Skip to main content

The Value in Artificial Intelligence

  • Chapter
  • First Online:
Book cover Value-based Radiology

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

Past 5 years have seen burgeoning applications of machine learning (ML) in diverse radiological domains including thoracic radiology, neuroimaging, abdominal imaging, musculoskeletal imaging, and breast imaging. Deep learning technologies have been applied to improve image resolution at ultralow radiation dose. Publications abound on ML in chest CT have focused on detection and characterization of pulmonary nodules, as well as for rib and spine straightening and labeling, vessel segmentation, and estimation of CT fractional flow reserve. ML has also been applied for detecting lines, tubes, pneumothorax, pleural effusions, cardiomegaly, and pneumonia, on chest radiographs. Applications of ML in cerebral hemorrhage detection and prediction of stroke outcomes, appendicitis and renal colic prediction, hand bone age calculation or rib unfolding for fracture detection, and characterization of breast macro-calcifications and masses are also shown. We review fundamentals, applications, and limitations of machine learning in thoracic radiology, neuroimaging, abdominal imaging, musculoskeletal imaging, and breast imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn CK, Yang Z, Heo C, Jin H, Park B, Kim JH (2018) A deep learning-enabled iterative reconstruction of ultra-low-dose CT: use of synthetic sinogram-based noise simulation technique. Proceedings SPIE 10573, Medical Imaging 2018: Physics of Medical Imaging, 1057335

    Google Scholar 

  • Armato SG, Gieger ML, Moran CJ, Blackburn JT, Doi K, Macmahan H (1999) Computerized detection of pulmonary nodules on CT scans. Radiographics 19(5):1303–1311

    Article  PubMed  Google Scholar 

  • Armato SG, Altman MB, Wilkie J, Sone S, Li F, Roy AS (2003) Automated lung nodule classification following automated nodule detection on CT: a serial approach. Med Phys 30(6):1188–1197

    Article  PubMed  Google Scholar 

  • Artificial Intelligence (2017) AI can spot large pneumothoraces on chest x-ray. http://www.auntminnie.com/index.aspx?sec=ser&sub=def&pag=dis&ItemID=119460

  • Bier G, Schabel C, Othman A, Bongers MN, Schmehl J, Ditt H, Nikolaou K, Bamberg F, Notohamiprodjo M (2015) Enhanced reading time efficiency by use of automatically unfolded CT rib reformations in acute trauma. Eur J Radiol 84(11):2173–2180

    Article  PubMed  Google Scholar 

  • Bier G, Mustafa DF, Kloth C, Weisel K, Ditt H, Nikolaou K, Horger M (2016) Improved follow-up and response monitoring of thoracic cage involvement in multiple myeloma using a novel CT postprocessing software: the lessons we learned. Am J Roentgenol 206(1):57–63

    Article  Google Scholar 

  • Bryan RN (2016) Machine learning applied to Alzheimer disease. Radiology 281(3):665–668

    Article  PubMed  Google Scholar 

  • Cai H, Peng Y, Ou C, Chen M, Li L (2014) Diagnosis of breast masses from dynamic contrast-enhanced and diffusion-weighted MR: a machine learning approach. PLoS One 9(1):e87387

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cantor-Rivera D, Khan AR, Goubran M, Mirsattari SM, Peters TM (2015) Detection of temporal lobe epilepsy using support vector machines in multi-parametric quantitative MR imaging. Comput Med Imaging Graph 41:14–28

    Article  PubMed  Google Scholar 

  • Chartrand G, Cheng PM, Vorontsov E, Drozdzal M, Turcotte S, Pal CJ, Kadoury S, Tang A (2017) Deep learning: a primer for radiologists. Radiographics 37(7):2113–2131

    Article  PubMed  Google Scholar 

  • Collij LE, Heeman F, Kuijer JP, Ossenkoppele R, Benedictus MR, Möller C, Verfaillie SC, Sanz-Arigita EJ, van Berckel BN, van der Flier WM, Scheltens P, Barkhof F, Wink AM (2016) Application of machine learning to arterial spin labeling in mild cognitive impairment and Alzheimer disease. Radiology 281(3):865–875

    Article  PubMed  Google Scholar 

  • Dal Moro F, Abate A, Lanckriet GR, Arandjelovic G, Gasparella P, Bassi P, Mancini M, Pagano F (2006) A novel approach for accurate prediction of spontaneous passage of ureteral stones: support vector machines. Kidney Int 69(1):157–160

    Article  CAS  PubMed  Google Scholar 

  • Erickson BJ, Korfiatis P, Akkus Z, Kline TL (2017) Machine learning for medical imaging. Radiographics 37(2):505–515

    Article  PubMed  Google Scholar 

  • Firmino M, Angelo G, Morais H, Dantas MR, Valentim R (2016) Computer-aided detection (CADe) and diagnosis (CADx) system for lung cancer with likelihood of malignancy. Biomed Eng Online 15(1):2–7

    Article  PubMed  PubMed Central  Google Scholar 

  • Giger ML, Bae KT, MacMahon H (1994) Computerized detection of pulmonary nodules in computed tomography images. Investig Radiol 29:459–465

    Article  CAS  Google Scholar 

  • Gillies RJ, Kinahan PE, Hricak H et al (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577

    Article  PubMed  Google Scholar 

  • Golkov V, Dosovitskiy A, Sperl JI, Menzel MI, Czisch M, Samann P, Brox T, Cremers D (2016) Q-space deep learning: twelve-fold shorter and model-free diffusion MRI scans. IEEE Trans Med Imaging 35(5):1344–1351

    Article  PubMed  Google Scholar 

  • Ha JY, Jeon KN, Bae K, Choi BH (2017) Effect of bone reading CT software on radiologist performance in detecting bone metastases from breast cancer. Br J Radiol 90:20160809

    Article  PubMed  PubMed Central  Google Scholar 

  • Hammernik K, Klatzer T, Kobler E, Recht MP, Sodickson DK, Pock T, Knoll F (2017) Learning a variational network for reconstruction of accelerated MRI data. arXiv preprint arXiv:1704.00447. https://arxiv.org/abs/1704.00447. Accessed 14 Nov 2017

  • Hawkins S, Wang H, Liu Y, Garcia A, Stringfield O, Krewer H et al (2016) Predicting malignant nodules from screening CT scans. J Thorac Oncol 11:2120–2128

    Article  PubMed  PubMed Central  Google Scholar 

  • Hinton GE, Osindero S, Teh Y-W (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–1554

    Article  PubMed  Google Scholar 

  • Hoog AH, Meme HK, van Deutekom H et al (2011) High sensitivity of chest radiograph reading by clinical officers in a tuberculosis prevalence survey. Int J Tuberc Lung Dis 15(10):1308–1314

    Article  PubMed  Google Scholar 

  • Hua K-L, Hsu C-H, Hidayati SC, Cheng W-H, Chen Y-J (2015) Computer-aided classification of lung nodules on computed tomography images via deep learning technique. OncoTargets Ther 8:2015–2022

    CAS  Google Scholar 

  • Hwang S, Kim HE, Jeong J, Kim HJ (2016) A novel approach for tuberculosis screening based on deep convolutional neural networks. In: Tourassi GD, Armato SG (eds) Proceedings of SPIE: medical imaging 2016—title, vol 9785. International Society for Optics and Photonics, Bellingham, WA, p 97852W

    Google Scholar 

  • Itu L, Rapaka S, Passerini T, Georgescu B, Schwemmer C, Schoebinger M, Flohr T, Sharma P, Comaniciu D (2016) A machine-learning approach for computation of fractional flow reserve from coronary computed tomography. J Appl Physiol 121:42–52

    Article  PubMed  Google Scholar 

  • Jaeger S, Karargyris A, Candemir S et al (2014) Automatic tuberculosis screening using chest radiographs. IEEE Trans Med Imaging 33(2):233–245

    Article  PubMed  Google Scholar 

  • Jiang F, Jiang Y, Zhi H et al (2017) Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol 0:e000101

    Google Scholar 

  • Kligerman S, Cai L, White CS (2013) The effect of computer-aided detection on radiologist performance in the detection of lung cancers previously missed on a chest radiograph. J Thorac Imaging 28(4):244–252

    Article  PubMed  Google Scholar 

  • Kumar K (2012) Artificial neural networks for diagnosis of kidney stones disease. Int J Comput Sci Information Technol 7:20–25

    Article  Google Scholar 

  • Lakhani P, Sundaram B (2017) Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology (2):574–582

    Article  PubMed  Google Scholar 

  • Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48:441–446

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee SH, Lee SM, Goo JM et al (2014) Usefulness of texture analysis in differentiating transient from persistent part-solid nodules(PSNs): a retrospective study. PLoS One 9:e85167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee H, Mansouri M, Tajmir S et al (2017a) A deep-learning system for fully-automated peripherally inserted central catheter (PICC) tip detection. J Digit Imaging. https://doi.org/10.1007/s10278-017-0025-z

    Article  PubMed Central  Google Scholar 

  • Lee J-G, Jun S, Cho Y-W et al (2017b) Deep learning in medical imaging: general overview. Korean J Radiol 18(4):570–584

    Article  PubMed  PubMed Central  Google Scholar 

  • Lodwick GS, Keats TE, Dorst JP (1963) The coding of roentgen images for computer analysis as applied to lung cancer. Radiology 81(2):185–200

    Article  CAS  PubMed  Google Scholar 

  • Maduskar P, Muyoyeta M, Ayles H, Hogeweg L, Peters-Bax L, van Ginneken B (2013) Detection of tuberculosis using digital chest radiography: automated reading vs. interpretation by clinical officers. Int J Tuberc Lung Dis 17(12):1613–1620

    Article  CAS  PubMed  Google Scholar 

  • Maldonado F, Boland JM, Raghunath S et al (2013) Noninvasive characterization of the histopathologic features of pulmonary nodules of the lung adenocarcinoma spectrum using computer-aided nodule assessment and risk yield (CANARY)—a pilot study. J Thorac Oncol 8:452–460

    Article  PubMed  PubMed Central  Google Scholar 

  • Manikandan T, Bharathi N (2016) Lung cancer detection using fuzzy auto-seed cluster means morphological segmentation and SVM classifier. J Med Syst 40(7):1

    Article  Google Scholar 

  • Melendez J, Sánchez CI, Philipsen RH et al (2016) An automated tuberculosis screening strategy combining X-ray-based computer-aided detection and clinical information. Sci Rep 6:252–265

    Article  CAS  Google Scholar 

  • Messay T, Hardie RC, Rogers SK (2010) A new computationally efficient CAD system for pulmonary nodule detection in CT imagery. Med Image Anal 14(3):390–406

    Article  PubMed  Google Scholar 

  • Pande T, Cohen C, Pai M, Ahmad Khan F (2016) Computer-aided detection of pulmonary tuberculosis on digital chest radiographs: a systematic review. Int J Tuberc Lung Dis 20(9):1226–1230

    Article  CAS  PubMed  Google Scholar 

  • Park SY, Seo JS, Lee SC, Kim SM (2013) Application of an artificial intelligence method for diagnosing acute appendicitis: the support vector machine. In: Park J, Stojmenovic I, Choi M, Xhafa F (eds) Future information technology. Lecture notes in electrical engineering, vol 276. Springer, Berlin, Heidelberg

    Google Scholar 

  • Rios Velazquez E, Parmar C, Liu Y, Coroller TP, Cruz G, Stringfield O et al (2017) Somatic mutations drive distinct imaging phenotypes in lung cancer. Cancer Res 77(14):3922–3930

    Article  CAS  PubMed  Google Scholar 

  • Riverain (2004) Riverain medical introduces artificial intelligence system for CHEST X-RAY early lung cancer detection. PR Newswire. http://search.proquest.com.ezp-prod1.hul.harvard.edu/docview/451600567?accountid=11311

  • Rothenberg SA, Patel JB, Herscu MH, et al (2016) Evaluation of a machine learning approach to protocol MRI examinations: initial experience predicting use of contrast by neuroradiologists in MRI protocols. Paper presented at Radiology Society of North America, 102nd Scientific Assembly and Annual Meeting, Chicago, IL

    Google Scholar 

  • Rui X, Cheng L, Long Y, Fu L, Alessio AM, Asma E, Kinahan PE, De Man B (2015) Ultra-low dose CT attenuation correction for PET/CT: analysis of sparse view data acquisition and reconstruction algorithms. Phys Med Biol 60(19):7437–7460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sohn JH, Trivedi H, Mesterhazy J, Al-adel F, Vu T, Rybkin A, Ohliger M (2017) Development and validation of machine learning based natural language classifiers to automatically assign MRI abdomen/pelvis protocols from free-text clinical indications. Paper presented at Society of Imaging Informatics in Medicine, Annual Meeting, Pittsburgh, PA

    Google Scholar 

  • Suk H-I, Shen D (2013) Deep learning-based feature representation for AD/MCI classification. In: Mori K, Sakuma I, Sato Y, Barillot C, Navab N (eds) Medical image computing and computer-assisted intervention—MICCAI. Springer, Berlin

    Google Scholar 

  • Suzuki K, Armato SG III, Li F, Sone S, Doi K (2003) Massive training artificial neural network (mtann) for reduction of false positives in computerized detection of lung nodules in low-dose computed tomography. Med Phys 30(7):1602–1617

    Article  PubMed  Google Scholar 

  • Wang C, Elazab A, Wu J, Hu Q (2017a) Lung nodule classification using deep feature fusion in chest radiography. Comput Med Imaging Graph 57:10–18

    Article  PubMed  Google Scholar 

  • Wang J, Wu CJ, Bao ML, Zhang J, Wang XN, Zhang YD (2017b) Machine learning-based analysis of MR radiomics can help to improve the diagnostic performance of PI-RADS v2 in clinically relevant prostate cancer. Eur Radiol 27(10):4082–4090

    Article  PubMed  Google Scholar 

  • Wernick MN, Yang Y, Brankov JG, Yourganov G, Strother SC (2010) Machine learning in medical imaging. IEEE Signal Process Mag 27(4):25–38

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu H, Tao X, Sundararajan R (2010) Proceedings of the third international workshop on pulmonary image analysis. CreateSpace Independent Publishing Platform, Beijing. Computer Aided Detection for Pneumoconiosis Screening on Digital Chest Radiographs;9:129–138

    Google Scholar 

  • Yan Z, Zhang S, Tan C, Qin H, Belaroussi B, Yu HJ, Miller C, Metaxas DN (2015) Atlas-based liver segmentation and hepatic fat-fraction assessment for clinical trials. Comput Med Imaging Graph 41:80–92

    Article  PubMed  Google Scholar 

  • Yu P, Xu H, Zhu Y, Yang C, Sun X, Zhao J (2011) An automatic computer-aided detection scheme for pneumoconiosis on digital chest radiographs. J Digit Imaging 24(3):382–393

    Article  PubMed  Google Scholar 

  • Zaharchuk G, Gong E, Wintermark M, Rubin D, Langlotz CP (2018) Deep learning in neuroradiology. Am J Neuroradiol 2:5543

    Google Scholar 

  • Zhu B, Luo W, Li B et al (2014) The development and evaluation of a computerized diagnosis scheme for pneumoconiosis on digital chest radiographs. Biomed Eng Online 13:141

    Article  PubMed  PubMed Central  Google Scholar 

Further Reading

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mannudeep K. Kalra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, R., Homayounieh, F., Vining, R., Digumarthy, S.R., Kalra, M.K. (2019). The Value in Artificial Intelligence. In: Silva, C., von Stackelberg, O., Kauczor, HU. (eds) Value-based Radiology. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/174_2018_193

Download citation

  • DOI: https://doi.org/10.1007/174_2018_193

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31554-2

  • Online ISBN: 978-3-030-31555-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics