Skip to main content

Effects of Early-Onset Deafness in the Developing Auditory System

  • Chapter
  • First Online:
Deafness

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 47))

Abstract

Estimates of the incidence of congenital hearing loss in the United States range from one to six in every 1000 births. When undetected, early hearing loss results in significant developmental delay in language acquisition and substantial lifetime costs to society. Cochlear implants (CIs) have radically changed the rehabilitation of individuals with severe to profound sensorineural hearing loss. However, there is great variability in outcomes with the CI, at least some of which is due to the condition of the auditory nerve and cochlear spiral ganglion (SG) neurons that are the targets of CI stimulation. This has focused attention on maintaining better SG survival after deafness, an issue that is particularly important for pediatric CIs owing to the profound effects of early-onset hearing loss and expected long duration of CI use.

In this chapter, we review histopathological studies in human temporal bones and studies in animal models for evidence of the importance of SG neuronal survival for CI function and the factors that may contribute to or ameliorate neural degeneration. Animal studies have demonstrated that electrical stimulation from CI may help prevent degeneration of the SG degeneration after early deafness, and intracochlear delivery of pharmacologic agents and neurotrophic factors may further improve neuronal survival. Although many studies utilizing intracochlear drug delivery provide convincing evidence for several potential therapeutic agents to promote improved auditory nerve survival for optimum CI efficacy, there are many critically important questions that must be addressed before clinical application can be considered.

Another important issue for studies of neurotrophic effects in the developing auditory system is the potential role of critical periods. Studies examining animals deafened at 30 days of age have explored whether a brief initial period of normal auditory experience affects the vulnerability of the SG or cochlear nucleus (CN) to auditory deprivation. Interestingly, the total volume of the CN was significantly closer to normal in the animals deafened at 30 days as compared to animals deafened as neonates. However, no difference was observed in either deafened group between the CN ipsi- and contralateral to a CI that restored auditory input by delivering chronic electrical stimulation. Spherical cells in the anteroventral CN also were significantly closer to normal size after later onset of deafness than in the neonatally deafened group. Further, electrical stimulation elicited a significant increase in spherical cell size in the CN ipsilateral to the CI as compared to the contralateral CN in both deafened groups.

Neuronal tracer studies examining the primary afferent projections from the SG to the CN in neonatally deafened cats have demonstrated a clear cochleotopic organization despite severe auditory deprivation from birth. However, when normalized for the smaller CN size after deafness, projections were 30% to 50% broader than normal. Moreover, after unilateral CI stimulation there was no difference between projections from the stimulated and nonstimulated ears. These findings suggest that early normal auditory experience may be essential for the normal development (or subsequent maintenance) of the topographic precision of the cochlear SG projections to the CN. After early deafness, the CN volume is markedly smaller than normal, and the spatial precision of SG projections that underlie frequency resolution in the central auditory system may be reduced. Electrical stimulation over several months did not either ameliorate or exaggerate these degenerative changes. If similar principles pertain in the human auditory system, then findings in animal models suggest that the fundamental tonotopic organization of the central auditory pathways seems to be relatively “hardwired” at least at the level of the CN and should be intact even in congenitally deaf individuals. On the other hand, the precision of that organization can be significantly modified by early-onset deafness. This reduced spatial resolution of the primary afferent projections in animal studies suggests that there may be inherent limitations for CI stimulation in congenitally deaf subjects. Specifically, spatial (spectral) selectivity of stimulation delivered on adjacent CI channels may be poorer owing to the greater overlap of SG central axons representing nearby frequencies. Such CI users may be more dependent on temporal features of electrical stimuli, and it may be advantageous to enhance the salience of such cues, for example, by removing some electrodes from the processor “map” to reduce channel interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agterberg, M. J. H., Versnel, H., de Groot, J. C. M. J., Smoorenburg, G. F., Albers, F. W. J., & Klis, S. F. L. (2008). Morphological changes in spiral ganglion cells after intracochlear application of brain-derived neurotrophic factor in deafened guinea pigs. Hearing Research, 244(1–2), 25–34.

    PubMed  CAS  Google Scholar 

  • Agterberg, M. J. H., Versnel, H., van Dijk, L. M., de Groot, J. C. M. J., & Klis, S. F. L. (2009). Enhanced survival of spiral ganglion cells after cessation of treatment with brain-derived neurotrophic factor in deafened guinea pigs. Journal of the Association for Research in Otolaryngology: JARO, 10(3), 355–367.

    PubMed  Google Scholar 

  • Alam, S. A., Robinson, B. K., Huang, J., & Green, S. H. (2007). Prosurvival and proapoptotic intracellular signaling in rat spiral ganglion neurons in vivo after the loss of hair cells. The Journal of Comparative Neurology, 503(6), 832–852.

    PubMed  CAS  Google Scholar 

  • Altmann, L., Luhmann, H. J., Greuel, J. M., & Singer, W. (1987). Functional and neuronal binocularity in kittens raised with rapidly alternating monocular occlusion. Journal of Neurophysiology, 58(5), 965–980.

    PubMed  CAS  Google Scholar 

  • Appler, J. M., & Goodrich, L. V. (2011). Connecting the ear to the brain: Molecular mechanisms of auditory circuit assembly. Progress in Neurobiology, 93(4), 488–508.

    PubMed  CAS  Google Scholar 

  • Araki, S., Kawano, A., Seldon, L., Shepherd, R. K., Funasaka, S., & Clark, G. M. (1998). Effects of chronic electrical stimulation on spiral ganglion neuron survival and size in deafened kittens. The Laryngoscope, 108(5), 687–695.

    PubMed  CAS  Google Scholar 

  • Aschendorff, A., Kromeier, J., Klenzner, T., & Laszig, R. (2007). Quality control after insertion of the nucleus contour and contour advance electrode in adults. Ear and Hearing, 28(2 Suppl), 75S–79S.

    PubMed  Google Scholar 

  • Bachis, A., & Mocchetti, I. (2006). Semisynthetic sphingoglycolipid LIGA20 is neuroprotective against human immunodeficiency virus-gp120-mediated apoptosis. Journal of Neuroscience Research, 83(5), 890–896.

    PubMed  CAS  Google Scholar 

  • Bachis, A., Rabin, S. J., Del Fiacco, M., & Mocchetti, I. (2002). Gangliosides prevent excitotoxicity through activation of TrkB receptor. Neurotoxicity Research, 4(3), 225–234.

    PubMed  CAS  Google Scholar 

  • Beitel, R. E., Snyder, R. L., Schreiner, C. E., Raggio, M. W., & Leake, P. A. (2000a). Electrical cochlear stimulation in the deaf cat: Comparisons between psychophysical and central auditory neuronal thresholds. Journal of Neurophysiology, 83(4), 2145–2162.

    PubMed  CAS  Google Scholar 

  • Beitel, R. E., Vollmer, M., Snyder, R. L., Schreiner, C. E., & Leake, P. A. (2000b). Behavioral and neurophysiological thresholds for electrical cochlear stimulation in the deaf cat. Audiology & Neuro-Otology, 5(1), 31–38.

    CAS  Google Scholar 

  • Blamey, P., Arndt, P., Bergeron, F., Bredberg, G., Brimacombe, J., Facer, G., Larky, J., Lindstrom, B., Nedzelski, J., Peterson, A., Shipp, D., Staller, S., & Whitfore, L. (1996). Factors affecting auditory performance of postlinguistically deaf adults using cochlear implants. Audiology & Neuro-Otology, 1(5), 293–306.

    CAS  Google Scholar 

  • Born, D. E., & Rubel, E. W. (1985). Afferent influences on brain stem auditory nuclei of the chicken: Neuron number and size following cochlea removal. The Journal of Comparative Neurology, 231(4), 435–445.

    PubMed  CAS  Google Scholar 

  • Canalis, R. F., & Lambert, P. R. (2000). The ear: Comprehensive otology (1st ed.). Lippincott Williams & Wilkins.

    Google Scholar 

  • Carlile, G. W., Chalmers-Redman, R. M., Tatton, N. A., Pong, A., Borden, K. E., & Tatton, W. G. (2000). Reduced apoptosis after nerve growth factor and serum withdrawal: Conversion of tetrameric glyceraldehyde-3-phosphate dehydrogenase to a dimer. Molecular Pharmacology, 57(1), 2–12.

    PubMed  CAS  Google Scholar 

  • Chao, T. K., Burgess, B. J., Eddington, D. K., & Nadol, J. B., Jr. (2002). Morphometric changes in the cochlear nucleus in patients who had undergone cochlear implantation for bilateral profound deafness. Hearing Research, 174(1–2), 196–205.

    PubMed  Google Scholar 

  • Chen, I., Limb, C. J., & Ryugo, D. K. (2010). The effect of cochlear-implant-mediated electrical stimulation on spiral ganglion cells in congenitally deaf white cats. Journal of the Association for Research in Otolaryngology: JARO, 11(4), 587–603.

    PubMed  Google Scholar 

  • Chikar, J. A., Colesa, D. J., Swiderski, D. L., Di Polo, A., Raphael, Y., & Pfingst, B. E. (2008). Over-expression of BDNF by adenovirus with concurrent electrical stimulation improves cochlear implant thresholds and survival of auditory neurons. Hearing Research, 245(1–2), 24–34.

    PubMed  CAS  Google Scholar 

  • Coco, A., Epp, S. B., Fallon, J. B., Xu, J., Millard, R. E., & Shepherd, R. K. (2007). Does cochlear implantation and electrical stimulation affect residual hair cells and spiral ganglion neurons? Hearing Research, 225(1–2), 60–70.

    PubMed  Google Scholar 

  • Constantine-Paton, M., Cline, H. T., & Debski, E. (1990). Patterned activity, synaptic convergence, and the NMDA receptor in developing visual pathways. Annual Review of Neuroscience, 13, 129–154.

    PubMed  CAS  Google Scholar 

  • Copeland, B. J., & Pillsbury, H. C., 3rd. (2004). Cochlear implantation for the treatment of deafness. Annual Review of Medicine, 55, 157–167.

    PubMed  CAS  Google Scholar 

  • Cremieux, J., Orban, G. A., Duysens, J., & Amblard, B. (1987). Response properties of area 17 neurons in cats reared in stroboscopic illumination. Journal of Neurophysiology, 57(5), 1511–1535.

    PubMed  CAS  Google Scholar 

  • Culbertson, J. L., & Gilbert, L. E. (1986). Children with unilateral sensorineural hearing loss: Cognitive, academic, and social development. Ear and Hearing, 7(1), 38–42.

    PubMed  CAS  Google Scholar 

  • Cunningham, M., & Cox, E. O. (2003). Hearing assessment in infants and children: Recommendations beyond neonatal screening. Pediatrics, 111(2), 436–440.

    PubMed  Google Scholar 

  • Cynader, M., & Mitchell, D. E. (1980). Prolonged sensitivity to monocular deprivation in dark-reared cats. Journal of Neurophysiology, 43(4), 1026–1040.

    PubMed  CAS  Google Scholar 

  • da Costa, S. S., de Sousa, L. C. A., & Piza, M. R. de T. (2002). Meniere’s disease: Overview, epidemiology, and natural history. Otolaryngologic Clinics of North America, 35(3), 455–495.

    Google Scholar 

  • Dawson, P. W., & Clark, G. M. (1997). Changes in synthetic and natural vowel perception after specific training for congenitally deafened patients using a multichannel cochlear implant. Ear and Hearing, 18(6), 488–501.

    PubMed  CAS  Google Scholar 

  • Dettman, S. J., Pinder, D., Briggs, R. J. S., Dowell, R. C., & Leigh, J. R. (2007). Communication development in children who receive the cochlear implant younger than 12 months: Risks versus benefits. Ear and Hearing, 28(2 Suppl), 11S–18S.

    PubMed  Google Scholar 

  • Drennan, W. R., & Rubinstein, J. T. (2008). Music perception in cochlear implant users and its relationship with psychophysical capabilities. Journal of Rehabilitation Research and Development, 45(5), 779–789.

    PubMed  Google Scholar 

  • Duchemin, A.-M., Ren, Q., Mo, L., Neff, N. H., & Hadjiconstantinou, M. (2002). GM1 ganglioside induces phosphorylation and activation of Trk and Erk in brain. Journal of Neurochemistry, 81(4), 696–707.

    PubMed  CAS  Google Scholar 

  • Eisele, L. E., & Schmidt, J. T. (1988). Activity sharpens the regenerating retinotectal projection in goldfish: Sensitive period for strobe illumination and lack of effect on synaptogenesis and on hganglion cell receptive field properties. Journal of Neurobiology, 19(5), 395–411.

    PubMed  CAS  Google Scholar 

  • Endo, T., Nakagawa, T., Kita, T., Iguchi, F., Kim, T.-S., Tamura, T., Iwai, K., Tabata, Y., & Ito, J. (2005). Novel strategy for treatment of inner ears using a biodegradable gel. The Laryngoscope, 115(11), 2016–2020.

    PubMed  CAS  Google Scholar 

  • Ernfors, P., Duan, M. L., ElShamy, W. M., & Canlon, B. (1996). Protection of auditory neurons from aminoglycoside toxicity by neurotrophin-3. Nature Medicine, 2(4), 463–467.

    PubMed  CAS  Google Scholar 

  • Ervin, S. E. (2004). Meniere’s disease: Identifying classic symptoms and current treatments. AAOHN Journal, 52(4), 156–158.

    PubMed  Google Scholar 

  • Fariñas, I., Jones, K. R., Tessarollo, L., Vigers, A. J., Huang, E., Kirstein, M., de Caprona, D. C., Coppola, V., Backus, C., Reichardt, L.F., & Fritzsch, B. (2001). Spatial shaping of cochlear innervation by temporally regulated neurotrophin expression. The Journal of Neuroscience, 21(16), 6170–6180.

    PubMed  Google Scholar 

  • Fayad, J. N., & Linthicum, F. H., Jr. (2006). Multichannel cochlear implants: Relation of histopathology to performance. The Laryngoscope, 116(8), 1310–1320.

    PubMed  Google Scholar 

  • Fayad, J., Linthicum, F. H., Jr., Otto, S. R., Galey, F. R., & House, W. F. (1991). Cochlear implants: Histopathologic findings related to performance in 16 human temporal bones. The Annals of Otology, Rhinology, and Laryngology, 100(10), 807–811.

    PubMed  CAS  Google Scholar 

  • Fighera, M. R., Royes, L. F. F., Furian, A. F., Oliveira, M. S., Fiorenza, N. G., Frussa-Filho, R., Petry, J. C., Coelho, R. C., & Mello, C.F. (2006). GM1 ganglioside prevents seizures, Na+,K+-ATPase activity inhibition and oxidative stress induced by glutaric acid and pentylenetetrazole. Neurobiology of Disease, 22(3), 611–623.

    PubMed  CAS  Google Scholar 

  • Finley, C. C., Holden, T. A., Holden, L. K., Whiting, B. R., Chole, R. A., Neely, G. J., Hullar, T. E., & Skinner, M. W. (2008). Role of electrode placement as a contributor to variability in cochlear implant outcomes. Otology & Neurotology, 29(7), 920–928.

    Google Scholar 

  • Fleckeisen, C. E., Harrison, R. V., & Mount, R. J. (1991). Effects of total cochlear haircell loss on integrity of cochlear nucleus. A quantitative study. Acta Oto-Laryngologica Supplementum, 489, 23–31.

    PubMed  CAS  Google Scholar 

  • Fransson, A., Maruyama, J., Miller, J. M., & Ulfendahl, M. (2010). Post-treatment effects of local GDNF administration to the inner ears of deafened guinea pigs. Journal of Neurotrauma, 27(9), 1745–1751.

    PubMed  Google Scholar 

  • Fraysse, B., Macías, A. R., Sterkers, O., Burdo, S., Ramsden, R., Deguine, O., Klenzner, T., Lenars, T., Rodrigues, M. M., Von Wallenberg, E., & James, C. (2006). Residual hearing conservation and electroacoustic stimulation with the nucleus 24 contour advance cochlear implant. Otology & Neurotology, 27(5), 624–633.

    Google Scholar 

  • Frisina, S. T., Mapes, F., Kim, S., Frisina D. R., & Frisina, R. D. (2006). Characterization of hearing loss in aged type II diabetics. Hearing Research, 211(1–2), 103–113.

    PubMed  Google Scholar 

  • Fritzsch, B., Pirvola, U., & Ylikoski, J. (1999). Making and breaking the innervation of the ear: Neurotrophic support during ear development and its clinical implications. Cell and Tissue Research, 295(3), 369–382.

    PubMed  CAS  Google Scholar 

  • García, P., V., Martínez, Abdulghani, F., Agustí, Bodet, E., Mencía, Andreu, L., & Asenjo, Palomar, V. (2001). Drug-induced otoxicity: Current status. Acta Oto-Laryngologica, 121(5), 569–572.

    Google Scholar 

  • Geers, A. E. (2004). Speech, language, and reading skills after early cochlear implantation. Archives of Otolaryngology—Head & Neck Surgery, 130(5), 634–638.

    Google Scholar 

  • Geisler, F. H., Dorsey, F. C., & Coleman, W. P. (1993). Past and current clinical studies with GM-1 ganglioside in acute spinal cord injury. Annals of Emergency Medicine, 22(6), 1041–1047.

    PubMed  CAS  Google Scholar 

  • Gillespie, L. N., Clark, G. M., Bartlett, P. F., & Marzella, P. L. (2003). BDNF-induced survival of auditory neurons in vivo: Cessation of treatment leads to accelerated loss of survival effects. Journal of Neuroscience Research, 71(6), 785–790.

    PubMed  CAS  Google Scholar 

  • Gillespie, L. N., & Shepherd, R. K. (2005). Clinical application of neurotrophic factors: The potential for primary auditory neuron protection. The European Journal of Neuroscience, 22(9), 2123–2133.

    PubMed  Google Scholar 

  • Glueckert, R., Bitsche, M., Miller, J. M., Zhu, Y., Prieskorn, D. M., Altschuler, R. A., & Schrott-Fischer, A. (2008). Deafferentation-associated changes in afferent and efferent processes in the guinea pig cochlea and afferent regeneration with chronic intrascalar brain-derived neurotrophic factor and acidic fibroblast growth factor. The Journal of Comparative Neurology, 507(4), 1602–1621.

    PubMed  Google Scholar 

  • Goh, J. P. N., Chan, L. L., & Tan, T. Y. (2002). MRI of cochlear otosclerosis. The British Journal of Radiology, 75(894), 502–505.

    PubMed  CAS  Google Scholar 

  • Gstoettner, W., Helbig, S., Settevendemie, C., Baumann, U., Wagenblast, J., & Arnoldner, C. (2009). A new electrode for residual hearing preservation in cochlear implantation: First clinical results. Acta Oto-Laryngologica, 129(4), 372–379.

    PubMed  Google Scholar 

  • Hansen, M R, Zha, X. M., Bok, J., & Green, S. H. (2001). Multiple distinct signal pathways, including an autocrine neurotrophic mechanism, contribute to the survival-promoting effect of depolarization on spiral ganglion neurons in vitro. The Journal of Neuroscience, 21(7), 2256–2267.

    PubMed  CAS  Google Scholar 

  • Hansen, Marlan R, Bok, J., Devaiah, A. K., Zha, X.-M., & Green, S. H. (2003). Ca2+/calmodulin-dependent protein kinases II and IV both promote survival but differ in their effects on axon growth in spiral ganglion neurons. Journal of Neuroscience Research, 72(2), 169–184.

    PubMed  CAS  Google Scholar 

  • Hardie, N. A., & Shepherd, R. K. (1999). Sensorineural hearing loss during development: Morphological and physiological response of the cochlea and auditory brainstem. Hearing Research, 128(1–2), 147–165.

    PubMed  CAS  Google Scholar 

  • Harris, J. A., & Rubel, E. W. (2006). Afferent regulation of neuron number in the cochlear nucleus: Cellular and molecular analyses of a critical period. Hearing Research, 216217, 127–137.

    PubMed  Google Scholar 

  • Harrison, R. V., Gordon, K. A., & Mount, R. J. (2005). Is there a critical period for cochlear implantation in congenitally deaf children? Analyses of hearing and speech perception performance after implantation. Developmental Psychobiology, 46(3), 252–261.

    PubMed  Google Scholar 

  • Hartshorn, D. O., Miller, J. M., & Altschuler, R. A. (1991). Protective effect of electrical stimulation in the deafened guinea pig cochlea. Otolaryngology—Head and Neck Surgery, 104(3), 311–319.

    PubMed  CAS  Google Scholar 

  • Hashisaki, G. T., & Rubel, E. W. (1989). Effects of unilateral cochlea removal on anteroventral cochlear nucleus neurons in developing gerbils. The Journal of Comparative Neurology, 283(4), 5–73.

    PubMed  CAS  Google Scholar 

  • Hegarty, J. L., Kay, A. R., & Green, S. H. (1997). Trophic support of cultured spiral ganglion neurons by depolarization exceeds and is additive with that by neurotrophins or cAMP and requires elevation of [Ca2+]i within a set range. The Journal of Neuroscience, 17(6), 1959–1970.

    PubMed  CAS  Google Scholar 

  • Hendricks, J. L., Chikar, J. A., Crumling, M. A., Raphael, Y., & Martin, D. C. (2008). Localized cell and drug delivery for auditory prostheses. Hearing Research, 242(1–2), 117–131.

    PubMed  CAS  Google Scholar 

  • Hinojosa, R., & Lindsay, J. R. (1980). Profound deafness. Associated sensory and neural degeneration. Archives of Otolaryngology1960, 106(4), 193–209.

    CAS  Google Scholar 

  • Hinojosa, R., & Marion, M. (1983). Histopathology of profound sensorineural deafness. Annals of the New York Academy of Sciences, 405, 459–484.

    PubMed  CAS  Google Scholar 

  • Hinojosa, R., Blough, R. R., & Mhoon, E. E. (1987). Profound sensorineural deafness: A histopathologic study. Annals of Otology Rhinology & Laryngology, 128 (Supplement 96), 43–46.

    Google Scholar 

  • Hochmair, I., Nopp, P., Jolly, C., Schmidt, M., Schösser, H., Garnham, C., & Anderson, I. (2006). MED-EL Cochlear implants: State of the art and a glimpse into the future. Trends in Amplification, 10(4), 201–219.

    PubMed  Google Scholar 

  • Holden, L. K., Finley, C. C., Firszt, J. B., Holden, T. A., Brenner, C., Potts, L. G., Gotter, B. D., Vanderhoof, S. S., Mispagel, K., Heydebrand, G., & Skinner, M. W. (2013). Factors affecting open-set word recognition in adults with cochlear implants. Ear and Hearing (Epub ahead of print).

    Google Scholar 

  • Hussong, A., Rau, T. S., Ortmaier, T., Heimann, B., Lenarz, T., & Majdani, O. (2010). An automated insertion tool for cochlear implants: Another step towards atraumatic cochlear implant surgery. International Journal of Computer Assisted Radiology and Surgery, 5(2), 163–171.

    PubMed  Google Scholar 

  • James, C. J., Fraysse, B., Deguine, O., Lenarz, T., Mawman, D., Ramos, A., Ramsden, R., et al. (2006). Combined electroacoustic stimulation in conventional candidates for cochlear implantation. Audiology & Neuro-Otology, 11(Supplement 1), 57–62.

    Google Scholar 

  • Johnsson, L. G., Hawkins, J. E., Jr, Kingsley, T. C., Black, F. O., & Matz, G. J. (1981). Aminoglycoside-induced cochlear pathology in man. Acta Oto-Laryngologica, Supplementum, 383, 1–19.

    CAS  Google Scholar 

  • Kanzaki, S., Stöver, T., Kawamoto, K., Prieskorn, D. M., Altschuler, R. A., Miller, J. M., & Raphael, Y. (2002). Glial cell line-derived neurotrophic factor and chronic electrical stimulation prevent VIII cranial nerve degeneration following denervation. The Journal of Comparative Neurology, 454(3), 350–360.

    PubMed  CAS  Google Scholar 

  • Kennedy, D. W. (1987). Multichannel intracochlear electrodes: Mechanism of insertion trauma. The Laryngoscope, 97(1), 42–49.

    PubMed  CAS  Google Scholar 

  • Khan, A. M., Handzel, O., Burgess, B. J., Damian, D., Eddington, D. K., & Nadol, J. B., Jr. (2005a). Is word recognition correlated with the number of surviving spiral ganglion cells and electrode insertion depth in human subjects with cochlear implants? The Laryngoscope, 115(4), 672–677.

    PubMed  Google Scholar 

  • Khan, A. M., Whiten, D. M., Nadol, J. B., Jr., & Eddington, D. K. (2005b). Histopathology of human cochlear implants: Correlation of psychophysical and anatomical measures. Hearing Research, 205(1–2), 83–93. s

    Google Scholar 

  • Kharlamov, A., Zivkovic, I., Polo, A., Armstrong, D. M., Costa, E., & Guidotti, A. (1994). LIGA20, a lyso derivative of ganglioside GM1, given orally after cortical thrombosis reduces infarct size and associated cognition deficit. Proceedings of the National Academy of Sciences of the USA, 91(14), 6303–6307.

    PubMed  CAS  Google Scholar 

  • Kitzes, L. M., Kageyama, G. H., Semple, M. N., & Kil, J. (1995). Development of ectopic projections from the ventral cochlear nucleus to the superior olivary complex induced by neonatal ablation of the contralateral cochlea. The Journal of Comparative Neurology, 353(3), 341–363.

    PubMed  CAS  Google Scholar 

  • Kral, A., & O’Donoghue, G. M. (2010). Profound deafness in childhood. The New England Journal of Medicine, 363(15), 1438–1450.

    PubMed  CAS  Google Scholar 

  • Landry, T. G., Wise, A. K., Fallon, J. B., & Shepherd, R. K. (2011). Spiral ganglion neuron survival and function in the deafened cochlea following chronic neurotrophic treatment. Hearing Research, 282(1–2), 303–313.

    PubMed  CAS  Google Scholar 

  • Leake, P. A., & Hradek, G. T. (1988). Cochlear pathology of long term neomycin induced deafness in cats. Hearing Research, 33(1), 11–33.

    PubMed  CAS  Google Scholar 

  • Leake, P. A., Hradek, G. T., Rebscher, S. J., & Snyder, R. L. (1991). Chronic intracochlear electrical stimulation induces selective survival of spiral ganglion neurons in neonatally deafened cats. Hearing Research, 54(2), 251–271.

    PubMed  CAS  Google Scholar 

  • Leake, P. A., Snyder, R. L., Hradek, G. T., & Rebscher, S. J. (1992). Chronic intracochlear electrical stimulation in neonatally deafened cats: Effects of intensity and stimulating electrode location. Hearing Research, 64(1), 99–117.

    PubMed  CAS  Google Scholar 

  • Leake, P. A., Snyder, R. L., Hradek, G. T., & Rebscher, S. J. (1995). Consequences of chronic extracochlear electrical stimulation in neonatally deafened cats. Hearing Research, 82(1), 65–80.

    PubMed  CAS  Google Scholar 

  • Leake, P. A., Kuntz, A. L., Moore, C. M., & Chambers, P. L. (1997). Cochlear pathology induced by aminoglycoside ototoxicity during postnatal maturation in cats. Hearing Research, 113(1–2), 117–132.

    PubMed  CAS  Google Scholar 

  • Leake, P. A., Hradek, G. T., & Snyder, R. L. (1999). Chronic electrical stimulation by a cochlear implant promotes survival of spiral ganglion neurons after neonatal deafness. The Journal of Comparative Neurology, 412(4), 543–562.

    PubMed  CAS  Google Scholar 

  • Leake, P. A., Snyder, R. L., Rebscher, S. J., Moore, C. M., & Vollmer, M. (2000). Plasticity in central representations in the inferior colliculus induced by chronic single- vs. two-channel electrical stimulation by a cochlear implant after neonatal deafness. Hearing Research, 147(1–2), 221–241.

    PubMed  CAS  Google Scholar 

  • Leake, P. A., Hradek, G. T., Chair, L., & Snyder, R. L. (2006). Neonatal deafness results in degraded topographic specificity of auditory nerve projections to the cochlear nucleus in cats. The Journal of Comparative Neurology, 497(1), 13–31.

    PubMed  Google Scholar 

  • Leake, P. A., Hradek, G. T., Vollmer, M., & Rebscher, S. J. (2007). Neurotrophic effects of GM1 ganglioside and electrical stimulation on cochlear spiral ganglion neurons in cats deafened as neonates. The Journal of Comparative Neurology, 501(6), 837–853.

    PubMed  CAS  Google Scholar 

  • Leake, Patricia, A., Hradek, G. T., Bonham, B. H., & Snyder, R. L. (2008a). Topography of auditory nerve projections to the cochlear nucleus in cats after neonatal deafness and electrical stimulation by a cochlear implant. Journal of the Association for Research in Otolaryngology: JARO, 9(3), 349–372.

    Google Scholar 

  • Leake, P. A., Stakhovskaya, O., Hradek, G. T., & Hetherington, A. M. (2008b). Factors influencing neurotrophic effects of electrical stimulation in the deafened developing auditory system. Hearing Research, 242(1–2), 86–99.

    PubMed  Google Scholar 

  • Leake, P. A., Hradek, G. T., Hetherington, A. M., & Stakhovskaya, O. (2011). Brain-derived neurotrophic factor promotes cochlear spiral ganglion cell survival and function in deafened, developing cats. The Journal of Comparative Neurology, 519(8), 1526–1545.

    PubMed  CAS  Google Scholar 

  • Leake, P. A., Stakhovskaya, O., Hetherington, A., Rebscher, S. J., & Bonham, B. (2013). Effects of brain-derived neurotrophic factor (BDNF) and electrical stimulation on survival and function of cochlear spiral ganglion neurons in deafened, developing cats. Journal of the Association for Research in Otolaryngology: Journal of the Association for Research in Otolaryngology (Epub ahead of print).

    Google Scholar 

  • Li, L., Parkins, C. W., & Webster, D. B. (1999). Does electrical stimulation of deaf cochleae prevent spiral ganglion degeneration? Hearing Research, 133(1–2), 27–39.

    PubMed  CAS  Google Scholar 

  • Lousteau, R. J. (1987). Increased spiral ganglion cell survival in electrically stimulated, deafened guinea pig cochleae. The Laryngoscope, 97(7 Pt 1), 836–842.

    PubMed  CAS  Google Scholar 

  • Lustig, L. R., Leake, P. A., Snyder, R. L., & Rebscher, S. J. (1994). Changes in the cat cochlear nucleus following neonatal deafening and chronic intracochlear electrical stimulation. Hearing Research, 74(1–2), 29–37.

    PubMed  CAS  Google Scholar 

  • Makary, C. A., Shin, J., Kujawa, S. G., Liberman, M. C., & Merchant, S. N. (2011). Age-related primary cochlear neuronal degeneration in human temporal bones. Journal of the Association for Research in Otolaryngology: JARO, 12(6), 711–717.

    PubMed  Google Scholar 

  • Matsushima, J. I., Shepherd, R. K., Seldon, H. L., Xu, S. A., & Clark, G. M. (1991). Electrical stimulation of the auditory nerve in deaf kittens: Effects on cochlear nucleus morphology. Hearing Research, 56(1–2), 133–142.

    PubMed  CAS  Google Scholar 

  • Miller, A. L. (2001). Effects of chronic stimulation on auditory nerve survival in ototoxically deafened animals. Hearing Research, 151(1–2), 1–14.

    PubMed  CAS  Google Scholar 

  • Miller, A. L, Prieskorn, D. M., Altschuler, R. A., & Miller, J. M. (2003). Mechanism of electrical stimulation-induced neuroprotection: Effects of verapamil on protection of primary auditory afferents. Brain Research, 966(2), 218–230.

    PubMed  CAS  Google Scholar 

  • Miller, J. M., Chi, D. H., O’Keeffe, L. J., Kruszka, P., Raphael, Y., & Altschuler, R. A. (1997). Neurotrophins can enhance spiral ganglion cell survival after inner hair cell loss. International Journal of Developmental Neuroscience, 15(4–5), 631–643.

    PubMed  CAS  Google Scholar 

  • Miller, J. M., Le Prell, C. G., Prieskorn, D. M., Wys, N. L., & Altschuler, R. A. (2007). Delayed neurotrophin treatment following deafness rescues spiral ganglion cells from death and promotes regrowth of auditory nerve peripheral processes: Effects of brain-derived neurotrophic factor and fibroblast growth factor. Journal of Neuroscience Research, 85(9), 1959–1969.

    PubMed  CAS  Google Scholar 

  • Mohr, P. E., Feldman, J. J., Dunbar, J. L., McConkey-Robbins, A., Niparko, J. K., Rittenhouse, R. K., & Skinner, M. W. (2000). The societal costs of severe to profound hearing loss in the United States. International Journal of Technology Assessment in Health Care, 16(4), 1120–1135.

    PubMed  CAS  Google Scholar 

  • Moore, D. R., & Kitzes, L. M. (1985). Projections from the cochlear nucleus to the inferior colliculus in normal and neonatally cochlea-ablated gerbils. The Journal of Comparative Neurology, 240(2), 180–195.

    PubMed  CAS  Google Scholar 

  • Moore, J. K., Niparko, J. K., Miller, M. R., & Linthicum, F. H. (1994). Effect of profound hearing loss on a central auditory nucleus. The American Journal of Otology, 15(5), 588–595.

    PubMed  CAS  Google Scholar 

  • Moore, D. R., Rogers, N. J., & O’Leary, S. J. (1998). Loss of cochlear nucleus neurons following aminoglycoside antibiotics or cochlear removal. The Annals of Otology, Rhinology, and Laryngology, 107(4), 337–343.

    PubMed  CAS  Google Scholar 

  • Mostafapour, S. P., Cochran, S. L., Del Puerto, N. M., & Rubel, E. W. (2000). Patterns of cell death in mouse anteroventral cochlear nucleus neurons after unilateral cochlea removal. The Journal of Comparative Neurology, 426(4), 561–571.

    PubMed  CAS  Google Scholar 

  • Mower, G. D., & Christen, W. G. (1985). Role of visual experience in activating critical period in cat visual cortex. Journal of Neurophysiology, 53(2), 572–589.

    PubMed  CAS  Google Scholar 

  • Mukherjee, P., Uzun-Coruhlu, H., Wong, C. C., Curthoys, I. S., Jones, A. S., & Gibson, W. P. (2012). Assessment of intracochlear trauma caused by the insertion of a new straight research array. Cochlear Implants International, 13(3), 156–162.

    PubMed  Google Scholar 

  • Nadol, J. B., Jr. (1984). Histological considerations in implant patients. Archives of Otolaryngology1960, 110(3), 160–163.

    Google Scholar 

  • Nadol, J. B., Jr. (1997). Patterns of neural degeneration in the human cochlea and auditory nerve: Implications for cochlear implantation. Otolaryngology--Head and Neck Surgery, 117(3 Pt 1), 220–228.

    PubMed  Google Scholar 

  • Nadol, J. B., Jr., & Eddington, D. K. (2006). Histopathology of the inner ear relevant to cochlear implantation. Advances in Oto-Rhino-Laryngology, 64, 31–49.

    PubMed  Google Scholar 

  • Nadol, J. B., Jr., Young, Y.-S., & Glynn, R. J. (1989). Survival of spiral ganglion cells in profound sensorineural hearing loss: Implications for cochlear implantation. The Annals of Otology, Rhinology, and Laryngology, 98, 41–46.

    Google Scholar 

  • Nadol, J. B., Jr., Shiao, J. Y., Burgess, B. J., Ketten, D. R., Eddington, D. K., Gantz, B. J., Kos, I., Montandon, P., Coker, N. J., Roland, J. T., & Shallop, J. K. (2001). Histopathology of cochlear implants in humans. The Annals of Otology, Rhinology, and Laryngology, 110(9), 883–891.

    PubMed  Google Scholar 

  • Nakaizumi, T., Kawamoto, K., Minoda, R., & Raphael, Y. (2004). Adenovirus-mediated expression of brain-derived neurotrophic factor protects spiral ganglion neurons from ototoxic damage. Audiology & Neuro-Otology, 9(3), 135–143.

    CAS  Google Scholar 

  • Nicholas, J. G., & Geers, A. E. (2007). Will they catch up? The role of age at cochlear implantation in the spoken language development of children with severe to profound hearing loss. Journal of Speech, Language, and Hearing Research: JSLHR, 50(4), 1048–1062.

    PubMed  Google Scholar 

  • Niparko, J. K. (2004). Speech, language, and reading skills after early cochlear implantation. JAMA, 291(19), 2378–2380.

    PubMed  Google Scholar 

  • Niparko, J. K., & Finger, P. A. (1997). Cochlear nucleus cell size changes in the dalmatian: Model of congenital deafness. Otolaryngology—Head and Neck Surgery, 117(3 Pt 1), 229–235.

    CAS  Google Scholar 

  • Novak, M. A., Black, J. M., & Koch, D. B. (2007). Standard cochlear implantation of adults with residual low-frequency hearing: Implications for combined electro-acoustic stimulation. Otology & Neurotology, 28(5), 609–614.

    Google Scholar 

  • O’Leary, M. J., Fayad, J., House, W. F., & Linthicum, F. H., Jr. (1991). Electrode insertion trauma in cochlear implantation. The Annals of Otology, Rhinology, and Laryngology, 100(9 Pt 1), 695–699.

    PubMed  Google Scholar 

  • Otte, J., Schunknecht, H. F., & Kerr, A. G. (1978). Ganglion cell populations in normal and pathological human cochleae: Implications for cochlear implantation. The Laryngoscope, 88(8 Pt 1), 1231–1246.

    PubMed  CAS  Google Scholar 

  • Paasche, G., Gibson, P., Averbeck, T., Becker, H., Lenarz, T., & Stöver, T. (2003). Technical report: Modification of a cochlear implant electrode for drug delivery to the inner ear. Otology & Neurotology, 24(2), 222–227.

    CAS  Google Scholar 

  • Paparella, M. M., Cureoglu, S., Shao, W., & Schachern, P. A. (2007). Otosclerosis and associated otopathologic conditions. Advances in Oto-Rhino-Laryngology, 65, 31–44.

    PubMed  Google Scholar 

  • Pettingill, L. N., Minter, R. L., & Shepherd, R. K. (2008). Schwann cells genetically modified to express neurotrophins promote spiral ganglion neuron survival in vitro. Neuroscience, 152(3), 821–828.

    PubMed  CAS  Google Scholar 

  • Pleis, J. R., & Lethbridge-Cejku, M. (2006). Summary health statistics for U.S. adults: National Health Interview Survey, 2005. Vital and Health Statistics. Series 10, Data from the National Health Survey, (232), 1–153.

    Google Scholar 

  • Propp, J. M., McCarthy, B. J., Davis, F. G., & Preston-Martin, S. (2006). Descriptive epidemiology of vestibular schwannomas. Neuro-Oncology, 8(1), 1–11.

    PubMed  Google Scholar 

  • Ramekers, D., Versnel, G., Grolman, W., & Klis. S. J. (2012). Neurotrophins and their role in the cochlea. Hearing Research, 288(1–2), 19–33.

    Google Scholar 

  • Rebscher, S. J., Heilmann, M., Bruszewski, W., Talbot, N. H., Snyder, R. L., & Merzenich, M. M. (1999). Strategies to improve electrode positioning and safety in cochlear implants. IEEE Transactions on Bio-Medical Engineering, 46(3), 340–352.

    PubMed  CAS  Google Scholar 

  • Rebscher, S. J., Hetherington, A. M., Snyder, R. L., Leake, P. A., & Bonham, B. H. (2007). Design and fabrication of multichannel cochlear implants for animal research. Journal of Neuroscience Methods, 166(1), 1–12.

    PubMed  Google Scholar 

  • Rebscher, S. J., Hetherington, A., Bonham, B., Wardrop, P., Whinney, D., & Leake, P. A. (2008). Considerations for design of future cochlear implant electrode arrays: Electrode array stiffness, size, and depth gof insertion. Journal of Rehabilitation Research and Development, 45(5), 731–747.

    PubMed  Google Scholar 

  • Redd, E. E., Pongstaporn, T., & Ryugo, D. K. (2000). The effects of congenital deafness on auditory nerve synapses and globular bushy cells in cats. Hearing Research, 147(1–2), 160–174.

    PubMed  CAS  Google Scholar 

  • Redd, E. E., Cahill, H. B., Pongstaporn, T., & Ryugo, D. K. (2002). The effects of congenital deafness on auditory nerve synapses: Type I and type II multipolar cells in the anteroventral cochlear nucleus of cats. Journal of the Association for Research in Otolaryngology: JARO, 3(4), 403–417.

    PubMed  Google Scholar 

  • Richardson, R. T., Wise, A. K., Andrew, J. K., & O’Leary, S. J. (2008). Novel drug delivery systems for inner ear protection and regeneration after hearing loss. Expert Opinion on Drug Delivery, 5(10), 1059–1076.

    PubMed  CAS  Google Scholar 

  • Roehm, P. C., & Hansen, M. R. (2005). Strategies to preserve or regenerate spiral ganglion neurons. Current Opinion in Otolaryngology & Head and Neck Surgery, 13(5), 294–300.

    Google Scholar 

  • Roland, J. T., Jr. (2005). A model for cochlear implant electrode insertion and force evaluation: Results with a new electrode design and insertion technique. The Laryngoscope, 115(8), 1325–1339.

    PubMed  Google Scholar 

  • Rubel, E. W., & Fritzsch, B. (2002). Auditory system development: Primary auditory neurons and their targets. Annual Review of Neuroscience, 25, 51–101.

    PubMed  CAS  Google Scholar 

  • Ruben, R. J. (1986). Unsolved issues around critical periods with emphasis on clinical application. Acta Oto-Laryngologica Supplementum, 429, 61–64.

    PubMed  CAS  Google Scholar 

  • Ruben, R. J. (1997). A time frame of critical/sensitive periods of language development. Acta Oto-Laryngologica, 117(2), 202–205.

    PubMed  CAS  Google Scholar 

  • Ruben, R. J., & Rapin, I. (1980). Plasticity of the developing auditory system. The Annals of Otology, Rhinology, and Laryngology, 89(4 Pt 1), 303–311.

    PubMed  CAS  Google Scholar 

  • Ryugo, D. K., Pongstaporn, T., Huchton, D. M., & Niparko, J. K. (1997). Ultrastructural analysis of primary endings in deaf white cats: Morphologic alterations in endbulbs of Held. The Journal of Comparative Neurology, 385(2), 230–244.

    PubMed  CAS  Google Scholar 

  • Ryugo, D. K., Kretzmer, E. A., & Niparko, J. K. (2005). Restoration of auditory nerve synapses in cats by cochlear implants. Science, 310(5753), 1490–1492.

    PubMed  CAS  Google Scholar 

  • Saada, A. A., Niparko, J. K., & Ryugo, D. K. (1996). Morphological changes in the cochlear nucleus of congenitally deaf white cats. Brain Research, 736(1–2), 315–328.

    PubMed  CAS  Google Scholar 

  • Schindler, R. A., Gladstone, H. B., Scott, N., Hradek, G. T., Williams, H., & Shah, S. B. (1995). Enhanced preservation of the auditory nerve following cochlear perfusion with nerve growth factors. The American Journal of Otology, 16(3), 304–309.

    PubMed  CAS  Google Scholar 

  • Schmidt, J. T., & Buzzard, M. (1990). Activity-driven sharpening of the regenerating retinotectal projection: Effects of blocking or synchronizing activity on the morphology of individual regenerating arbors. Journal of Neurobiology, 21(6), 900–917.

    PubMed  CAS  Google Scholar 

  • Schneider, J. S., Sendek, S., Daskalakis, C., & Cambi, F. (2010). GM1 ganglioside in Parkinson’s disease: Results of a five year open study. Journal of the Neurological Sciences, 292(1–2), 45–51.

    PubMed  CAS  Google Scholar 

  • Schuknecht, H. F. (1974). Pathology of the ear. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Seyyedi, M., Eddington, D. K., & Nadol, J. B., Jr. (2011). Interaural comparison of spiral ganglion cell counts in profound deafness. Hearing Research, 282(1–2), 56–62.

    PubMed  Google Scholar 

  • Sharma, A., & Campbell, J. (2011). A sensitive period for cochlear implantation in deaf children. The Journal of Maternal-Fetal & Neonatal Medicine, 24(Suppl 1), 151–153.

    Google Scholar 

  • Shatz, C. J. (1996). Emergence of order in visual system development. Proceedings of the National Academy of Sciences of the USA, 93(2), 602–608.

    PubMed  CAS  Google Scholar 

  • Shepherd, R. K., & Xu, J. (2002). A multichannel scala tympani electrode array incorporating a drug delivery system for chronic intracochlear infusion. Hearing Research, 172(1–2), 92–98.

    PubMed  CAS  Google Scholar 

  • Shepherd, R. K., Matsushima, J., Martin, R. L., & Clark, G. M. (1994). Cochlear pathology following chronic electrical stimulation of the auditory nerve: II. Deafened kittens. Hearing Research, 81(1–2), 150–166.

    CAS  Google Scholar 

  • Shepherd, R. K., Coco, A., Epp, S. B., & Crook, J. M. (2005). Chronic depolarization enhances the trophic effects of brain-derived neurotrophic factor in rescuing auditory neurons following a sensorineural hearing loss. The Journal of Comparative Neurology, 486(2), 145–158.

    PubMed  CAS  Google Scholar 

  • Shepherd, R. K., Coco, A., & Epp, S. B. (2008). Neurotrophins and electrical stimulation for protection and repair of spiral ganglion neurons following sensorineural hearing loss. Hearing Research, 242(1–2), 100–109.

    PubMed  CAS  Google Scholar 

  • Simon, D. K., & O’Leary, D. D. (1992). Development of topographic order in the mammalian retinocollicular projection. The Journal of Neuroscience, 12(4), 1212–1232.

    PubMed  CAS  Google Scholar 

  • Skarzynski, H., & Podskarbi-Fayette, R. (2010). A new cochlear implant electrode design for preservation of residual hearing: A temporal bone study. Acta Oto-Laryngologica, 130(4), 435–442.

    PubMed  Google Scholar 

  • Skinner, M. W., Holden, T. A., Whiting, B. R., Voie, A. H., Brunsden, B., Neely, J. G., Saxon, E. A., Hullar, T. E., & Finley, C. C. (2007). In vivo estimates of the position of advanced bionics electrode arrays in the human cochlea. The Annals of Otology, Rhinology & Laryngology. Supplement, 197, 2–24.

    Google Scholar 

  • Song, B., Li, Y., & Han, D. (2008). Effects of delayed brain-derived neurotrophic factor application on cochlear pathology and auditory physiology in rats. Chinese Medical Journal, 121(13), 1189–1196.

    PubMed  CAS  Google Scholar 

  • Staecker, H., & Garnham, C. (2010). Neurotrophin therapy and cochlear implantation: Translating animal models to human therapy. Experimental Neurology, 226(1), 1–5.

    PubMed  CAS  Google Scholar 

  • Staecker, H., Kopke, R., Malgrange, B., Lefebvre, P., & Van de Water, T. R. (1996). NT-3 and/or BDNF therapy prevents loss of auditory neurons following loss of hair cells. NeuroReport, 7(4), 889–894.

    Google Scholar 

  • Staecker, H, Gabaizadeh, R., Federoff, H., & Van De Water, T. R. (1998). Brain-derived neurotrophic factor gene therapy prevents spiral ganglion degeneration after hair cell loss. Otolaryngology—Head and Neck Surgery, 119(1), 7–13.

    PubMed  CAS  Google Scholar 

  • Stakhovskaya, O., Hradek, G. T., Snyder, R. L., & Leake, P. A. (2008). Effects of age at onset of deafness and electrical stimulation on the developing cochlear nucleus in cats. Hearing Research, 243(1–2), 69–77.

    PubMed  Google Scholar 

  • Svennerholm, L. (1994). Gangliosides—a new therapeutic agent against stroke and Alzheimer’s disease. Life Sciences, 55(25–26), 2125–2134.

    PubMed  CAS  Google Scholar 

  • Svirsky, M. A., Teoh, S.-W., & Neuburger, H. (2004). Development of language and speech perception in congenitally, profoundly deaf children as a function of age at cochlear implantation. Audiology & Neuro-Otology, 9(4), 224–233.

    Google Scholar 

  • Suzuka, Y., & Schuknecht, H.F. (1988). Retrograde cochlear neuronal degeneration in human subjects. Acta Oto-Laryngologica Supplementum 450, 1–20.

    PubMed  CAS  Google Scholar 

  • Tajudeen, B. A., Waltzman, S. B., Jethanamest, D., & Svirsky, M. A. (2010). Speech perception in congenitally deaf children receiving cochlear implants in the first year of life. Otology & Neurotology, 31(8), 1254–1260.

    Google Scholar 

  • Talbot, K. N., & Hartley, D. E. H. (2008). Combined electro-acoustic stimulation: A beneficial union? Clinical Otolaryngology, 33(6), 536–545.

    PubMed  CAS  Google Scholar 

  • Tatton, W. G., & Chalmers-Redman, R. M. (1996). Modulation of gene expression rather than monoamine oxidase inhibition: (–)-Deprenyl-related compounds in controlling neurodegeneration. Neurology, 47(6 Suppl 3), S171–183.

    PubMed  CAS  Google Scholar 

  • Tatton, W. G., Chalmers-Redman, R. M., Rideout, H. J., & Tatton, N. A. (1999). Mitochondrial permeability in neuronal death: Possible relevance to the pathogenesis of Parkinson’s disease. Parkinsonism & Related Disorders, 5(4), 221–229.

    CAS  Google Scholar 

  • Teoh, S. W., Pisoni, D. B., & Miyamoto, R. T. (2004a). Cochlear implantation in adults with prelingual deafness. Part I. Clinical results. The Laryngoscope, 114(9), 1536–1540.

    PubMed  Google Scholar 

  • Teoh, S. W., Pisoni, D. B., & Miyamoto, R. T. (2004b). Cochlear implantation in adults with prelingual deafness. Part II. Underlying constraints that affect audiological outcomes. The Laryngoscope, 114(10), 1714–1719.

    PubMed  Google Scholar 

  • Tessarollo, L., Coppola, V., & Fritzsch, B. (2004). NT-3 replacement with brain-derived neurotrophic factor redirects vestibular nerve fibers to the cochlea. The Journal of Neuroscience, 24(10), 2575–2584.

    PubMed  CAS  Google Scholar 

  • Thompson, D. C., McPhillips, H., Davis, R. L., Lieu, T. L., Homer, C. J., & Helfand, M. (2001). Universal newborn hearing screening: Summary of evidence. JAMA, 286(16), 2000–2010.

    PubMed  CAS  Google Scholar 

  • Tierney, T. S., Russell, F. A., & Moore, D. R. (1997). Susceptibility of developing cochlear nucleus neurons to deafferentation-induced death abruptly ends just before the onset of hearing. The Journal of Comparative Neurology, 378(2), 295–306.

    PubMed  CAS  Google Scholar 

  • Todt, I., Rademacher, G., Wagner, J., Göpel, F., Basta, D., Haider, E., & Ernst, A. (2009). Evaluation of cochlear implant electrode position after a modified round window insertion by means of a 64-multislice CT. Acta Oto-Laryngologica, 129(9), 966–970.

    PubMed  Google Scholar 

  • Turner, C. W., Reiss, L. A. J., & Gantz, B. J. (2008). Combined acoustic and electric hearing: Preserving residual acoustic hearing. Hearing Research, 242(1–2), 164–171.

    PubMed  Google Scholar 

  • Trune, D. R. (1982). Influence of neonatal cochlear removal on the development of mousecochlear nucleus: I. Number, size and density of its neurons. Journal of Comparative Neurology, 209(4), 409–424.

    PubMed  CAS  Google Scholar 

  • Verbist, B. M., Ferrarini, L., Briaire, J. J., Zarowski, A., Admiraal-Behloul, F., Olofsen, H., Reiber, J. H. C., & Frijns, J. H. (2009). Anatomic considerations of cochlear morphology and its implications for insertion trauma in cochlear implant surgery. Otology & Neurotology, 30(4), 471–477.

    Google Scholar 

  • Vollmer, M., Snyder, R. L., Leake, P. A., Beitel, R. E., Moore, C. M., & Rebscher, S. J. (1999). Temporal properties of chronic cochlear electrical stimulation determine temporal resolution of neurons in cat inferior colliculus. Journal of Neurophysiology, 82(6), 2883–2902.

    PubMed  CAS  Google Scholar 

  • Vollmer, M., Leake, P. A., Beitel, R. E., Rebscher, S. J., & Snyder, R. L. (2005). Degradation of temporal resolution in the auditory midbrain after prolonged deafness is reversed by electrical stimulation of the cochlea. Journal of Neurophysiology, 93(6), 3339–3355.

    PubMed  Google Scholar 

  • Vollmer, M., Beitel, R. E., Snyder, R. L., & Leake, P. A. (2007). Spatial selectivity to intracochlear electrical stimulation in the inferior colliculus is degraded after long-term deafness in cats. Journal of Neurophysiology, 98(5), 2588–2603.

    PubMed  Google Scholar 

  • Walsh, E. J., & Romand, R. (1992). Functional development of the cochlea and the cochlear nerve. Development of Auditory and Vestibular Systems 2 (pp. 161–219). Philadelphia: Elsevier.

    Google Scholar 

  • Walsh, M. E., & Webster, D. B. (1994). Exogenous GM1 ganglioside effects on conductive and sensorineural hearing losses. Hearing Research, 75(1–2), 54–60.

    PubMed  CAS  Google Scholar 

  • Walsh, E. J., McGee, J., & Javel, E. (1986). Development of auditory-evoked potentials in the cat. I. Onset of response and development of sensitivity. The Journal of the Acoustical Society of America, 79(3), 712–724.

    PubMed  CAS  Google Scholar 

  • Warnecke, A., Wissel, K., Hoffmann, A., Hofmann, N., Berkingali, N., Gro, G., Lenarz, T.,& Stover, T. (2007). The biological effects of cell-delivered brain-derived neurotrophic factor on cultured spiral ganglion cells. NeuroReport, 18(16), 1683–1686.

    Google Scholar 

  • Webber, A., & Raz, Y. (2006). Axon guidance cues in auditory development. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 288A(4), 390–396.

    Google Scholar 

  • Wefstaedt, P., Scheper, V., Lenarz, T., & Stöver, T. (2005). Brain-derived neurotrophic factor/glial cell line-derived neurotrophic factor survival effects on auditory neurons are not limited by dexamethasone. NeuroReport, 16(18), 2011–2014.

    PubMed  CAS  Google Scholar 

  • Weliky, M., & Katz, L. C. (1997). Disruption of orientation tuning in visual cortex by artificially correlated neuronal activity. Nature, 386(6626), 680–685.

    PubMed  CAS  Google Scholar 

  • Willott, J. F., Bross, L. S., & McFadden, S. L. (1994). Morphology of the cochlear nucleus in CBA/J mice with chronic, severe sensorineural cochlear pathology induced during adulthood. Hearing Research, 74(1–2), 1–21.

    PubMed  CAS  Google Scholar 

  • Wise, A. K., Richardson, R., Hardman, J., Clark, G., & O’Leary, S. (2005). Resprouting and survival of guinea pig cochlear neurons in response to the administration of the neurotrophins brain-derived neurotrophic factor and neurotrophin-3. The Journal of Comparative Neurology, 487(2), 147–165.

    PubMed  CAS  Google Scholar 

  • Wise, A. K., Hume, C. R., Flynn, B. O., Jeelall, Y. S., Suhr, C. L., Sgro, B. E., O’Leary, S. J., Shepherd, R. K., & Richardson, R. T. (2010). Effects of localized neurotrophin gene expression on spiral ganglion neuron resprouting in the deafened cochlea. Molecular Therapy, 18(6), 1111–1122.

    PubMed  CAS  Google Scholar 

  • Wise, A. K., Fallon, J. B., Neil, A. J., Pettingill, L. N., Geaney, M. S., Skinner, S. J., & Shepherd, R. K. (2011). Combining cell-based therapies and neural prostheses to promote neural survival. Neurotherapeutics, 8(4), 774–787.

    PubMed  CAS  Google Scholar 

  • Won, J. H., Drennan, W. R., Nie, K., Jameyson, E. M., & Rubinstein, J. T. (2011). Acoustic temporal modulation detection and speech perception in cochlear implant listeners. The Journal of the Acoustical Society of America, 130(1), 376–388.

    PubMed  Google Scholar 

  • Wrześniok, D., Buszman, E., & Matusiński, B. (2003). [Drugs ototoxicity. Part II. Loop diuretics, nonsteroidal anti-inflammatory drugs, antineoplastic and antimalarial drugs ]. Wiadomości Lekarskie (Warsaw, Poland: 1960), 56(7–8), 369–374.

    Google Scholar 

  • Wu, G., Lu, Z.-H., Xie, X., & Ledeen, R. W. (2004). Susceptibility of cerebellar granule neurons from GM2/GD2 synthase-null mice to apoptosis induced by glutamate excitotoxicity and elevated KCl: Rescue by GM1 and LIGA20. Glycoconjugate Journal, 21(6), 305–313.

    PubMed  CAS  Google Scholar 

  • Yagi, M., Kanzaki, S., Kawamoto, K., Shin, B., Shah, P. P., Magal, E., Sheng, J., & Raphael, Y. (2000). Spiral ganglion neurons are protected from degeneration by GDNF gene therapy. Journal of the Association for Research in Otolaryngology: JARO, 1(4), 315–325.

    PubMed  CAS  Google Scholar 

  • Ylikoski, J., Pirvola, U., Virkkala, J., Suvanto, P., Liang, X. Q., Magal, E., Altschuler, R., Miller, J. M., & Saarma, M. (1998). Guinea pig auditory neurons are protected by glial cell line-derived growth factor from degeneration after noise trauma. Hearing Research, 124(1–2), 17–26.

    PubMed  CAS  Google Scholar 

  • Yueh, B., Shapiro, N., MacLean, C. H., & Skekelle, P. G. (2003). Screening and management of adult hearing loss in primary care. JAMA, 289, 1976–1985.

    PubMed  Google Scholar 

  • Zeng, F.-G., Rebscher, S., Harrison, W., Sun, X., & Feng, H. (2008). Cochlear implants: System design, integration, and evaluation. IEEE Reviews in Biomedical Engineering, 1, 115–142.

    PubMed  Google Scholar 

  • Zha, X. M., Bishop, J. F., Hansen, M. R., Victoria, L., Abbas, P. J., Mouradian, M. M., & Green, S. H. (2001). BDNF synthesis in spiral ganglion neurons is constitutive and CREB-dependent. Hearing Research, 156(1-2), 53–68.

    PubMed  CAS  Google Scholar 

  • Zhang, Q., Huang, Y., Li, X., Cui, X., Zuo, P., & Li, J. (2005). GM1 ganglioside prevented the decline of hippocampal neurogenesis associated with D-galactose. NeuroReport, 16(12), 1297–1301.

    PubMed  CAS  Google Scholar 

  • Zheng, J. L., & Gao, W. Q. (1996). Differential damage to auditory neurons and hair cells by ototoxins and neuroprotection by specific neurotrophins in rat cochlear organotypic cultures. The European Journal of Neuroscience, 8(9), 1897–1905.

    PubMed  CAS  Google Scholar 

  • Zheng, J. L., Stewart, R. R., & Gao, W. Q. (1995). Neurotrophin-4/5 enhances survival of cultured spiral ganglion neurons and protects them from cisplatin neurotoxicity. The Journal of Neuroscience, 15(7 Pt 2), 5079–5087.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research of Dr. Leake and collaborators reviewed here was supported by Contract No. HHS-N-263-2007-00054-C and Grant No. R01 DC000160 from the National Institute on Deafness and Other Communication Disorders of the National Institutes of Health, the S. and I. Epstein and G. Sullivan Endowment Funds, and Hearing Research Inc. BDNF was donated by Amgen, Thousand Oaks, CA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia A. Leake .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Leake, P.A., Stakhovskaya, O., Rebscher, S.J. (2013). Effects of Early-Onset Deafness in the Developing Auditory System. In: Kral, A., Popper, A., Fay, R. (eds) Deafness. Springer Handbook of Auditory Research, vol 47. Springer, New York, NY. https://doi.org/10.1007/2506_2013_3

Download citation

Publish with us

Policies and ethics