Skip to main content

Perfusion CT: Technical Aspects

  • Chapter
  • First Online:
Multislice CT

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 3195 Accesses

Abstract

Perfusion CT is a high temporal resolution dynamic contrast-enhanced CT imaging technique that enables us to evaluate the functional blood supply to an organ or tissue of interest. This technique was first described in the 1970s, but it has reached its clinical potential in recent years due to a recognised clinical need in stroke and oncology and technological advances in acquisition and post-processing methods that have facilitated its clinical implementation. Qualitative and quantitative parameters derived from perfusion CT facilitate therapeutic triage and enable downstream treatment effects on the vasculature to be assessed. This chapter discusses the principles of perfusion CT and its clinical implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Axel L (1980) Cerebral blood flow determination by rapid-sequence computed tomography: theoretical analysis. Radiology 137(3):679–686

    Article  CAS  PubMed  Google Scholar 

  • Bisdas S, Rumboldt Z, Surlan-Popovic K et al (2010) Perfusion CT in squamous cell carcinoma of the upper aerodigestive tract: long-term predictive value of baseline perfusion CT measurements. AJNR Am J Neuroradiol 31(3):576–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cenic A, Nabavi DG, Craen RA, Gelb AW, Lee TY (2000) A CT method to measure hemodynamics in brain tumors: validation and application of cerebral blood flow maps. AJNR Am J Neuroradiol 21(3):462–470

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eilaghi A, Brooks J, d’Esterre C et al (2013) Reperfusion is a stronger predictor of good clinical outcome than recanalization in ischemic stroke. Radiology 269(1):240–248

    Article  PubMed  Google Scholar 

  • Fournier LS, Oudard S, Thiam R et al (2010) Metastatic renal carcinoma: evaluation of antiangiogenic therapy with dynamic contrast-enhanced CT. Radiology 256(2):511–518

    Article  PubMed  Google Scholar 

  • Garcia-Figueiras R, Goh VJ, Padhani AR et al (2013) CT perfusion in oncologic imaging: a useful tool? AJR Am J Roentgenol 200(1):8–19

    Article  PubMed  Google Scholar 

  • Gillard JH, Minhas PS, Hayball MP et al (2000) Assessment of quantitative computed tomographic cerebral perfusion imaging with H2(15)O positron emission tomography. Neurol Res 22(5):457–464

    Article  CAS  PubMed  Google Scholar 

  • Goh V, Halligan S, Gartner L, Bassett P, Bartram CI (2006) Quantitative colorectal cancer perfusion measurement by multidetector-row CT: does greater tumour coverage improve measurement reproducibility? Br J Radiol 79(943):578–583

    Article  CAS  PubMed  Google Scholar 

  • Goh V, Halligan S, Taylor SA, Burling D, Bassett P, Bartram CI (2007) Differentiation between diverticulitis and colorectal cancer: quantitative CT perfusion measurements versus morphologic criteria – initial experience. Radiology 242(2):456–462

    Article  PubMed  Google Scholar 

  • Goh V, Halligan S, Wellsted DM, Bartram CI (2009) Can perfusion CT assessment of primary colorectal adenocarcinoma blood flow at staging predict for subsequent metastatic disease? A pilot study. Eur Radiol 19(1):79–89

    Article  PubMed  Google Scholar 

  • Goh V, Shastry M, Engledow A et al (2011a) Commercial software upgrades may significantly alter Perfusion CT parameter values in colorectal cancer. Eur Radiol 21(4):744–749

    Article  PubMed  Google Scholar 

  • Goh V, Dattani M, Farwell J et al (2011b) Radiation dose from volumetric helical perfusion CT of the thorax, abdomen or pelvis. Eur Radiol 21(5):974–981

    Article  PubMed  Google Scholar 

  • Haider MA, Milosevic M, Fyles A et al (2005) Assessment of the tumor microenvironment in cervix cancer using dynamic contrast enhanced CT, interstitial fluid pressure and oxygen measurements. Int J Radiat Oncol Biol Phys 62(4):1100–1107

    Article  PubMed  Google Scholar 

  • Han KS, Jung DC, Choi HJ et al (2010) Pretreatment assessment of tumor enhancement on contrast-enhanced computed tomography as a potential predictor of treatment outcome in metastatic renal cell carcinoma patients receiving antiangiogenic therapy. Cancer 116(10):2332–2342

    Article  CAS  PubMed  Google Scholar 

  • Hayano K, Okazumi S, Shuto K et al (2007) Perfusion CT can predict the response to chemoradiation therapy and survival in esophageal squamous cell carcinoma: initial clinical results. Oncol Rep 18(4):901–908

    PubMed  Google Scholar 

  • Hayano K, Shuto K, Koda K, Yanagawa N, Okazumi S, Matsubara H (2009) Quantitative measurement of blood flow using perfusion CT for assessing clinicopathologic features and prognosis in patients with rectal cancer. Dis Colon Rectum 52(9):1624–1629

    Article  PubMed  Google Scholar 

  • Hermans R, Meijerink M, Van den Bogaert W, Rijnders A, Weltens C, Lambin P (2003) Tumor perfusion rate determined noninvasively by dynamic computed tomography predicts outcome in head-and-neck cancer after radiotherapy. Int J Radiat Oncol Biol Phys 57(5):1351–1356

    Article  PubMed  Google Scholar 

  • Hoeffner EG, Case I, Jain R et al (2004) Cerebral perfusion CT: technique and clinical applications. Radiology 231(3):632–644

    Article  PubMed  Google Scholar 

  • Ippolito D, Capraro C, Casiraghi A, Cestari C, Sironi S (2012) Quantitative assessment of tumour associated neovascularisation in patients with liver cirrhosis and hepatocellular carcinoma: role of dynamic-CT perfusion imaging. Eur Radiol 22(4):803–811

    Article  PubMed  Google Scholar 

  • Ippolito D, Casiraghi AS, Talei Franzesi C, Bonaffini PA, Fior D, Sironi S (2016) Intraobserver and interobserver agreement in the evaluation of tumor vascularization with computed tomography perfusion in cirrhotic patients with hepatocellular carcinoma. J Comput Assist Tomogr 40(1):152–159

    Article  PubMed  Google Scholar 

  • Kudo K, Sasaki M, Yamada K et al (2010) Differences in CT perfusion maps generated by different commercial software: quantitative analysis by using identical source data of acute stroke patients. Radiology 254(1):200–209

    Article  PubMed  Google Scholar 

  • Ladurner G, Zilkha E, Sager WD, Iliff LD, Lechner H, Du Boulay GH (1979) Measurement of regional cerebral blood volume using the EMI 1010 scanner. Br J Radiol 52(617):371–374

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Yang ZG, Chen TW, Chen HJ, Sun JY, Lu YR (2008) Peripheral lung carcinoma: correlation of angiogenesis and first-pass perfusion parameters of 64-detector row CT. Lung Cancer (Amsterdam, Netherlands) 61(1):44–53

    Article  PubMed  Google Scholar 

  • Liu Y, Bellomi M, Gatti G, Ping X (2007) Accuracy of computed tomography perfusion in assessing metastatic involvement of enlarged axillary lymph nodes in patients with breast cancer. Breast Cancer Res: BCR 9(4):R40

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma SH, Le HB, Jia BH et al (2008) Peripheral pulmonary nodules: relationship between multi-slice spiral CT perfusion imaging and tumor angiogenesis and VEGF expression. BMC Cancer 8:186

    Article  PubMed  PubMed Central  Google Scholar 

  • Mandeville HC, Ng QS, Daley FM et al (2012) Operable non-small cell lung cancer: correlation of volumetric helical dynamic contrast-enhanced CT parameters with immunohistochemical markers of tumor hypoxia. Radiology 264(2):581–589

    Article  PubMed  Google Scholar 

  • Miles KA, Hayball M, Dixon AK (1991) Colour perfusion imaging: a new application of computed tomography. Lancet 337(8742):643–645

    Article  CAS  PubMed  Google Scholar 

  • Miles KA, Lee TY, Goh V et al (2012) Current status and guidelines for the assessment of tumour vascular support with dynamic contrast-enhanced computed tomography. Eur Radiol 22(7):1430–1441

    Article  CAS  PubMed  Google Scholar 

  • Nabavi DG, Cenic A, Craen RA et al (1999) CT assessment of cerebral perfusion: experimental validation and initial clinical experience. Radiology 213(1):141–149

    Article  CAS  PubMed  Google Scholar 

  • Nabavi DG, Cenic A, Henderson S, Gelb AW, Lee TY (2001) Perfusion mapping using computed tomography allows accurate prediction of cerebral infarction in experimental brain ischemia. Stroke 32(1):175–183

    Article  CAS  PubMed  Google Scholar 

  • Ng QS, Goh V, Klotz E et al (2006) Quantitative assessment of lung cancer perfusion using MDCT: does measurement reproducibility improve with greater tumor volume coverage? AJR Am J Roentgenol 187(4):1079–1084

    Article  PubMed  Google Scholar 

  • Phelps ME, Kuhl DE (1976) Pitfalls in the measurement of cerebral blood volume with computed tomography. Radiology 121(2):375–377

    Article  CAS  PubMed  Google Scholar 

  • Prezzi D, Khan A, Goh V (2015) Perfusion CT imaging of treatment response in oncology. Eur J Radiol 84(12):2380–2385

    Article  PubMed  Google Scholar 

  • Purdie TG, Henderson E, Lee TY (2001) Functional CT imaging of angiogenesis in rabbit VX2 soft-tissue tumour. Phys Med Biol 46(12):3161–3175

    Article  CAS  PubMed  Google Scholar 

  • Sauter AW, Spira D, Schulze M et al (2013) Correlation between [(1)(8)F]FDG PET/CT and volume perfusion CT in primary tumours and mediastinal lymph nodes of non-small-cell lung cancer. Eur J Nucl Med Mol Imaging 40(5):677–684

    Article  CAS  PubMed  Google Scholar 

  • Spira D, Neumeister H, Spira SM et al (2013) Assessment of tumor vascularity in lung cancer using volume perfusion CT (VPCT) with histopathologic comparison: a further step toward an individualized tumor characterization. J Comput Assist Tomogr 37(1):15–21

    Article  PubMed  Google Scholar 

  • Trojanowska A, Trojanowski P, Bisdas S et al (2012) Squamous cell cancer of hypopharynx and larynx – evaluation of metastatic nodal disease based on computed tomography perfusion studies. Eur J Radiol 81(5):1034–1039

    Article  CAS  PubMed  Google Scholar 

  • Wintermark M, Thiran JP, Maeder P, Schnyder P, Meuli R (2001) Simultaneous measurement of regional cerebral blood flow by perfusion CT and stable xenon CT: a validation study. AJNR Am J Neuroradiol 22(5):905–914

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Kono M (1997) Solitary pulmonary nodules: evaluation of blood flow patterns with dynamic CT. Radiology 205(2):471–478

    Article  CAS  PubMed  Google Scholar 

  • Zussman BM, Boghosian G, Gorniak RJ et al (2011) The relative effect of vendor variability in CT perfusion results: a method comparison study. AJR Am J Roentgenol 197(2):468–473

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicky Goh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Goh, V., Prezzi, D. (2017). Perfusion CT: Technical Aspects. In: Nikolaou, K., Bamberg, F., Laghi, A., Rubin, G.D. (eds) Multislice CT. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/174_2017_9

Download citation

  • DOI: https://doi.org/10.1007/174_2017_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42585-6

  • Online ISBN: 978-3-319-42586-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics