Skip to main content

Ultrasound Detection in Fishes and Frogs: Discovery and Mechanisms

  • Chapter
  • First Online:

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 49))

Abstract

The frequency range of hearing in fishes and frogs historically has been thought to be confined to relatively low frequencies in comparison to that of mammals. However, within the last 20 years, the audiograms of several fish and frog species have been shown to encompass ultrasonic (US) frequencies. Moreover, these animals have been shown to respond behaviorally to US playbacks. Although the evolution of US detection in these species is still an ongoing topic of study, both fishes and frogs have faced the challenge of producing very high-frequency responses from systems that evolved with low-frequency sensitivity. A short history of the behavioral responses and the electrophysiological mechanisms (when known) underlying the production and reception of US in fishes and frogs is presented, with a focus on the unique experimental approaches that have yielded this surprising upward extension of the hearing ranges of several specialized fishes and frogs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arch, V. S., & Narins, P. M. (2008). “Silent” signals: Selective forces acting on ultrasonic communication signals in terrestrial vertebrates. Animal Behavior, 76, 1423–1428.

    Article  Google Scholar 

  • Arch, V. S., Grafe, T. U., & Narins, P. M. (2008). Ultrasonic signaling by a Bornean frog. Biology Letters, 4, 19–22.

    Article  PubMed Central  PubMed  Google Scholar 

  • Arch, V. S., Grafe, T. U., Gridi-Papp, M., & Narins, P. M. (2009). Pure ultrasonic communication in an endemic Bornean frog. PloS ONE 4(4), e5413.

    Article  PubMed Central  PubMed  Google Scholar 

  • Arch, V. S., Burmeister, S. S., Feng, A. S., Shen, J.-X., & Narins, P. M. (2011). Ultrasound-evoked immediate early gene expression in the brainstem of the Chinese torrent frog, Odorrana tormota. Journal of Comparative Physiology, 197, 667–675.

    Article  PubMed Central  PubMed  Google Scholar 

  • Arch, V. S., Simmons, D. D., Quiñones, P. M., Feng, A. S., Jiang, J., Stuart, B., Shen, J.-X., Blair, C., & Narins, P. M. (2012). Inner ear morphological correlates of ultrasonic hearing in frogs. Hearing Research, 283, 70–79.

    Article  PubMed  Google Scholar 

  • Astrup, J. (1999). Ultrasound detection in fish—a parallel to the sonar-mediated detection of bats by ultrasound-sensitive insects? Comparative Biochemistry and Physiology A, 124, 19–27.

    Article  CAS  Google Scholar 

  • Astrup, J., & Møhl, B. (1993). Detection of intense ultrasound by the cod, Gadus morhua. Journal of Experimental Biology, 182, 71–80.

    Google Scholar 

  • Au, W. W. L. (1993). The sonar of dolphins. New York: Springer-Verlag.

    Book  Google Scholar 

  • Bass, A. H., & Ladich, F. (2008). Vocal – acoustic communication: From neurons to behavior. In J. F. Webb, A. N. Popper, & R. Fay (Eds.), Fish bioacoustics (pp. 253–278). New York: Springer.

    Chapter  Google Scholar 

  • Best, A. C. G., & Gray, J. A. B. (1980). Morphology of the utricular recess in the sprat. Journal of the Marine Biological Association of the United Kingdom, 60(3), 703–715.

    Article  Google Scholar 

  • Blaxter, J. H. S., Denton, E. J., & Gray, J. A. B. (1981). Acousticolateralis system in clupeid fishes. In W. N. Tavolga A. N. Popper, & R. R. Fay (Eds.), Hearing and sound communication in fishes (pp. 39–59). New York: Springer-Verlag.

    Google Scholar 

  • Blaxter, J. H. S., Gray, J. A. B., & Best, A. C. G. (1983). Structure and development of the free neuromasts and lateral line system of the herring. Journal of the Marine Biological Association of the United Kingdom, 63, 247–260.

    Article  Google Scholar 

  • Bleckmann, H. (2008). Peripheral and central processing of lateral line information. Journal of Comparative Physiology A: Neuroethology Sensory Neural and Behavioral Physiology, 194, 145–158.

    Article  CAS  Google Scholar 

  • Capranica, R. R. (1976). Auditory system: Morphology and physiology of the auditory system. In R. Llinas & W. Precht (Eds.), Frog neurobiology (pp. 551–575). Berlin: Springer-Verlag.

    Google Scholar 

  • Chapman, C. J., & Sand, O. (1974). Field studies of hearing in 2 species of flatfish Pleuronectes-Platessa (L) and Limanda-Limanda (L) (Family Pleuronectidae). Comparative Biochemistry and Physiology, 47, 371–385.

    Article  CAS  PubMed  Google Scholar 

  • Chung, S. H., Pettigrew, A. G., & Anson, M. (1981). Hearing in the frog: Dynamics of the middle ear. Proceedings of the Royal Society of London B: Biological Sciences, 212, 459–485.

    Article  Google Scholar 

  • Clarke, M. R. (1977). Beaks, nets and numbers. Symposia of the Zoological Society of London, 38, 89–126.

    Google Scholar 

  • Coombs, S., & Montgomery, J. C. (1999). The enigmatic lateral line system. In A. N. Popper and R. R. Fay (Eds.), Comparative hearing: Fishes and amphibians (pp. 319–362). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Denton, E. J., & Blaxter, J. H. S. (1976). Mechanical relationships between clupeid swimbladder, inner-ear and lateral line. Journal of the Marine Biological Association of the United Kingdom, 56, 787–807.

    Article  Google Scholar 

  • Denton, E. J., & Gray, J. (1983). Mechanical factors in the excitation of clupeid lateral lines. Proceedings of the Royal Society of London B: Biological Sciences, 218, 1–26.

    Article  CAS  PubMed  Google Scholar 

  • Denton, E. J., Gray, J. A. B., & Blaxter, J. H. S. (1979). Mechanics of the clupeid acoustico-lateralis system – frequency responses. Journal of the Marine Biological Association of the United Kingdom, 59, 27–47.

    Article  Google Scholar 

  • De Vries, H. L. (1950). The mechanics of labyrinth otoliths. Acta Oto-Laryngologica, 38, 262–273.

    Article  Google Scholar 

  • Dunning, D. J., Ross, Q. E., Geoghegan, P., Reichle, J. J., Menezes, J. K., & Watson, J. K. (1992). Alewives avoid high-frequency sound. North American Journal of Fisheries Management, 12, 407–416.

    Article  Google Scholar 

  • Enger, P. S. (1967). Hearing in herring. Comparative Biochemistry and Physiology, 22(2), 527–530.

    Article  CAS  PubMed  Google Scholar 

  • Fay, R. R. (1988). Hearing in vertebrates: A psychophysics databook. Winnetka, IL: Hill-Fay Associates, 621 pp.

    Google Scholar 

  • Fei, L., Ye, C., & Jiang, J. (2010). Colored atlas of Chinese amphibians. Chengdu, China: Sichuan Publishing House of Science and Technology.

    Google Scholar 

  • Feng, A. S., & Narins, P. M. (2008). Ultrasonic communication in concave-eared torrent frogs (Amolops tormotus). Journal of Comparative Physiology, 194, 159–167.

    Article  PubMed  Google Scholar 

  • Feng, A. S., Narins, P. M., & Capranica, R. R. (1975). Three populations of primary auditory fibers in the bullfrog (Rana catesbeiana): Their peripheral origins and frequency sensitivities. Journal of Comparative Physiology, 100, 221–229.

    Article  Google Scholar 

  • Feng, A. S., Narins, P. M., & Xu, C.-H. (2002). Vocal acrobatics in a Chinese frog, Amolops tormotus. Naturwissenschaften, 89, 352–356.

    Article  CAS  PubMed  Google Scholar 

  • Feng, A. S., Narins, P. M., Xu, C.-H., Lin, W.-Y., Yu, Z.-L., Qiu, Q., Xu, Z.-M., & Shen, J.-X. (2006). Ultrasonic communication in frogs. Nature, 440, 333–336.

    Article  CAS  PubMed  Google Scholar 

  • Feng, A. S., Riede, T., Arch, V. S., Yu, Z., Xu, Z.-M., Yu, X.-J. & Shen, J.-X. (2009a). Diversity of vocal signals of concave-eared torrent frogs (Odorrana tormota): Evidence for individual signatures. Ethology, 115, 1015–1028.

    Article  Google Scholar 

  • Feng, A. S., Arch, V. S., Yu, Z.-L., Yu, X.-J., Xu, Z.-M., & Shen, J.-X. (2009b). Neighbor-stranger discrimination in concave-eared torrent frogs, Odorrana tormota. Ethology, 115, 1–6.

    Article  Google Scholar 

  • Frost, D. R., Grant, T., Faivovich, J., Bain, R. H., Haas, A., Haddad, C. F. B., De Sá, R. A., Channing, A.,Wilkinson, M., Donnellan, S. C., Raxworthy, C. J., Campbell, J. A., Blotto, B. L., Moler, P., Drewes, R. C., Nussbaum, R. A., Lynch, J. D., Green, D. M., & Wheeler, W. C. (2006). The amphibian tree of life. Bulletin of the American Museum of Natural History, 297, 1–370.

    Google Scholar 

  • Geisler, C. D., van Bergeijk, W. A., & Frishkopf, L. S. (1964). The inner ear of the bullfrog. Journal of Morphology, 114, 43–58.

    Article  CAS  PubMed  Google Scholar 

  • Gray, J. (1984). Interaction of sound pressure and particle-acceleration in the excitation of the lateral line neuromasts of sprats. Proceedings of the Royal Society of London B:Biological Sciences, 220(1220), 299–325.

    Article  Google Scholar 

  • Gregory, J., Lewis, M., & Hateley, J. (2007). Are twaite shad able to detect sound at a higher than any other fish? Results from a high resolution imaging sonar. Proceedings of the Institute of Acoustics, Loughborough University, UK, p. 29, Part 3.

    Google Scholar 

  • Gridi-Papp, M., & Narins, P. M. (2009). Environmental influences in the evolution of tetrapod hearing sensitivity and middle ear tuning. Integrative and Comparative Biology, 49, 702–716.

    Article  PubMed  Google Scholar 

  • Gridi-Papp, M., Feng, A. S., Shen, J.-X., Yu. Z.-L., & Narins, P. M. (2008). Active control of ultrasonic hearing in frogs. Proceedings of the National Academy of Sciences of the USA, 105, 11013–11018.

    Google Scholar 

  • Griffin, D. R. (1958). Listening in the dark: The acoustic orientation of bats and men. New Haven, CT: Yale University Press.

    Google Scholar 

  • Hall, J. C., & Feng, A. S. (1988). Influence of envelope rise time on neural responses in the auditory system of anurans. Hearing Research, 36, 261–276.

    Article  CAS  PubMed  Google Scholar 

  • Hamilton, H., Caballero, S., Collins, A. G., & Brownell, R. L., Jr. (2001). Evolution of river dolphins. Proceedings of the Royal Society of London B: Biological Sciences, 268, 549–558.

    Article  CAS  Google Scholar 

  • Harris, G. G., & van Bergeijk, W. A. (1962). Evidence that the lateral-line organ responds to near-field displacements of sound sources in water. Journal of Acoustical Society of America, 34, 1831–1841.

    Article  Google Scholar 

  • Hawkins, A. D. (1981). The hearing abilities of Fish. In W. N. Tavolga, A. N. Popper, & R. R. Fay (Eds.), Hearing and sound communication in fishes (pp. 109–133). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Hawkins, A. D., & Johnstone, A. D. F. (1978). Hearing of the Atlantic salmon, Salmo-salar. Journal of Fish Biology, 13(6), 655.

    Article  Google Scholar 

  • Higgs, D. M., & Fuiman, L. A. (1996). Ontogeny of visual and mechanosensory structure and function in Atlantic menhaden Brevoortia tyrannus. Journal of Experimental Biology, 199, 2619–2629.

    PubMed  Google Scholar 

  • Higgs, D. M., Plachta, D. T., Rollo, A. K., Singheiser, M., Hastings, M. C., & Popper, A. N. (2004). Development of ultrasound detection in American shad (Alosa sapidissima). The Journal of Experimental Biology, 207, 155–163.

    Article  CAS  PubMed  Google Scholar 

  • Hiryu, S., Bates, M. E., Simmons, J. A., & Riquimaroux, H. (2010). FM echolocating bats shift frequencies to avoid broadcast-echo ambiguity in clutter. Proceedings of the National Academy of Sciences of the USA, 107, 7048–7053.

    Article  CAS  PubMed  Google Scholar 

  • Hoss, D. E., & Blaxter, J. H. S. (1982). Development and function of the swimbladder-inner ear-lateral line system in the Atlantic menhaden, Brevoortia tyrannus (Latrobe). Journal of Fish Biology, 20, 131–142.

    Article  Google Scholar 

  • Hoy, R. R., & Robert, D. (1996). Tympanal heraing in insects. Annual Review of Entomology, 41, 433–450.

    Article  CAS  PubMed  Google Scholar 

  • Inger, R. F. (1966). The systematics and zoogeography of the amphibia of Borneo. Chicago: Field Museum of Natural History.

    Book  Google Scholar 

  • Jaslow, A. P., Hetherington, T. E., & Lombard, R. E. (1988). Structure and function of the amphibian middle ear. In B. Fritzsch, M. J. Ryan, W. Wilczynsk, T. E. Hetherington, & W.

    Google Scholar 

  • Walkowiak (Eds.), The evolution of the amphibian auditory system (pp. 69–92). New York: John Wiley & Sons.

    Google Scholar 

  • Jorgensen, M. B. (1991). Comparative studies of the biophysics of directional hearing in anurans. Journal of Comparative Physiology A, 169, 591–598.

    Google Scholar 

  • Kalmijn, J. (1989). Functional evolution of lateral line and inner ear sensory systems. In S. Coombs, P. Görner, & H. Münz (Eds.), The mechanosensory lateral line (pp. 187–215). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Kroese, A. B. A., & van Netten, S. M. (1989). Sensory transduction in lateral line hair cells. In S. Coombs & P. Görner (Eds.), The mechanosensory lateral line (pp. 265–284). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Krysl, P., Hawkins, A. D., Schilt, C., & Cranford, T. W. (2012). Angular oscillation of solid scatterers in response to progressive planar acoustic waves: Do fish otoliths rock? PLOS One 7(8): e42591.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kynard, B., & O’Leary J. (1990) Behavioral guidance of adult American shad using underwater AC electrical and acoustic fields. In Proceedings of the International Symposium on Fishways ’90, Gifu, Japan, October 8–10, 1990, pp. 131–135.

    Google Scholar 

  • Lavoué, S., Miya, M., Saitoh, K., Ishiguro, N. B., & Nishida, M. (2007). Phylogenetic relationships among anchovies, sardines, herrings and their relatives (Clupeiformes), inferred from whole mitogenome sequences. Molecular Phylogenetics and Evolution, 43, 1096–1105.

    Article  PubMed  Google Scholar 

  • Lewis, E. R., & Narins, P. M. (1999). The acoustic periphery of amphibians: Anatomy and physiology. In R. R. Fay & A. N. Popper (Eds.), Comparative hearing: Fish and amphibians (pp. 101–154). New York: Springer.

    Chapter  Google Scholar 

  • Lewis, E. R., Baird, R., Leverenz, E. L., & Koyama, H. (1982a). Inner ear: Dye injection reveals peripheral origins of specific sensitivities. Science, 215, 1641–1643.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, E. R., Leverenz, E. L., & Koyama, H. (1982b). The tonotopic organization of the bullfrog amphibian papilla, an auditory organ lacking a basilar membrane. Journal of Comparative Physiology, 145, 437– 455.

    Article  Google Scholar 

  • Madsen, P. T., Wahlberg, M., & Møhl, B. (2002). Male sperm whale (Physeter macrocephalus) acoustics in a high-latitude habitat: Implications for echolocation and communication. Behavioral Ecology and Sociobiology, 53, 31–41.

    Article  Google Scholar 

  • Madsen, P. T., Johnson, M., de Soto, N. A., Zimmer, W. M. X., & Tyack, P. (2005). Biosonar performance of foraging beaked whales (Mesoplodon densirostris). Journal of Experimental Biology, 208(2), 181–194.

    Article  CAS  PubMed  Google Scholar 

  • Mann, D. A., Lu, Z., & Popper, A. N. (1997). A clupeid fish can detect ultrasound. Nature, 389, 341.

    Article  CAS  Google Scholar 

  • Mann, D. A., Lu, Z., Hastings, M. C., & Popper, A. N. (1998). Detection of ultrasonic tones and simulated dolphin echolocation clicks by a teleost fish, the American shad (Alosa sapidissima). Journal of Acoustical Society of America, 104, 562–568.

    Article  CAS  Google Scholar 

  • Mann, D. A., Higgs, D. M., Tavolga, W. N., Souza, M. J., & Popper, A. N. (2001). Ultrasound detection by clupeiform fishes. Journal of Acoustical Society of America, 109, 3048–3054.

    Article  CAS  Google Scholar 

  • Mann, D. A., Popper, A. N., & Wilson, B. (2005). Pacific herring hearing does not include ultrasound. Biology Letters, 1, 158–161.

    Google Scholar 

  • Miller, L. A., & Surlykke, A. (2001). How some insects detect and avoid being eaten by bats: Tactics and countertactics of prey and predator. Bioscience, 51(7), 570–581.

    Article  Google Scholar 

  • Møhl, B., Wahlberg, M., Madsen, P. T., Heerfordt, A., & Lund, A. (2003). The monopulsed nature of sperm whale clicks. Journal of the Acoustical Society of America, 114(2), 1143–1154.

    Article  PubMed  Google Scholar 

  • Narins, P. M. (1990). Seismic communication in anuran amphibians. Bioscience, 40, 268–274.

    Article  Google Scholar 

  • Narins, P. M., & Feng, A. S. (2007). Hearing and sound communication in amphibians: Prologue and prognostication. In P. M. Narins, A. S. Feng, R. R. Fay, & A. N. Popper (Eds.), Hearing and sound communication in amphibians (pp. 1–11). Heidelberg: Springer.

    Google Scholar 

  • Narins, P. M., Lewis, E. R., & McClelland, B. E. (2000). Hyperextended call repertoire of the endemic Madagascar treefrog, Boophis madagascariensis (Rhacophoridae). Journal of Zoology (London), 250, 283–298.

    Google Scholar 

  • Narins, P. M., Feng, A. S., Schnitzler, H.-U., Denzinger, A., Suthers, R.A., Lin, W., & Xu, C.-H. (2004). Old World frog and bird vocalizations contain prominent ultrasonic harmonics. Journal of Acoustical Society of America, 115, 910–913.

    Article  Google Scholar 

  • Narins, P. M., Feng, A. S., Fay, R. R., & Popper, A. N. (2007a). Hearing and sound communication in amphibians. New York: Springer.

    Google Scholar 

  • Narins, P. M., Feng, A. S., & Shen, J.-X. (2007b). Frogs communicate with ultrasound in noisy environments. In B. Kollmeier. G. Klump, V. Hohmann, U. Langemann, M. Mauermann, S. Uppenkamp, & J. Verhey (Eds.), Hearing – From sensory processing to perception (pp. 185–190). Heidelberg: Springer.

    Google Scholar 

  • Nestler, J. M., Ploskey, G. R., & Pickens, J. (1992). Responses of blueback herring to high-frequency sound and implications for reducing entrainment at hydropower dams. North American Journal of Fisheries Management, 12, 667–683.

    Article  Google Scholar 

  • O’Connell, C. P. (1955). The gas bladder and its relation to the inner ear in Sardinops caerulea and Engaulis mordax. Fishery Bulletin, 56, 506–532.

    Google Scholar 

  • Plachta, D. T., & Popper, A. N. (2003). Evasive responses of American shad (Alosa sapidissima). Acoustic Research Letters Online, 4, 25–30.

    Article  Google Scholar 

  • Plachta, D. T. T., Song, J. K., Halvorsen, M. B., & Popper, A. N. (2004). Neuronal encoding of ultrasonic sound by a fish. Journal of Neurophysiology, 91(6), 2590–2597.

    Article  PubMed  Google Scholar 

  • Popper, A. N., & Platt, C. (1979). The herring ear has a unique receptor pattern. Nature, 280, 832–833.

    Article  CAS  PubMed  Google Scholar 

  • Popper, A. N., Fay, R. R., Platt, C., & Sand, O. (2003). Sound detection mechanisms and capabilities of teleost fishes. In S. P. Collin & N. J. Marshall (Eds.), Sensory processing in aquatic environments (pp. 3–38). New York: Springer.

    Chapter  Google Scholar 

  • Popper, A. N., Plachta, D. T., Mann, D. A., & Higgs, D. M. (2004). Response of clupeid fish to ultrasound: A review. Journal of Marine Science, 61, 1057–1061.

    Google Scholar 

  • Purgue, A. P., & Narins, P. M. (2000a). Mechanics of the inner ear of the bullfrog (Rana catesbeiana): The contact membranes and the periotic canal. Journal of Comparative Physiology A, 186, 481–488.

    Article  CAS  Google Scholar 

  • Purgue, A. P., & Narins, P. M. (2000b). A model for energy flow in the inner ear of the bullfrog (Rana catesbeiana). Journal of Comparative Physiology A, 186, 489–495.

    Article  CAS  Google Scholar 

  • Retzius (1881). Das Gehororgan der Wirbeltiere: I. Das Gehororgan der Fische und Amphien. Stockholm: Samson and Wallin.

    Google Scholar 

  • Roeder, K. D. (1962). The behaviour of free flying moths in the presence of artificial ultrasonic pulses. Animal Behaviour, 10, 300–304.

    Article  Google Scholar 

  • Roeder, K. D. (1998). Moths and bats. In K. D. Roeder (Ed.), Nerve cells and insect behavior (pp. 52–70). Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Ronken, D. A. (1990). Basic properties of auditory nerve responses from a “simple” ear: The basilar papilla of the frog. Hearing Research, 47, 63–82.

    Article  CAS  PubMed  Google Scholar 

  • Sand, O. (1981). The lateral line and sound reception. In W. N. Tavolga A. N. Popper, & R. Fay (Eds.), Hearing and sound communication in fishes (pp. 459–480). New York: Springer-Verlag.

    Google Scholar 

  • Sand, O., & Karlsen, H. E. (2000). Detection of infrasound and linear acceleration in fishes. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 355(1401), 1295–1298.

    Article  CAS  PubMed  Google Scholar 

  • Sand, O., & Bleckmann, H. (2008). Orientation to auditory and lateral line stimuli. In J. F. Webb, A. N. Popper, & R. Fay (Eds.), Fish bioacoustics (pp. 183–232). New York: Springer.

    Chapter  Google Scholar 

  • Santos, M. B., Pierce, G. J., Reid, R. J., Patterson, I. A. P., Ross, H. M., & Mente, E. (2001). Stomach contents of bottlenose dolphins (Tursiops truncatus) in Scottish waters. Journal of the Marine Biological Association of the United Kingdom, 81(5), 873–878.

    Article  Google Scholar 

  • Schack, H. B., Malte, H., & Madsen, P. T. (2008). The response of Atlantic cod (Gadus morhua) to ultrasound-emitting predators: Stress, behavioural changes or debilitation? The Journal of Experimental Biology, 211, 2079–2086.

    Article  PubMed  Google Scholar 

  • Schoffelen, R., Segenhout, J., & van Dijk, P. (2009). Tuning of the tectorial membrane in the basilar papilla of the Northern Leopard frog. Journal of Association for Research in Otolaryngology, 10, 309–320.

    Article  CAS  Google Scholar 

  • Shen, J.-X., Feng, A. S., Xu, Z.-M., Yu, Z.-L., Arch, V. S., Yu, X.-J., & Narins, P. M. (2008). Ultrasonic frogs show hyperacute phonotaxis to female’s courtship calls. Nature, 453, 914–916.

    Article  CAS  PubMed  Google Scholar 

  • Shen, J.-X., Xu, Z.-M., Feng, A., & Narins, P. M. (2011a). Large odorous frogs (Odorrana graminea) produce ultrasonic calls. Journal of Comparative Physiology, 197, 1027–1030.

    Article  PubMed  Google Scholar 

  • Shen, J.-X., Xu, Z.-M., Yu, Z.-L., Wang, S., Zheng, D.-Z., & Fan, S.-C. (2011b). Ultrasonic frogs show extraordinary sex differences in auditory frequency sensitivity. Nature Communications, 2, 342.

    Article  PubMed  Google Scholar 

  • Slabbekoorn, H., & Peet, M. (2003). Birds sing at a higher pitch in urban noise. Nature, 424, 267.

    Article  CAS  PubMed  Google Scholar 

  • Suthers, R. A., Narins, P. M., Lin, W., Schnitzler, H.-U., Denzinger, A., Xu, C.-H., & Feng, A. S. (2006). Voices of the dead: Complex nonlinear vocal signals from the larynx of an ultrasonic frog. Journal of Experimental Biology, 209, 4984–4993.

    Article  PubMed  Google Scholar 

  • van Dijk, P., Mason, M. J., Schoffelen, R. L. M., Narins, P. M., & Meenderink, S. W. F. (2011). Mechanics of the frog ear. Hearing Research, 273, 46–58.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wahlberg, M., & Westerberg, H. (2003). Sounds produced by herring (Clupea harengus) bubble release. Aquatic Living Resources, 16, 271–275.

    Article  Google Scholar 

  • Webb, J. F., Montgomery, J. C., & Mogdans, J. (2008). Bioacoustics and the lateral line systems of fishes. In J. F. Webb, A. N. Popper, & R. Fay (Eds.), Fish bioacoustics (pp. 145–183). New York: Springer.

    Google Scholar 

  • Wever, E. G. (1973). The ear and hearing in the frog, Rana pipiens. Journal of Morphology, 141, 461–478.

    Article  CAS  PubMed  Google Scholar 

  • Wever, E. G. (1985). The amphibian ear. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Whitehead, P. J. P., Nelson, G. J., & Wongratana, T. (1985). FAO species catalogue, Vol. 7. Clupeoid fishes of the world (Suborder Clupeoidei). FAO Fisheries Synopsis No. 125, 303 pp.

    Google Scholar 

  • Wilson, B., Batty, R. S., & Dill, L. M. (2004). Pacific and Atlantic herring produce burst pulse sounds. Proceedings of the Royal Society of London B: Biological Sciences, 271 (Supplement), S95–S97.

    Google Scholar 

  • Wilson, M., Acolas, M. L., Bégout, M. L., Madsen, P. T., & Wahlberg, M. (2008). Allis shad (Alosa alosa) exhibit an intensity-graded behavioural response when exposed to ultrasound. JASA Express Letters, 124(4), EL243–EL 247.

    Google Scholar 

  • Wilson, M., Montie, E. W., Mann, K. A., & Mann, D. A. (2009). Ultrasound detection in the Gulf menhaden requires gas-filled bullae and an intact lateral line. Journal of Experimental Biology, 212, 3422–3427.

    Article  PubMed  Google Scholar 

  • Wilson, M., Schack, H. B., Madsen, P. T., Surlykke, A., & Wahlberg, M. (2011). Directional escape behavior in allis shad (Alosa alosa) exposed to ultrasonic clicks mimicking an approaching toothed whale. Journal of Experimental Biology, 214(1), 22–29.

    Article  PubMed  Google Scholar 

  • Yack, J. E., & Fullard, J. H. (1993). What is an insect ear? Annals of the Entomological Society of America, 86, 677–682.

    Google Scholar 

  • Yu, X., Lewis, E. R., & Feld, D. (1991). Seismic and auditory tuning curves from bullfrog saccular and amphibian papillar axons. Journal of Comparative Physiology, 169, 241–248.

    Article  CAS  PubMed  Google Scholar 

  • Yu, Z.-L., Qiu, Q., Xu, Z.-M., & Shen, J.-X. (2006). Auditory response characteristics of the piebald odorous frog and their implications. Journal of Comparative Physiology, 192, 801–806.

    Article  PubMed  Google Scholar 

  • Zhou, E. M., & Adler, K. (1993). Herpetology of China. Oxford: Society for the Study of Amphibians and Reptiles.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter M. Narins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Narins, P.M., Wilson, M., Mann, D.A. (2013). Ultrasound Detection in Fishes and Frogs: Discovery and Mechanisms. In: Köppl, C., Manley, G., Popper, A., Fay, R. (eds) Insights from Comparative Hearing Research. Springer Handbook of Auditory Research, vol 49. Springer, New York, NY. https://doi.org/10.1007/2506_2013_29

Download citation

Publish with us

Policies and ethics