Skip to main content

Fluorinated-Gas MRI

  • Chapter
MRI of the Lung

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

Fluorinated-gas MRI for ventilation imaging is an alternative approach to hyperpolarized-gas MRI using 3He or 129Xe, which may have the potential to be translated into clinical routine in the future. Although in general the contrast-to-noise ratio is less in fluorinated-gas MRI than that achieved with hyperpolarized gases, fluorinated-gas MRI has the advantage of comparatively simple technical requirements: An MRI system with multinuclear imaging capabilities and a dedicated fluorine-19 (19F) MRI coil is required. Manufactured fluorinated gases do not need a complex preparatory treatment on site before their use in patients and their signal-enhancing capabilities do not show a rapid decay. This makes their application less demanding for the local infrastructure and also reduces costs. These gases have not been approved as contrast agents for routine clinical ventilation MR imaging in most countries yet, which is the only major drawback to date.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adolphi NL, Kuethe DO (2008) Quantitative mapping of ventilation-perfusion ratios in lungs by 19F MR imaging of T1 of inert fluorinated gases. Magn Reson Med 59:739–746. doi:10.1002/mrm.21579

    Article  PubMed  Google Scholar 

  • Carrero-González L, Kaulisch T, Stiller D (2013) In vivo diffusion-weighted MRI using perfluorinated gases: ADC comparison between healthy and elastase-treated rat lungs. Magn Reson Med 70:1761–1764. doi:10.1002/mrm.24627

    Article  CAS  PubMed  Google Scholar 

  • Chang YV, Conradi MS (2006) Relaxation and diffusion of perfluorocarbon gas mixtures with oxygen for lung MRI. J Magn Reson 181:191–198. doi:10.1016/j.jmr.2006.04.003

    Article  CAS  PubMed  Google Scholar 

  • Charles C, Moon RE, Macintyre NR, et al (2015a) Cardio-respiratory tolerability of perfluoropropane-enhanced MRI of pulmonary ventilation. In: American Thoracic Society International conference abstracts, pp A3509–A3509

    Google Scholar 

  • Charles HC, Jones RW, Halaweish AF, Ainslie MD (2015b) Parallel imaging for short breath hold times in perfluorinated gas imaging of the lung. In: Proceedings of International Society for Magnetic Resonance in Medicine, p 3984

    Google Scholar 

  • Conradi MS, Saam BT, Yablonskiy DA, Woods JC (2006) Hyperpolarized 3He and perfluorocarbon gas diffusion MRI of lungs. Prog Nucl Magn Reson Spectrosc 48:63–83. doi:10.1016/j.pnmrs.2005.12.001

    Article  CAS  Google Scholar 

  • Couch MJ, Ball IK, Li T, et al (2015) Comparing pulmonary MRI using inert fluorinated gases and hyperpolarized 3He: is 19F MRI good enough? In: Proceedings of International Society for Magnetic Resonance in Medicine, p 1501

    Google Scholar 

  • Couch MJ, Ball IK, Li T et al (2014) Inert fluorinated gas MRI: a new pulmonary imaging modality. NMR Biomed 27:1525–1534. doi:10.1002/nbm.3165

    Article  CAS  PubMed  Google Scholar 

  • Couch MJ, Ball IK, Li T et al (2013) Pulmonary ultrashort echo time 19F MR imaging with inhaled fluorinated gas mixtures in healthy volunteers: feasibility. Radiology 269:903–909. doi:10.1148/radiol.13130609

    Article  PubMed  Google Scholar 

  • Couch MJ, Fox MS, Viel C et al (2016) Fractional ventilation mapping using inert fluorinated gas MRI in rat models of inflammation and fibrosis. NMR Biomed 29:545–552. doi:10.1002/nbm.3493

    Article  CAS  PubMed  Google Scholar 

  • Ebner L, Kammerman J, Driehuys B et al (2017) The role of hyperpolarized 129xenon in MR imaging of pulmonary function. Eur J Radiol 86:343–352. doi:10.1016/j.ejrad.2016.09.015

    Article  PubMed  Google Scholar 

  • Gutberlet M, Kaireit T, Voskrebenzev A, et al (2016) Real-time dynamic fluorinated gas MRI in free breathing for mapping of regional lung ventilation in patients with COPD and healthy volunteers using a 16 channel receive coil at 1.5T. In: Proceedings of International Society for Magnetic Resonance in Medicine, p 1140

    Google Scholar 

  • Halaweish AF, Charles HC (2014) Physiorack: an integrated MRI safe/conditional, gas delivery, respiratory gating, and subject monitoring solution for structural and functional assessments of pulmonary function. J Magn Reson Imaging 39:735–741. doi:10.1002/jmri.24219

    Article  PubMed  Google Scholar 

  • Halaweish AF, Moon RE, Foster WM et al (2013) Perfluoropropane gas as a magnetic resonance lung imaging contrast agent in humans. Chest 144:1300–1310. doi:10.1378/chest.12-2597

    Article  PubMed  Google Scholar 

  • Jacob RE, Chang YV, Choong CK et al (2005) 19F MR imaging of ventilation and diffusion in excised lungs. Magn Reson Med 54:577–585. doi:10.1002/mrm.20632

    Article  PubMed  Google Scholar 

  • Kirby M, Heydarian M, Svenningsen S et al (2012) Hyperpolarized 3He magnetic resonance functional imaging semiautomated segmentation. Acad Radiol 19:141–152. doi:10.1016/j.acra.2011.10.007

    Article  PubMed  Google Scholar 

  • Kruger SJ, Nagle SK, Couch MJ et al (2016) Functional imaging of the lungs with gas agents. J Magn Reson Imaging 43:295–315. doi:10.1002/jmri.25002

    Article  PubMed  Google Scholar 

  • Kuethe DO, Caprihan A, Fukushima E, Waggoner RA (1998) Imaging lungs using inert fluorinated gases. Magn Reson Med 39:85–88. doi:10.1002/mrm.1910390114

    Article  CAS  PubMed  Google Scholar 

  • Kuethe DO, Caprihan A, Gach HM et al (2000) Imaging obstructed ventilation with NMR using inert fluorinated gases. J Appl Physiol 88:2279–2286

    Article  CAS  PubMed  Google Scholar 

  • Lindner JR (2004) Microbubbles in medical imaging: current applications and future directions. Nat Rev Drug Discov 3:527–532. doi:10.1038/nrd1417

    Article  CAS  PubMed  Google Scholar 

  • Maunder A, Rao M, Robb F, Wild J (2016) RF coil design for multi-nuclear lung MRI of 19F fluorinated gases and 1H using MEMS. In: Proceedings of International Society for Magnetic Resonance in Medicine, p 3504

    Google Scholar 

  • Nations U (1998) Kyoto Protocol to the United Nations Framework Convention on Climte Change. http://unfccc.int/resource/docs/convkp/kpeng.pdf. Accessed 21 Mar 2017

  • Ouriadov AV, Fox MS, Couch MJ et al (2015) In vivo regional ventilation mapping using fluorinated gas MRI with an x-centric FGRE method. Magn Reson Med 74:550–557. doi:10.1002/mrm.25406

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Sánchez JM, Pérez De Alejo R, Rodríguez I et al (2005) In vivo diffusion weighted 19F MRI using SF6. Magn Reson Med 54:460–463. doi:10.1002/mrm.20569

    Article  PubMed  Google Scholar 

  • Rinck PA, Petersen SB, Heidelberger E, et al (1984a) NMR ventilation imaging of the lungs using perfluorinated gases. In: Proceedings of International Society for Magnetic Resonance in Medicine, p 237

    Google Scholar 

  • Rinck PA, Petersen SB, Lauterbur PC (1984b) NMR-Imaging von fluorhaltigen Substanzen: 19Fluor-Ventilations- und Perfusionsdarstellungen. Fortschr Röntgenstr 140:239–243

    Article  CAS  Google Scholar 

  • Ruiz-Cabello J, Pérez-Sánchez JM, Pérez De Alejo R et al (2005) Diffusion-weighted 19F-MRI of lung periphery: influence of pressure and air-SF6 composition on apparent diffusion coefficients. Respir Physiol Neurobiol 148:43–56. doi:10.1016/j.resp.2005.04.007

    Article  PubMed  Google Scholar 

  • Saam B, Happer W, Middleton H (1995) Nuclear relaxation of He3 in the presence of O2. Phys Rev A 52:862–865. doi:10.1103/PhysRevA.52.862

    Article  CAS  PubMed  Google Scholar 

  • Salerno M, Altes TA, Mugler JP et al (2001) Hyperpolarized noble gas MR imaging of the lung: potential clinical applications. Eur J Radiol 40:33–44

    Article  CAS  PubMed  Google Scholar 

  • Schreiber WG, Eberle B, Laukemper-Ostendorf S et al (2001) Dynamic 19F-MRI of pulmonary ventilation using sulfur hexafluoride (SF6) gas. Magn Reson Med 45:605–613. doi:10.1002/mrm.1082

    Article  CAS  PubMed  Google Scholar 

  • Schreiber WG, Markstaller K, Weiler N et al (2000) F-MRT der Lungenventilation in – Atemanhaltetechnik mittels SF -Gas. Fortschr Röntgenstr 172:500–503

    Article  CAS  Google Scholar 

  • Soher BJ, Halaweish AF, Charles HC (2015) Modeling of the spatio-temporal distribution of pulmonary ventilation via perfluoropropane gas enhanced MRI. In: Proceedings of International Society for Magnetic Resonance in Medicine, p 4006

    Google Scholar 

  • Stahl M, Wielpütz MO, Graeber SY, et al (2016) Comparison of lung clearance index and magnetic resonance imaging for assessment of lung disease in children with cystic fibrosis. Am J Respir Crit Care Med rccm.201604-0893OC. doi: 10.1164/rccm.201604-0893OC

    Google Scholar 

  • Terekhov M, Wolf U, Scholz A, Schreiber WG (2007) Rapid in-vivo MRI measurement of fluorinated gas concentration in lungs using T1 – mapping. In: Proceedings of International Society for Magnetic Resonance in Medicine, p 1336

    Google Scholar 

  • Tibiletti M, Tschechne M, Bianchi A, et al (2016) Ventilation imaging with sulfur hexafluoride in free-breathing mice: initial experience. In: Proceedings of International Society for Magnetic Resonance in Medicine, p 2912

    Google Scholar 

  • Wagner PD (2012) The multiple inert gas elimination technique (MIGET). In: Applied physiology in intensive care medicine 1: physiological notes – technical notes – seminal studies in intensive care, 3rd ed, pp 35–42

    Chapter  Google Scholar 

  • Wolf U, Scholz A, Heussel CP et al (2006) Subsecond fluorine-19 MRI of the lung. Magn Reson Med 55:948–951. doi:10.1002/mrm.20859

    Article  CAS  PubMed  Google Scholar 

  • Wolf U, Scholz A, Terekhov M, et al (2008) Fluorine-19 MRI of the lung: first human experiment. In: Proceedings of International Society for Magnetic Resonance in Medicine, p 3207

    Google Scholar 

  • Wolf U, Scholz A, Terekhov M et al (2010) Visualization of inert gas wash-out during high-frequency oscillatory ventilation using fluorine-19 MRI. Magn Reson Med 64:1479–1483. doi:10.1002/mrm.22528

    Article  Google Scholar 

  • Wolters M, Mohades ÞSG, Hackeng TM et al (2013) Clinical perspectives of hybrid proton-fluorine magnetic resonance imaging and spectroscopy. Invest Radiol 48:341–350

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Vogel-Claussen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gutberlet, M., Vogel-Claussen, J. (2017). Fluorinated-Gas MRI. In: Kauczor, HU., Wielpütz, M.O. (eds) MRI of the Lung. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/174_2017_80

Download citation

  • DOI: https://doi.org/10.1007/174_2017_80

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42616-7

  • Online ISBN: 978-3-319-42617-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics