, P. R., & Theunissen, F. E. (2006). Stimulus-dependent auditory tuning results in synchronous population coding of vocalizations in the songbird midbrain. The Journal of Neuroscience, 26(9), 2499–2512.

    Article  CAS  PubMed  Google Scholar 

  • Woolley, S. M. N., Gill, P. R., Fremouw, T., & Theunissen, F. E. (2009). Functional groups in the avian auditory system. The Journal of Neuroscience, 29(9), 2780–2793.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zann, R. (1985). Ontogeny of the zebra finch distance call: I. Effects of cross-fostering to Bengalese finches. Zeitschrift für Tierpsychologie, 68(1), 1–23.

    Google Scholar 

  • Zaretsky, M. D., & Konishi, M. (1976). Tonotopic organization in the avian telencephalon. Brain Research, 111(1), 167–171.

    Article  CAS  PubMed  Google Scholar 

  • Zeng, S., Zhang, X., Peng, W., & Zuo, M. (2004). Immunohistochemistry and neural connectivity of the Ov shell in the songbird and their evolutionary implications. The Journal of Comparative Neurology, 470(2), 192–209.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard H. R. Hahnloser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ondracek, J.M., Hahnloser, R.H.R. (2013). Advances in Understanding the Auditory Brain of Songbirds. In: Köppl, C., Manley, G., Popper, A., Fay, R. (eds) Insights from Comparative Hearing Research. Springer Handbook of Auditory Research, vol 49. Springer, New York, NY. https://doi.org/10.1007/2506_2013_31

Download citation

Publish with us

Policies and ethics