Skip to main content

The Remarkable Ears of Geckos and Pygopods

  • Chapter
  • First Online:
Insights from Comparative Hearing Research

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 49))

Abstract

Research over the last decade has added hugely to our understanding of gecko ears. Their papillae are unique both in their general anatomy (patterns of hair cell orientations) as well as their detailed anatomy (specific coupling of single hair-\ cell rows via sallets). The correlations of their anatomy to specific aspects of their auditory physiology (e.g., reversed tonotopic organization) have helped greatly in the elucidation of the evolution of lizard papillae in general. Recent studies of pygopod geckos suggest that in some way, the likely high-frequency responses of preaxial hair cells are transmitted to postaxial hair cells and thus to their afferent fibers. This should stimulate further studies of gecko papillae, in order to answer the question as to the function(s) of preaxial hair cells. In addition, the matching of vocalization spectra and hearing thresholds in Delma should stimulate further studies as to the possible coevolution of hearing and vocalization in other gecko groups. The wide range of gecko subfamilies provides enough evolutionary variation to make such studies possible and rewarding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aranyosi A. J., & Freeman D. M. (2005). Two modes of motion of the alligator lizard cochlea: Measurements and model predictions. Journal of the Acoustical Society of America, 118, 1585–1592.

    Article  CAS  PubMed  Google Scholar 

  • Arnold E. N., & Poinar, G. (2008). A 100 million year old gecko with sophisticated adhesive toe pads, preserved in amber from Myanmar. Zootaxa, 1847, 62–68.

    Google Scholar 

  • Authier S., & Manley, G. A. (1995). A model of frequency tuning in the basilar papilla of the Tokay gecko, Gekko gecko. Hearing Research, 82, 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Bauer, A. M., Böhme, W., & Weitschat, W. (2005). An early Eocene gecko from Baltic amber, and its implications for the evolution of gecko adhesion. Journal of Zoology (London), 265, 327–332.

    Google Scholar 

  • Bergevin, C. (2011). Comparison of otoacoustic emissions within gecko subfamilies: Morphological implications for auditory function in lizards. Journal of the Association for Research in Otolaryngology, 12, 203–217.

    Article  PubMed Central  PubMed  Google Scholar 

  • Brandley, M. C., Huelsenbeck, J. P., & Wiens, J. J. (2008). Rates and patterns in the evolution of snake-like body form in squamate reptiles: Evidence for repeated re-evolution of lost digits and long-term persistence of intermediate body forms. Evolution, 62, 2042–2064.

    Article  PubMed  Google Scholar 

  • Brittan-Powell, E. F., Christensen-Dalsgaard, J., Tang, Y., Carr, C., & Dooling, R. J. (2010). The auditory brainstem response in two lizard species. Journal of the Acoustical Society of America, 128, 787–794.

    Article  PubMed  Google Scholar 

  • Chiappe, M. E., Kozlov, A. S., & Hudspeth, A. J. (2007). The structural and functional differentiation of hair cells in a lizard’s basilar papilla suggests an operational principle of amniote cochleas. Journal of Neuroscience, 27, 11978–11985.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Conrad, J. L. (2008). Phylogeny and systematics of squamata (Reptilia) based on morphology. Bulletin of the American Museum of Natural History, 310, 1–182.

    Article  Google Scholar 

  • Eatock, R. A., Manley, G. A., & Pawson, L. (1981). Auditory-nerve fibre activity in the Tokay gecko: I. Implications for cochlear processing. Journal of Comparative Physiology A, 142, 203–218.

    Google Scholar 

  • Frankenberg, E., Werner, Y. L., & Adar, O. (1978). Further observations on the distinctive vocal repertoire of Ptyodactylus hasselquistii cf. hasselquisti (Reptilia: Gekkoninae). Israel Journal of Zoology, 27, 176–188.

    Google Scholar 

  • Frishkopf, L. S., & DeRosier, D. J. (1983). Mechanical tuning of free-standing stereociliary bundles and frequency analysis in the alligator lizard cochlea. Hearing Research, 12, 393–404.

    Article  CAS  PubMed  Google Scholar 

  • Gamble, T., Greenbaum, E., Jackman, T. R., Russell, A. P., & Bauer, A. M. (2012). Repeated origin and loss of adhesive toepads in geckos. PLOS One, 7, e39429.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ganeshina, O., & Vorobyev, M. (2009). A contractile cochlear frame is a common feature of the hearing organs in Gekkota (Sauria, Squamata): A comparative study. Brain, Behaviour, Evolution, 74, 87–101.

    Google Scholar 

  • Greer, A. E. (2006). Encyclopedia of Australian reptiles. Australian Museum Online. http://www.amonline.net.au/herpetology/research/encyclopedia.pdf

  • Holton, T., & Hudspeth, A. J. (1983). A micromechanical contribution to cochlear tuning and tonotopic organization. Science, 222, 508–510.

    Article  CAS  PubMed  Google Scholar 

  • Hudspeth, A. J. (2008). Making an effort to listen: Mechanical amplification in the ear. Neuron, 59, 530–545.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jennings, W. B., Pianka, E. R., & Donnellan, S. (2003). Systematics of the lizard family Pygopodidae with implications for the diversification of Australian temperate biotas. Systematic Biology, 52, 757–780.

    PubMed  Google Scholar 

  • Köppl, C. (1988). Morphology of the basilar papilla of the bobtail lizard. Hearing Research, 35, 209–228.

    Article  PubMed  Google Scholar 

  • Köppl, C., & Manley, G. A. (1992). Functional consequences of morphological trends in the evolution of lizard hearing organs. In R. R. Fay, A. N. Popper, & D. B. Webster (Eds.), The evolutionary biology of hearing (pp. 489–509). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Köppl, C., & Authier, S. (1995). Quantitative anatomical basis for a model of micromechanical frequency tuning in the Tokay gecko, Gekko gecko. Hearing Research, 82, 14–25.

    Article  PubMed  Google Scholar 

  • Köppl, C., & Gleich, O. (2007). Evoked cochlear potentials in the barn owl. Journal of Comparative Physiology, 193, 601–612.

    Article  PubMed  Google Scholar 

  • Köppl, C., & Manley, G. A. (2010). Sensory cells without innervation in the auditory papilla of geckos. In Abstracts, 9th International Congress of Neuroethology, p. 536.

    Google Scholar 

  • Köppl, C., Forge, A., & Manley, G. A. (2004). Low density of membrane particles in auditory hair cells of lizards and birds suggests an absence of somatic motility. Journal of Comparative Neurology, 479, 149–155.

    Article  PubMed  Google Scholar 

  • Manley, G. A. (1970). Frequency sensitivity of auditory neurones in the caiman cochlear nucleus. Zeitschrift für vergleichende Physiologie, 66, 251–256.

    Google Scholar 

  • Manley, G. A. (1990). Peripheral hearing mechanisms in reptiles and birds. Heidelberg: Springer-Verlag.

    Book  Google Scholar 

  • Manley, G. A. (2002). Evolution of structure and function of the hearing organ of lizards. Journal of Neurobiology, 53, 202–211.

    Article  PubMed  Google Scholar 

  • Manley, G. A. (2004). The lizard basilar papilla and its evolution. In G. A. Manley, A. N. Popper & R. R. Fay (Eds.), Evolution of the vertebrate auditory system(pp. 200–223). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Manley, G. A. (2011). Lizard auditory papillae: An evolutionary kaleidoscope. Hearing Research, 273, 59–64.

    Article  PubMed  Google Scholar 

  • Manley, G. A., & Köppl, C. (1998). Phylogenetic development of the cochlea and its innervation. Current Opinion in Neurobiology, 8, 468–474.

    Article  CAS  PubMed  Google Scholar 

  • Manley, G. A., & Clack, J. (2004). An outline of the evolution of vertebrate hearing organs. In G. A. Manley, A. N. Popper, & R. R. Fay (Eds.), Evolution of the vertebrate auditory system (pp. 1–26).New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Manley, G. A., & Köppl, C. (2008). What have lizard ears taught us about auditory physiology? Hearing Research, 238, 3–11.

    Article  PubMed  Google Scholar 

  • Manley, G. A., & Kraus, J. E. M. (2010). Exceptional high-frequency hearing and matched vocalizations in Australian pygopod geckos. Journal of Experimental Biology, 213, 1876–1885.

    Article  PubMed  Google Scholar 

  • Manley, G. A., Yates, G., & Köppl, C. (1988). Auditory peripheral tuning: Evidence for a simple resonance phenomenon in the lizard Tiliqua. Hearing Research, 33, 181–190.

    Article  CAS  PubMed  Google Scholar 

  • Manley, G. A., Gallo, L., & Köppl, C. (1996). Spontaneous otoacoustic emissions in two gecko species, Gekko gecko and Eublepharis macularius. Journal of the Acoustical Society of America, 99, 1588–1603.

    Article  CAS  PubMed  Google Scholar 

  • Manley G. A., Köppl, C., & Sneary, M. (1999). Reversed tonotopic map of the basilar papilla in Gekko gecko. Hearing Research, 131, 107–116.

    Article  CAS  PubMed  Google Scholar 

  • Manley, G. A., Kirk, D., Köppl, C., & Yates, G. K. (2001). In-vivo evidence for a cochlear amplifier in the hair-cell bundle of lizards. Proceedings of the National Academy of Sciences of the USA, 98, 2826–2831.

    Google Scholar 

  • Marcellini, D. (1977). Acoustic and visual display behavior of gekkonid lizards. American Zoologist, 17, 251–260.

    Google Scholar 

  • Miller, M. R. (1966). The cochlear duct of lizards. Proceedings of the California Academy of Sciences, 33, 255–359.

    Google Scholar 

  • Miller, M. R. (1973). A scanning electron microscope study of the papilla basilaris of Gekko gecko. Zeitschrift für Zellforschung, 136, 307–328.

    Google Scholar 

  • Miller, M. R. (1980). The reptilian cochlear duct. In A. N. Popper & R. R. Fay (Eds.), Comparative studies of hearing in vertebrates (pp. 169–204). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Miller, M. R. (1992). The evolutionary implications of the structural variations in the auditory papilla of lizards. In R. R. Fay, A. N. Popper, & D. B. Webster (Eds.), The evolutionary biology of hearing (pp. 463–487).New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Miller, M. R., & Beck, J. M. (1987). Heterotopic synaptic bodies in the auditory hair cells of adult lizards. Anatomical Record, 218, 338–344.

    Article  CAS  PubMed  Google Scholar 

  • Miller, M. R., & Beck, J. (1988). Auditory hair cell innervational patterns in lizards. Journal of Comparative Neurology, 271, 604–628.

    Article  CAS  PubMed  Google Scholar 

  • Mulroy, M. J., & Williams, R. S. (1987). Auditory stereocilia in the alligator lizard. Hearing Research, 25, 11–21.

    Article  CAS  PubMed  Google Scholar 

  • Pianka, E. R., & Witt, L. J. (2003). Lizards: Windows to the evolution of diversity. Berkeley: University of California Press.

    Google Scholar 

  • Pickles, J. O. (2008). An introduction to the physiology of hearing. Bingley, U.K.:Emerald.

    Google Scholar 

  • Sakaluk, S. K., & Belwood, J. J. (1984). Gecko phonotaxis to cricket calling song: A case of satellite predation. Animal Behaviour, 32, 659–662.

    Article  Google Scholar 

  • Shea, G. M. (1993). Family Pygopodidae. In C. G. Glasby, G. J. B. Ross, & P. L. Beesley (Eds.), Fauna of Australia, VolVolVolVolVol. Canberra, Australia: Australian Government Publishing Services.

    Google Scholar 

  • Shute, C. D. D., & Belairs, A. D’A. (1953). The cochlear apparatus of Gekkonidae and Pygopodidae and its bearing on the affinities of these groups of lizards. Proceedings of the Zoological Society of London, 123, 695–709.

    Google Scholar 

  • Sites, J. W., Jr., Reeder, T. W., & Wiens, J. J. (2011). Phylogenetic insights on evolutionary novelties in lizards and snakes: Sex, birth, bodies, niches, and venom. Annual Review of Ecology, Evolution and Systematics, 42, 227–244.

    Google Scholar 

  • Stewart, C. E., & Hudspeth, A. J. (2000). Effects of salicylates and aminoglycosides on spontaneous otoacoustic emissions in the Tokay gecko. Proceedings of the National Academy of Sciences of the USA, 97, 454–459.

    Article  CAS  PubMed  Google Scholar 

  • Tang, Y., Christensen-Dalsgaard, J., & Carr, C. E. (2012). Organization of the auditory brainstem in a lizard, Gekko gecko. 1. Auditory nerve, cochlear nuclei, and superior olivary nuclei. Journal of Comparative Neurology, 520, 1784–1799.

    Google Scholar 

  • Turner, R. G., Muraski, A. A., & Nielsen, D. W. (1981). Cilium length: Influence on neural tonotopic organization. Science, 213, 1519–1521.

    Article  CAS  PubMed  Google Scholar 

  • Vidal, N., & Hedges, S. B. (2009). The molecular evolutionary tree of lizards, snakes, and amphisbaenians. Comptes Rendus Biologie, 332, 129–139.

    Article  CAS  Google Scholar 

  • Weber, E., & Werner, Y. L. (1977). Vocalizations of two snake-lizards (Reptilia: Sauria: Pygopodidae). Herpetologica, 33, 353–363.

    Google Scholar 

  • Werner, Y., Montgomery, Y. L., Safford, S., Igic, P., & Saunders, J. (1998). How body size affects middle-ear structure and function and auditory sensitivity in gekkonoid lizards. Journal of Experimental Biology, 201, 487–502.

    CAS  PubMed  Google Scholar 

  • Werner, Y., Montgomery, Y. L., Seifan, M., & Saunders, J. (2008). Effects of age and size in the ears of gekkotan lizards: Auditory sensitivity, its determinants, and new insights into tetrapod middle-ear function. Pflügers Archiv, 456, 951–967.

    Google Scholar 

  • Werner, Y. L., Goldenzweig, A., & Fay, R. R. (2011). Are the ears of gecko lizards tuned to the calls of the same species? Journal of Basic and Clinical Physiology and Pharmacology, 22, 80–81.

    Google Scholar 

  • Wever, E. G. (1974). The lizard ear: Gekkonidae. Journal of Morphology, 143, 121–166.

    Article  CAS  PubMed  Google Scholar 

  • Wever, E. G. (1978). The reptile ear. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Wibowo, E., Brockhausen, J., & Köppl, C. (2009). Efferent innervation to the auditory basilar papilla of scincid lizards. Journal of Comparative Neurology, 516, 74–85.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey A. Manley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Manley, G.A., Köppl, C., Sienknecht, U.J. (2013). The Remarkable Ears of Geckos and Pygopods. In: Köppl, C., Manley, G., Popper, A., Fay, R. (eds) Insights from Comparative Hearing Research. Springer Handbook of Auditory Research, vol 49. Springer, New York, NY. https://doi.org/10.1007/2506_2013_27

Download citation

Publish with us

Policies and ethics