Skip to main content

Auditory Brain Stem Processing in Reptiles and Amphibians: Roles of Coupled Ears

  • Chapter
  • First Online:
Insights from Comparative Hearing Research

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 49))

Abstract

Comparative approaches to the auditory system have yielded great insight into the evolution of sound localization circuits, particularly within the nonmammalian tetrapods. The fossil record demonstrates multiple appearances of tympanic hearing, and examination of the auditory brain stem of various groups can reveal the organizing effects of the ear across taxa. If the peripheral structures have a strongly organizing influence on the neural structures, then homologous neural structures should be observed only in groups with a homologous tympanic ear. Therefore, the central auditory systems of anurans (frogs), reptiles (including birds), and mammals should all be more similar within each group than among the groups. Although there is large variation in the peripheral auditory system, there is evidence that auditory brain stem nuclei in tetrapods are homologous and have similar functions among and within these groups. It appears that the more pronounced changes in processing are related to detecting airborne sound, the addition of high-frequency hearing, and the extent of acoustic coupling of the ears. This chapter focuses on the similarities and differences in peripheral structures as well as the anatomy and physiology of auditory brain stem nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CT:

Computed tomography

EI:

Excitatory–inhibitory

ILD:

Interaural level difference

ITD:

Interaural time difference

MRI:

Magnetic resonance imaging

NA:

Nucleus angularis

NL:

Nucleus laminaris

NM:

Nucleus magnocellularis

SO:

Superior olive

SPL:

Sound pressure level

TS:

Torus semicircularis

References

  • Adolphs, R. (1993). Bilateral inhibition generates neuronal responses tuned to interaural level differences in the auditory brainstem of the barn owl. Journal of Neuroscience, 13(9), 3647–3668.

    CAS  PubMed  Google Scholar 

  • Arch, V. S., Burmeister, S. S., Feng, A. S., Shen, J.-X., & Narins, P. M. (2011). Ultrasound-evoked immediate early gene expression in the brainstem of the Chinese torrent frog, Odorrana tormota. Journal of Comparative Physiology A, 197(6), 667–675.

    Google Scholar 

  • Ariëns Kappers, C. U., Huber, G. C., & Crosby, E. C. (1936). The comparative anatomy of the nervous system of vertebrates, including man. New York: Macmillan.

    Google Scholar 

  • Ashida, G., & Carr, C. E. (2011). Sound localization: Jeffress and beyond. Current Opinion in Neurobiology, 21(5), 745–751.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barbas-Henry, H. A., & Lohman, A. H. (1988). Primary projections and efferent cells of the VIIIth cranial nerve in the monitor lizard, Varanus exanthematicus. Journal of Comparative Neurology, 277(2), 234–249.

    CAS  PubMed  Google Scholar 

  • Bartol, S. M., Musick, J. A., & Lendhardt, M. L. (1999). Auditory evoked potentials of the loggerhead sea turtle (Caretta caretta). Copeia, 1999(3), 836–840.

    Google Scholar 

  • Belekhova, M. G., Zharskaja, V. D., Khachunts, A. S., Gaidanenko, G. V., & Tumanova, N. L. (1985). Connections of the mesencephalic, thalamic and telencephalic auditory centers in turtles: Some structural bases for audiosomatic interrelations. Journal für Hirnforschung, 26(2), 127–152.

    CAS  PubMed  Google Scholar 

  • Belekhova, M. G., Kenigfest-Rio, N. B., Vesslkin, N. P., Rio, J.-P., Reperant, J., & Ward, R. (2002). Evolutionary significance of different neurochemical organisation of the internal and external regions of auditory centres in the reptilian brain: An immunocytochemical and reduced NADPH-diaphorase histochemical study in turtles. Brain Research, 925, 100–106.

    CAS  PubMed  Google Scholar 

  • Belekhova, M. G., Chudinova, T. V., Kenigfest, N. B., & Krasnoshchekova, E. I. (2008). Distribution of metabolic activity (cytochrome oxidase) and immunoreactivity to calcium-binding proteins in the turtle brainstem auditory nuclei. Journal of Evolutionary Biochemistry and Physiology, 44(3), 354–364.

    CAS  Google Scholar 

  • Belekhova, M. G., Chudinova, T. V., Repérant, J., Ward, R., Jay, B., Vesselkin, N. P., & Kenigfest, N. B. (2010). Core-and-belt organisation of the mesencephalic and forebrain auditory centres in turtles: Expression of calcium-binding proteins and metabolic activity. Brain Research, 1345, 84–102.

    CAS  PubMed  Google Scholar 

  • Bierman, H. S., Carr, C. E., Brandt, C., Young, B. A., & Christensen-Dalsgaard, J. (2011). Evidence for low-frequency sound localization in the American alligator (Alligator mississippiensis). Neuroscience Meeting Planner. Washington, DC: Society for Neuroscience. http://www.abstractsonline.com/Plan/ViewAbstract.aspx?sKey=8e1b3d78-7471-4315-a0c5-fd54ff3be697&cKey=1a0ea064-1637-4e73-a3fe-3b8b347637df&mKey={8334BE29-8911-4991-8C31-32B32DD5E6C8}

  • Burger, R. M., & Rubel, E. W (2008). Encoding of interaural timing for binaural hearing. In A. I. Basbaum, G. M. Shepherd, & G. Westheimer (Eds.), The senses: A comprehensive reference (Vol. 3, pp. 613–630). San Diego: Academic Press.

    Google Scholar 

  • Calford, M. B., & Piddington, R. B. (1988). Avian interaural canal enhances interaural delay. Journal of Comparative Physiology A, 162, 503–510.

    Google Scholar 

  • Capranica, R. R. (1966). Vocal response of the bullfrog to natural and synthetic mating Calls. Journal of the Acoustical Society of America, 40, 1131–1139.

    Google Scholar 

  • Carr, C. E. (1993). Processing of temporal information in the brain. Annual Review of Neuroscience, 16, 223–243.

    CAS  PubMed  Google Scholar 

  • Carr, C. E., & Konishi, M. (1990). A circuit for detection of interaural time differences in the brain stem of the barn owl. Journal of Neuroscience, 10(10), 3227–3246.

    CAS  PubMed  Google Scholar 

  • Carr, C. E., & Boudreau, R. E. (1991). Central projections of auditory nerve fibers in the barn owl. Journal of Comparative Neurology, 314, 306–318.

    CAS  PubMed  Google Scholar 

  • Carr, C. E., & Code, R. A. (2000). Anatomy and physiology of the central auditory system of birds and reptiles. In A. N. Popper, R. R. Fay, & R. J. Dooling (Eds.), Comparative hearing: Birds and reptiles. New York: Springer Science+Business Media.

    Google Scholar 

  • Carr, C. E., & Soares, D. (2002). Evolutionary convergence and the shared computational principles in the auditory system. Brain, Behavior and Evolution, 59, 294–311.

    CAS  PubMed  Google Scholar 

  • Carr, C. E., & Koppl, C. (2004). Coding interaural time differences at low best frequencies in the barn owl. Journal of Physiology, Paris, 98(1–3), 99–112.

    PubMed  Google Scholar 

  • Carr, C. E., & Edds-Walton, P. (2008). Vertebrate auditory pathways. In R. Hoy, P. Dallos, & D. Oertel (Eds.), Handbook of the senses, Vol. 1: Audition. Oxford: Elsevier.

    Google Scholar 

  • Carr, C. E., Fujita, I., & Konishi, M. (1989). Distribution of GABAergic neurons and terminals in the auditory system of the barn owl. Journal of Comparative Neurology, 286, 190–207.

    CAS  PubMed  Google Scholar 

  • Carr, C. E., Soares, D., Smolders, J., & Simon, J. Z. (2009). Detection of interaural time differences in the alligator. Journal of Neuroscience, 29(25), 7978–7990.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chiari, Y., Cahais, V., Galtier, N., & Delsuc, F. (2012). Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria). BMC Biology, 10(1), 65–79.

    PubMed Central  PubMed  Google Scholar 

  • Christensen, C. B., Christensen-Dalsgaard, J., Brandt, C., & Madsen, P. T. (2011). Hearing with an atympanic ear: Good vibration and poor sound-pressure detection in the royal python, Python regius. Journal of Experimental Biology, 215(2), 331–342.

    Google Scholar 

  • Christensen-Dalsgaard, J. (2005). Directional hearing in nonmammalian tetrapods. In R. R. Fay & A. N. Popper (Eds.), Sound source localization. (pp. 67–123). New York: Springer Science+Business Media.

    Google Scholar 

  • Christensen-Dalsgaard, J. (2009). Amphibian bioacoustics. In S. Kuwano & M. Vorlander (Eds.), Handbook of signal processing in acoustics (pp. 1861–1885). New York: Springer.

    Google Scholar 

  • Christensen-Dalsgaard, J. (2011). Vertebrate pressure-gradient receivers. Hearing Research, 273(1–2), 37–45.

    PubMed  Google Scholar 

  • Christensen-Dalsgaard, J., & Kanneworff, M. (2005). Binaural interaction in the frog dorsal medullary nucleus. Brain Research Bulletin, 66(4–6), 522–525.

    PubMed  Google Scholar 

  • Christensen-Dalsgaard, J., & Manley, G. A. (2005). Directionality of the lizard ear. Journal of Experimental Biology, 208(6), 1209–1217.

    PubMed  Google Scholar 

  • Christensen-Dalsgaard, J., & Carr, C. E. (2008). Evolution of a sensory novelty: Tympanic ears and the associated neural processing. Brain Research Bulletin, 75(2–4), 365–370.

    PubMed Central  PubMed  Google Scholar 

  • Christensen-Dalsgaard, J., & Manley, G. A. (2008). Acoustical coupling of lizard eardrums. Journal of the Association for Research in Otolaryngology, 9(4), 407–416.

    PubMed Central  PubMed  Google Scholar 

  • Christensen-Dalsgaard, J., Jørgensen, M. B., & Kanneworff, M. (1998). Basic response characteristics of auditory nerve fibers in the grassfrong (Rana temporaria). Hearing Research, 119, 155–163.

    CAS  PubMed  Google Scholar 

  • Christensen-Dalsgaard, J., Tang, Y., & Carr, C. E. (2011). Binaural processing by the gecko auditory periphery. Journal of Neurophysiology, 105(5), 1992–2004.

    PubMed  Google Scholar 

  • Christensen-Dalsgaard, J., Brandt, C., Willis, K. L., Christensen, C. B., Ketten, D., Edds-Walton, P., Fay, R. R., Madsen, P. T., & Carr, C. E. (2012). Specialization for underwater hearing by the tympanic middle ear of the turtle, Trachemys scripta elegans. Proceedings of the Royal Society of London B: Biological Sciences, 279(1739), 2816–2824.

    Google Scholar 

  • Clack, J. A. (1997). The evolution of tetrapod ears and the fossil record. Brain, Behavior and Evolution, 50, 198–212.

    CAS  PubMed  Google Scholar 

  • Clack, J. A. (2002). Gaining ground: The origin and evolution of tetrapods. Bloomington: Indiana University Press.

    Google Scholar 

  • Clack, J. A., & Allin, E. (2004). The evolution of single-and multiple-ossicle ears in fishes and tetrapods. In G. A. Manley, A. N. Popper, & R. R. Ray (Eds.), Evolution of the vertebrate auditory system (pp. 128–163). New York: Springer Science+Business Media.

    Google Scholar 

  • Coles, R. B., & Guppy, A. (1988). Directional hearing in the barn owl (Tyto alba). Journal of Comparative Physiology A, 163(1), 117–133.

    CAS  Google Scholar 

  • Covey, E., & Carr, C. E. (2004). The auditory midbrain in bats and birds. In J. A. Winer & C. E. Schreiner (Eds.), The inferior colliculus. New York: Springer Science+Business Media.

    Google Scholar 

  • Cramer, K. S., Fraser, S. E., & Rubel, E. W (2000). Embryonic origins of auditory brain-stem nuclei in the chick hindbrain. Developmental Biology, 224(2), 138–151.

    Google Scholar 

  • Crawford, A. C., & Fettiplace, R. (1980). The frequency selectivity of auditory nerve fibres and hair cells in the cochlea of the turtle. Journal of Physiology, 306, 79–125.

    CAS  PubMed  Google Scholar 

  • Crawford, N. G., Faircloth, B. C., McCormack, J. E., Brumfield, R. T., Winker, K., & Glenn, T. C. (2012). More than 1000 ultraconserved elements provide evidence that turtles are the sister group of archosaurs. Biology Letters, 8(1), 1–4.

    Google Scholar 

  • Díaz, C., Yanes, C., Trujillo-Cenóz, C. M., & Puelles, L. (2000). Cytoarchitectonic subdivisions in the subtectal midbrain of the lizard Gallotia galloti. Journal of Neurocytology, 29(8), 569–593.

    PubMed  Google Scholar 

  • Düring, M., Karduck, A., & Richter, H.-G. (1974). The fine structure of the inner ear in Caiman crocodilus. Anatomy and Embryology, 145(1), 41–65.

    Google Scholar 

  • Eatock, R. A., Manley, G. A., & Pawson, L. (1981). Auditory nerve fibre activity in the tokay gecko. Journal of Comparative Physiology A, 142(2), 203–218.

    Google Scholar 

  • Edwards, C. J., Alder, T. B., & Rose, G. J. (2002). Auditory midbrain neurons that count. Nature Neuroscience, 5(10), 934–936.

    CAS  PubMed  Google Scholar 

  • Ehret, G., Moffat, A. J., & Capranica, R. R. (1983). Two-tone suppression in auditory nerve fibers of the green treefrog (Hyla cinerea). Journal of the Acoustical Society of America, 73(6), 2093–2095.

    CAS  PubMed  Google Scholar 

  • Elliott, T. M., Christensen-Dalsgaard, J., & Kelley, D. B. (2011). Temporally selective processing of communication signals by auditory midbrain neurons. Journal of Neurophysiology, 105(4), 1620–1632.

    PubMed  Google Scholar 

  • Endepols, H., Walkowiak, W., & Luksch, H. (2000). Chemoarchitecture of the anuran auditory midbrain. Brain Research Reviews, 33(2), 179–198.

    CAS  PubMed  Google Scholar 

  • Euston, D. R., & Takahashi, T. T. (2002). From spectrum to space: The contribution of level difference cues to spatial receptive fields in the barn owl inferior colliculus. Journal of Neuroscience, 22(1), 284–293.

    CAS  PubMed  Google Scholar 

  • Feng, A. S., & Capranica, R. R. (1978). Sound localization in anurans. II. Binaural interaction in superior olivary nucleus of the green tree frog (Hyla cinerea). Journal of Neurophysiology, 41(1), 43–54.

    CAS  PubMed  Google Scholar 

  • Feng, A. S., & Shofner, W. P. (1981). Peripheral basis of sound localization in anurans: Acoustic properties of the frog’s ear. Hearing Research, 5(2–3), 201–216.

    CAS  PubMed  Google Scholar 

  • Feng, A. S., Narins, P. M., Xu, C.-H., Lin, W.-Y., Yu, Z.-L., Qiu, Q., Xu, Z.-M., & Shen, J.-X. (2006). Ultrasonic communication in frogs. Nature, 440(7082), 333–336.

    CAS  PubMed  Google Scholar 

  • Foster, R. E., & Hall, W. C. (1978). The organization of central auditory pathways in a reptile, Iguana iguana. Journal of Comparative Neurology, 178(4), 783–831.

    CAS  PubMed  Google Scholar 

  • Friedel, P., Young, B., & van Hemmen, J. (2008). Auditory localization of ground-borne vibrations in snakes. Physical Review Letters, 100(4), 048701.

    PubMed  Google Scholar 

  • Funabiki, K., Koyano, K., & Ohmori, H. (1998). The role of GABAergic inputs for coincidence detection in the neurones of nucleus laminaris of the chick. Journal of Physiology, 508(3), 851–869.

    CAS  PubMed  Google Scholar 

  • Gans, E., Willis, K. L., Bierman, H. S., & Carr, C. E. (2012). The interaural canal of the barn owl, Tyto alba. Society for Integrative and Comparative Biology Meeting Planner. Charleston, SC: Society for Integrative and Comparative Biology. http://www.sicb.org/meetings/2012/SICB2012AbstractBook.pdf

  • Glatt, A. F. (1975a). Vergleichend morphologische Untersuchungen am akustischen System einiger ausgewahlter Reptilien. A. Caiman crocodilus. Revue Suisse De Zoologie: Annales De La Société Zoologique Suisse Et Du Museum D'histoire Naturelle De Geneve, 82(2), 257–281.

    Google Scholar 

  • Glatt, A. F. (1975b). Vergleichend morphologische Untersuchungen am akustischen System einiger ausgewählter Reptilien. B: Sauria, Testudines. Revue Suisse De Zoologie: Annales De La Société Zoologique Suisse Et Du Museum D'histoire Naturelle De Geneve, 82, 469–494.

    Google Scholar 

  • Gleich, O., Dooling, R. J., & Manley, G. A. (2005). Audiogram, body mass, and basilar papilla length: Correlations in birds and predictions for extinct archosaurs. Naturwissenschaften, 92(12), 595–598.

    CAS  PubMed  Google Scholar 

  • Gooler, D. M., Xu, J., & Feng, A. S. (1996). Binaural inhibition is important in shaping the free-field frequency selectivity of single neurons in the inferior colliculus. Journal of Neurophysiology, 76(4), 2580–2594.

    CAS  PubMed  Google Scholar 

  • Grothe, B. (2003). Sensory systems: New roles for synaptic inhibition in sound localization. Nature Reviews Neuroscience, 4(7), 540–550.

    CAS  PubMed  Google Scholar 

  • Grothe, B., Carr, C. E., Casseday, J. H., Fritzsch, B., & Köppl, C. (2004). The evolution of central pathways and their neural processing patterns. In G. A. Manley, A. N. Popper, & R. R. Fay (Eds.), Evolution of the vertebrate auditory system. New York: Springer Science+Business Media.

    Google Scholar 

  • Grothe, B., Pecka, M., & McAlpine, D. (2010). Mechanisms of sound localization in mammals. Physiological Reviews, 90(3), 983–1012.

    CAS  PubMed  Google Scholar 

  • Hartline, P. (1971a). Physiological basis for detection of sound and vibration in snakes. Journal of Experimental Biology, 54, 349–371.

    CAS  PubMed  Google Scholar 

  • Hartline, P. (1971b). Mid-brain responses of the auditory and somatic vibration systems in snakes. Journal of Experimental Biology, 54, 373–390.

    CAS  PubMed  Google Scholar 

  • Hartline, P., & Campbell, H. (1969). Auditory and vibratory responses in the midbrains of snakes. Science, 193(3872), 1221–1223.

    Google Scholar 

  • Hedges, S. B., & Poling, L. L. (1999). A molecular phylogeny of reptiles. Science, 283(5404), 998–1001.

    CAS  PubMed  Google Scholar 

  • Hetherington, T. (2008). Comparative anatomy and function of hearing in aquatic amphibians, reptiles, and birds. In J. G. M. Thewissen & S. Nummela (Eds.), Sensory evolution on the threshold: Adaptations in secondarily aquatic vertebrates. Berkeley: University of California Press.

    Google Scholar 

  • Higgs, D. M., Brittan-Powell, E. F., Soares, D., Souza, M. J., Carr, C. E., Dooling, R. J., & Popper, A. N. (2002). Amphibious auditory responses of the American alligator (Alligator mississipiensis). Journal of Comparative Physiology A, 188(3), 217–223.

    CAS  Google Scholar 

  • Hill, K. G., Lewis, D. B., Hutchings, M. E., & Coles, R. B. (1980). Directional hearing in the Japanese quail (Coturnix coturnix japonica). Journal of Experimental Biology, 86, 135–151.

    Google Scholar 

  • Hillery, C. M., & Narins, P. M. (1987). Frequency and time domain comparison of low-frequency auditory fiber responses in two anuran amphibians. Hearing Research, 25(2–3), 233–248.

    CAS  PubMed  Google Scholar 

  • Hoke, K. L., Burmeister, S. S., Fernald, R. D., Rand, A. S., Ryan, M. J., & Wilczynski, W. (2004). Functional mapping of the auditory midbrain during mate call reception. Journal of Neuroscience, 24(50), 11264–11272.

    CAS  PubMed  Google Scholar 

  • Holmes, G. M. (1903). On the comparative anatomy of the nervus acusticus. Transactions of the Royal Irish Academy, 32, 101–144.

    Google Scholar 

  • Hunt, R. H., & Watanabe, M. E. (1982). Observations on maternal behavior of the American alligator, Alligator mississippiensis. Journal of Herpetology, 16(3), 235–239.

    Google Scholar 

  • Hyson, R. L. (2005). The analysis of interaural time differences in the chick brain stem. Physiology & Behavior, 86(3), 297–305.

    Google Scholar 

  • Jaslow, A. P., Hetherington, T. E., & Lombard, R. E. (1988). Structure and function of the amphibian middle ear. In B. Fritzsch, M. J. Ryan, W. Wilczynski, T. E. Hetherington, & W. Walkeoviak (Eds.), The evolution of the amphibian auditory system (pp. 69–92). New York: John Wiley & Sons.

    Google Scholar 

  • Jeffress, L. A. (1947). A place theory of sound localization. Journal of Comparative and Physiological Psychology, 41(1), 35–39.

    Google Scholar 

  • Jørgensen, M. B., & Christensen-Dalsgaard, J. (1997a). Directionality of auditory nerve fiber responses to pure tone stimuli in the grassfrog, Rana temporaria. I. Spike rate responses. Journal of Comparative Physiology A, 180, 493–502.

    Google Scholar 

  • Jørgensen, M. B., & Christensen-Dalsgaard, J. (1997b). Directionality of auditory nerve fiber responses to pure tone stimuli in the grassfrog, Rana temporaria. II. Spike timing. Journal of Comparative Physiology A, 180, 503–511.

    Google Scholar 

  • Joris, P. X., Smith, P. H., & Yin, T. C. T. (1998). Coincidence detection in the auditory system: 50 Years after Jeffress. Neuron, 21, 1235–1238.

    CAS  PubMed  Google Scholar 

  • Kelley, D. B. (2004). Vocal communication in frogs. Current Opinion in Neurobiology, 14(6), 751–757.

    CAS  PubMed  Google Scholar 

  • Kennedy, M. C. (1974). Auditory multiple-unit activity in the midbrain of the Tokay gecko (Gekko gecko, L.). Brain, Behavior and Evolution, 10(1–3), 257–264.

    CAS  PubMed  Google Scholar 

  • Kennedy, M. C., & Browner, R. H. (1981). The torus semicircularis in a gekkonid lizard. Journal of Morphology, 169(3), 259–274.

    Google Scholar 

  • Klump, G. M. (2000). Sound localization in birds. In R. J. Dooling, R. R. Fay, & A. N. Popper (Eds.), Comparative hearing: Birds and reptiles (pp. 249–307). New York: Springer Science+Business Media.

    Google Scholar 

  • Konishi, M. (1970). Comparative neurophysiological studies of hearing and vocalizations in songbirds. Zeitschrift für vergleichende Physiologie, 66, 257–272.

    Google Scholar 

  • Köppl, C. (1994). Auditory nerve terminals in the cochlear nucleus magnocellularis: Differences between low and high frequencies. Journal of Comparative Neurology, 339, 438–446.

    PubMed  Google Scholar 

  • Köppl, C. (1997). Frequency tuning and spontaneous activity on the auditory nerve and cochlear nucleus magnocelluaris of the barn owl Tyto alba. Journal of Neurophysiology, 77, 364–377.

    PubMed  Google Scholar 

  • Köppl, C. (2009). Evolution of sound localisation in land vertebrates. Current Biology, 19(15), R635–R639.

    PubMed  Google Scholar 

  • Köppl, C., & Carr, C. E. (1997). Low-frequency pathway in the barn owl’s auditory brainstem. Journal of Comparative Neurology, 378, 265–282.

    PubMed  Google Scholar 

  • Köppl, C., & Carr, C. E. (2008). Maps of interaural time difference in the chicken’s brainstem nucleus laminaris. Biological Cybernetics, 98(6), 541–559.

    PubMed Central  PubMed  Google Scholar 

  • Krützfeldt, N. O. E., Logerot, P., Kubke, M. F., & Wild, J. M. (2010). Connections of the auditory brainstem in a songbird, Taeniopygia guttata.II. Projections of nucleus angularis and nucleus laminaris to the superior olive and lateral lemniscal nuclei. Journal of Comparative Neurology, 518(11), 2135–2148.

    PubMed  Google Scholar 

  • Larsen, O. N., Dooling, R. J., & Michelsen, A. (2006). The role of pressure difference reception in the directional hearing of budgerigars (Melopsittacus undulatus). Journal of Comparative Physiology A, 192(10), 1063–1072.

    Google Scholar 

  • Leake, P. A. (1974). Central projections of the statoacoustic nerve in Caiman crocodilus. Brain, Behavior and Evolution, 10(1–3), 170–196.

    CAS  PubMed  Google Scholar 

  • Lesica, N. A., Lingner, A., & Grothe, B. (2010). Population coding of interaural time differences in gerbils and barn owls. Journal of Neuroscience, 30(35), 11696–11702.

    CAS  PubMed  Google Scholar 

  • Lyson, T. R., Bever, G. S., Bhullar, B. A. S., Joyce, W. G., & Gauthier, J. A. (2010). Transitional fossils and the origin of turtles. Biology Letters, 6(6), 830–833.

    PubMed Central  PubMed  Google Scholar 

  • Manley, G. (1970a). Comparative studies of auditory physiology in reptiles. Zeitschrift für vergleichende Physiologie, 363–381.

    Google Scholar 

  • Manley, G. A. (1970b). Frequency sensitivity of auditory neurons in the Caiman cochlear nucleus. Zeitschrift für vergleichende Physiologie, 66, 251–256.

    Google Scholar 

  • Manley, G. A. (1974). Activity patterns of neurons in the peripheral auditory system of some reptiles. Brain, Behavior and Evolution, 10(1–3), 244–256.

    CAS  PubMed  Google Scholar 

  • Manley, G. A. (1981). A review of the auditory physiology of reptiles. Progress in Sensory Physiology, 2, 49–134.

    Google Scholar 

  • Manley, G. A. (2000). Cochlear mechanisms from a phylogenetic viewpoint. Proceedings of the National Academy of Sciences of the USA, 97(22), 11736–11743.

    CAS  PubMed  Google Scholar 

  • Manley, G. A. (2002). Evolution of structure and function of the hearing organ of lizards. Journal of Neurobiology, 53(2), 202–211.

    PubMed  Google Scholar 

  • Manley, G. A. (2010). An evolutionary perspective on middle ears. Hearing Research, 263, 3–8.

    PubMed  Google Scholar 

  • Manley, G. A., & Köppl, C. (1998). Phylogenetic development of the cochlea and its innervation. Current Opinion in Neurobiology, 8(4), 468–474.

    CAS  PubMed  Google Scholar 

  • Marbey, D., & Browner, R. H. (1985). The reconnection of auditory posterior root fibers in the red-eared turtle, Chrysemys scripta elegans. Hearing Research, 1–4.

    Google Scholar 

  • Marin, F., & Puelles, L. (1995). Morphological fate of rhombomeres in quail/chick chimeras: A segmental analysis of hindbrain nuclei. European Journal of Neuroscience, 7, 1714–1738.

    CAS  PubMed  Google Scholar 

  • McAlpine, D., Jiang, D., & Palmer, A. R. (2001). A neural code for low-frequency sound localization in mammals. Nature Neuroscience, 4(4), 396–401.

    CAS  PubMed  Google Scholar 

  • McCormick, C. A. (1999). Anatomy of central auditory pathways in fish and amphibians. In A. N. Popper & R. R. Fay (Eds.), Comparative hearing: Fish and amphibians (pp. 155–217). New York: Springer-Verlag.

    Google Scholar 

  • Melssen, W. J., Epping, W. J., & van Stokkum, I. H. (1990). Sensitivity for interaural time and intensity difference of auditory midbrain neurons in the grassfrog. Hearing Research, 47(3), 235–256.

    CAS  PubMed  Google Scholar 

  • Miller, M. R. (1980). The cochlear nuclei of snakes. Journal of Comparative Neurology, 192(4), 717–7736.

    CAS  PubMed  Google Scholar 

  • Miller, M. R., & Kasahara, M. (1979). The cochlear nuclei of some turtles. Journal of Comparative Neurology, 185, 221–236.

    CAS  PubMed  Google Scholar 

  • Moiseff, A., & Konishi, M. (1981). The owl’s interaural pathway is not involved in sound localization. Journal of Comparative Physiology A, 144, 299–304.

    Google Scholar 

  • Morona, R., & González, A. (2009). Immunohistochemical localization of calbindin-D28k and calretinin in the brainstem of anuran and urodele amphibians. Journal of Comparative Neurology, 515(5), 503–537.

    CAS  PubMed  Google Scholar 

  • Moss, C. F., & Carr, C. E. (2012). Comparative audtion. In M. Gallagher & R. J. Nelson (Eds.), Handbook of psychology (pp. 115–156). Hoboken: John Wiley & Sons.

    Google Scholar 

  • Northcutt, R. G., & Kaas, J. H. (1995). The emergence and evolution of mammalian neocortex. Trends in Neurosciences, 18(9), 373–379.

    CAS  PubMed  Google Scholar 

  • Overholt, E. M., Rubel, E. W., & Hyson, R. L. (1992). A circuit for coding interaural time differences in the chick brainstem. Journal of Neuroscience, 12(5), 1698–1708.

    CAS  PubMed  Google Scholar 

  • Passek, K. M., & Gillingham, J. C. (1999). Absence of kin discrimination in hatchling American alligators, Alligator mississippiensis. Copeia, 1999(3), 831–835.

    Google Scholar 

  • Patterson, W. (1966). Hearing in the turtle. Journal of Auditory Research, 6, 453–464.

    Google Scholar 

  • Pecka, M., Brand, A., Behrend, O., & Grothe, B. (2008). Interaural time difference processing in the mammalian medial superior olive: The role of glycinergic inhibition. Journal of Neuroscience, 28(27), 6914–6925.

    CAS  PubMed  Google Scholar 

  • Peña, J. L., Viete, S., Funabiki, K., Saberi, K., & Konishi, M. (2001). Cochlear and neural delays for coincidence detection in owls. Journal of Neuroscience, 21(23), 9455–9459.

    PubMed  Google Scholar 

  • Popper, A. N., & Fay, R. R. (2011). Rethinking sound detection by fishes. Hearing Research, 273(1–2), 25–36.

    Google Scholar 

  • Pritz, M. B. (1974). Ascending connections of a thalamic auditory area in a crocodile, Caiman crocodilus. Journal of Comparative Neurology, 153(2), 199–213.

    CAS  PubMed  Google Scholar 

  • Ridgway, S. H., Wever, E. G., McCormick, J. G., Palin, J., & Anderson, J. H. (1969). Hearing in the giant sea turtle, Chelonia mydas. Proceedings of the National Academy of Sciences of the USA, 64, 884–890.

    CAS  PubMed  Google Scholar 

  • Rose, G. J., & Capranica, R. R. (1985). Sensitivity to amplitude modulated sounds in the anuran auditory nervous system. Journal of Neurophysiology, 53(2), 446–465.

    CAS  PubMed  Google Scholar 

  • Ryugo, D. K., & Parks, T. N. (2003). Primary innervation of the avian and mammalian cochlear nucleus. Brain Research Bulletin, 60(5–6), 435–456.

    PubMed  Google Scholar 

  • Schnupp, J. W. H., & Carr, C. E. (2009). On hearing with more than one ear: Lessons from evolution. Nature Neuroscience, 12(6), 692–697.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shen, X. X., Liang, D., Wen, J. Z., & Zhang, P. (2011). Multiple genome alignments facilitate development of NPCL markers: A case study of tetrapod phylogeny focusing on the position of turtles. Molecular Biology and Evolution, 28(12), 3237–3252.

    CAS  PubMed  Google Scholar 

  • Smolders, J. W., & Klinke, R. (1986). Synchronized responses of primary auditory fibre-populations in Caiman crocodilus (L.) to single tones and clicks. Hearing Research, 24(2), 89–103.

    CAS  PubMed  Google Scholar 

  • Sneary, M. (1988). Auditory receptor of the red-eared turtle: II. Afferent and efferent synapses and innervation patterns. Journal of Comparative Neurology, 276, 588–606.

    Google Scholar 

  • Stecker, G. C., Harrington, I. A., & Middlebrooks, J. C. (2005). Location coding by opponent neural populations in the auditory cortex. Public Library of Science Biology, 3(3), e78.

    Google Scholar 

  • Szpir, M. R., Sento, S., & Ryugo, D. K. (1990). Central projections of cochlear nerve fibers in the alligator lizard. Journal of Comparative Neurology, 295(4), 530–547.

    CAS  PubMed  Google Scholar 

  • Szpir, M. R., Wright, D. D., & Ryugo, D. K. (1995). Neuronal organization of the cochlear nuclei in alligator lizards: A light and electron microscope investigation. Journal of Comparative Neurology, 357, 217–241.

    CAS  PubMed  Google Scholar 

  • Takahashi, T. T. (1989). Construction of an auditory space map. Annals of the New York Academy of Sciences, 563, 101–113.

    CAS  PubMed  Google Scholar 

  • Takahashi, T. T., & Konishi, M. (1988a). Projections of the cochlear nuclei and nucleus laminaris to the inferior colliculus of the barn owl. Journal of Comparative Neurology, 274(2), 190–211.

    CAS  PubMed  Google Scholar 

  • Takahashi, T. T., & Konishi, M. (1988b). Projections of nucleus angularis and nucleus laminaris to the lateral lemniscal nuclear complex of the barn owl. Journal of Comparative Neurology, 274, 212–238.

    CAS  PubMed  Google Scholar 

  • Tang, Y., Christensen-Dalsgaard, J., & Carr, C. E. (2012). Organization of the auditory brainstem in a lizard, Gekko gecko. I. Auditory nerve, cochlear nuclei, and superior olivary nuclei. Journal of Comparative Neurology, 520(8), 1784–1799.

    PubMed  Google Scholar 

  • ten Donkelaar, H. J., Bangma, G. C., Barbas-Henry, H. A., de Boer-van Huizen, R., & Wolters, J. G. (1987). The brain stem in a lizard, Varanus exanthematicus. Advances in Anatomy, Embryology, and Cell Biology, 107, 1–168.

    PubMed  Google Scholar 

  • Todd, N. P. M. (2007). Estimated source intensity and active space of the American alligator (Alligator Mississippiensis) vocal display. Journal of the Acoustical Society of America, 122(5), 2906.

    PubMed  Google Scholar 

  • Tollin, D. J. (2008). Encoding of interaural level differences for sound localization. In A. L. Basbaum, A. Kaneko, G. M. Shepherd, G. Westheimer, P. Dallos, & D. Oertel (Eds.), The senses: A comprehensive reference (Vol. 3, pp. 631–654). San Diego: Academic Press.

    Google Scholar 

  • Wagner, H. (2005). Microsecond precision of phase delay in the auditory system of the barn owl. Journal of Neurophysiology, 94(2), 1655–1658.

    PubMed Central  PubMed  Google Scholar 

  • Wagner, H., Mazer, J. A., & von Campenhausen, M. (2002). Response properties of neurons in the core of the central nucleus of the inferior colliculus of the barn owl. European Journal of Neuroscience, 15(8), 1343–1352.

    PubMed  Google Scholar 

  • Wagner, H., Asadollahi, A., Bremen, P., Endler, F., Vonderschen, K., & von Campenhausen, M. (2007). Distribution of interaural time difference in the barn owl’s inferior colliculus in the low- and high-frequency ranges. Journal of Neuroscience, 27(15), 4191–4200.

    CAS  PubMed  Google Scholar 

  • Wagner, H., Brill, S., Kempter, R., & Carr, C. E. (2009). Auditory responses in the barn owl’s nucleus laminaris to clicks: Impulse response and signal analysis of neurophonic potential. Journal of Neurophysiology, 102(2), 1227–1240.

    PubMed  Google Scholar 

  • Walkowiak, W. (1992). Acoustic communication in the fire-bellied toad: An integrative neurobiological approach. Ethology Ecology & Evolution, 4(1), 63–74.

    Google Scholar 

  • Wang, Y., & Karten, H. J. (2010). Three subdivisions of the auditory midbrain in chicks (Gallus gallus) identified by their afferent and commissural projections. Journal of Comparative Neurology, 518, 1199–1219.

    PubMed Central  PubMed  Google Scholar 

  • Webb, J. F., Montgomery, J. C., & Mogdans, J. (2008). Bioacoustics and the lateral line system of fishes. In J. F. Webb, R. R. Fay, & A. N. Popper (Eds.), Fish bioacoustics(pp. 145–182). New York: Springer Science+Business Media.

    Google Scholar 

  • Weston, J. K. (1936). The reptilian vestibular and cerebellar gray with fiber connections. Journal of Comparative Neurology, 65, 93–199.

    Google Scholar 

  • Wever, E. G. (1978). The reptile ear: Its structure and function. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Wever, E. G., & Vernon, J. A. (1956a). Sound transmission in the turtle’s ear. Proceedings of the National Academy of Sciences of the USA, 42(5), 292–299.

    CAS  PubMed  Google Scholar 

  • Wever, E. G., & Vernon, J. A. (1956b). Auditory responses in the common box turtle. Proceedings of the National Academy of Sciences of the USA, 42(12), 962–965.

    CAS  PubMed  Google Scholar 

  • Wever, E. G., & Vernon, J. A. (1956c). The sensitivity of the turtle’s ear as shown by its electrical potentials. Proceedings of the National Academy of Sciences of the USA, 42(4), 213–220.

    CAS  PubMed  Google Scholar 

  • Wilczynski, W., & Capranica, R. R. (1984). The auditory system of anuran amphibians. Progress in Neurobiology, 22(1), 1–38.

    CAS  PubMed  Google Scholar 

  • Wilczynski, W., & Ryan, M. J. (2010). The behavioral neuroscience of anuran social signal processing. Current Opinion in Neurobiology, 20(6), 754–763.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wilczynski, W., Rand, A. S., & Ryan, M. J. (2001). Evolution of calls and auditory tuning in the Physalaemus pustulosus species group. Brain, Behavior and Evolution, 58(3), 137–151.

    CAS  PubMed  Google Scholar 

  • Wild, J. M., Krützfeldt, N. O. E., & Kubke, M. F. (2010). Connections of the auditory brainstem in a songbird, Taeniopygia guttata. III. Projections of the superior olive and lateral lemniscal nuclei. Journal of Comparative Neurology, 518(11), 2149–2167.

    Google Scholar 

  • Willis, K. L., McCormick, C. A., & Carr, C. E. (2011). The organization of the hindbrain auditory nuclei of turtles follows the sauropsid pattern. Neuroscience Meeting Planner. Washington, DC: Society for Neuroscience. Online. http://www.abstractsonline.com/Plan/ViewAbstract.aspx?sKey=8e1b3d78-7471-4315-a0c5-fd54ff3be697&cKey=735c9c20-fd67-4f21-afd2-09d9d511f545&mKey=8334be29-8911-4991-8c31-32b32dd5e6c8

  • Willis, K. L., Christensen-Dalsgaard, J., Ketten, D. R., & Carr, C. E. (2013). Middle ear cavity morphology is consistent with an aquatic origin for testudines. (A. Iwaniuk, Ed.) Public Library of Science ONE, 8(1), e54086.

    Google Scholar 

  • Winter, P., & Schwartzkopff, J. (1961). Form and cell number of the acoustic nerve center in the medulla oblongata of the owl (Striges). Experientia, 17, 515–516.

    CAS  PubMed  Google Scholar 

  • Witmer, L. M., & Ridgely, R. C. (2009). New insights into the brain, braincase, and ear region of tyrannosaurs (Dinosauria, Theropoda), with implications for sensory organization and behavior (P. Dodson, Ed.) The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 292(9), 1266–1296.

    Google Scholar 

  • Witmer, L. M., Ridgely, R. C., Dufeau, D. L., & Sermones, M. C. (2008). Using CT to peer into the past: 3D visualization of the brain and ear regions of birds, crocodiles, and non-avian dinosaurs. In H. Endo & R. Frey (Eds.), Anatomical imaging: Towards a new morphology (pp. 67–88). Tokyo: Springer-Verlag.

    Google Scholar 

  • Yan, K., Tang, Y.-Z., & Carr, C. E. (2010). Calcium-binding protein immunoreactivity characterizes the auditory system of Gekko gecko. Journal of Comparative Neurology, 518(17), 3409–3426.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Young, B. (2003). Snake bioacoustics: Toward a richer understanding of the behavioral ecology of snakes. Quarterly Review of Biology, 78(3), 303–325.

    PubMed  Google Scholar 

  • Young, S. R., & Rubel, E. W. (1983). Frequency-specific projections of individual neurons in chick brainstem auditory nuceli. Journal of Neuroscience, 3(7), 1373–1378.

    CAS  PubMed  Google Scholar 

  • Zakon, H. H., & Wilczynski, W. (1988). The physiology of the anuran eighth nerve. In B. Fritzsch, M. J. Ryan, W. Wilczynski, T. Hetherington, & W. Walkowiak (Eds.), The evolution of the amphibian auditory system (pp. 125–155). New York: John Wiley & Sons.

    Google Scholar 

  • Zardoya, R., & Meyer, A. (2001). The evolutionary position of turtles revised. Naturwissenschaften, 88(5), 193–200.

    CAS  PubMed  Google Scholar 

  • Zhang, H., Xu, J., & Feng, A. S. (1999). Effects of GABA-mediated inhibition on direction-dependent frequency turing in the frog inferior colliculus. Journal of Comparative Physiology A, 184, 85–98.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by awards from the Danish National Science Foundation 09-065990 and Carlsberg Foundation 2009-01-0684 (J. Christensen-Dalsgaard ), the Velux Foundation (Denmark) and NIH DC00436 (C. E. Carr), by NIH P30 DC0466 to the University of Maryland Center for Comparative and Evolutionary Biology of Hearing, and by training grant DC-00046 from the National Institute of Deafness and Communicative Disorders of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katie L. Willis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Willis, K.L., Christensen-Dalsgaard, J., Carr, C.E. (2013). Auditory Brain Stem Processing in Reptiles and Amphibians: Roles of Coupled Ears. In: Köppl, C., Manley, G., Popper, A., Fay, R. (eds) Insights from Comparative Hearing Research. Springer Handbook of Auditory Research, vol 49. Springer, New York, NY. https://doi.org/10.1007/2506_2013_24

Download citation

Publish with us

Policies and ethics