Skip to main content

Multislice PET/CT in Neuroendocrine Tumors

  • Chapter
  • First Online:
Multislice CT

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 3143 Accesses

Abstract

Neuroendocrine tumors (NET) constitute a rare and heterogeneous group of neoplasms with variable clinical and biological features and variable prognosis ranging from very slow growing tumors to highly aggressive ones. Although NET comprise less than 2% of GI malignancies, these tumors are actually increasingly prevalent, which probably mostly reflects higher awareness of these kind of tumors and more sensitive diagnostic tools. Besides clinical features and biochemical tumor markers diagnosis of NETs is based on imaging. Functional PET imaging combined with multi-slice CT (PET/CT) has gained great impact on patient management by optimizing the staging of the disease, visualization of small occult tumor and evaluation of eligibility for somatostatin analogue treatment. This chapter provides an overview on the different radiopharmaceuticals that are used for PET/CT imaging of NETs and their impact on therapeutic management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahmed A, Turner G, King B et al (2009) Midgut neuroendocrine tumours with liver metastases: results of the UKINETS study. Endocr Relat Cancer 16:885–894

    CAS  PubMed  Google Scholar 

  • Alonso O, Rodríguez-Taroco M, Savio E et al (2014) 68Ga-DOTATATE PET/CT in the evaluation of patients with neuroendocrine metastatic carcinoma of unknown origin. Ann Nucl Med 28:638–645

    CAS  PubMed  Google Scholar 

  • Ambrosini V, Nanni C, Zompatori M et al (2010) 68Ga-DOTA-NOC PET/CT in comparison with CT for the detection of bone metastasis in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging 37:722–727

    PubMed  Google Scholar 

  • Ambrosini V, Tomassetti P, Rubello D et al (2007) Role of 18F-dopa PET/CT imaging in the management of patients with 111In-pentetreotide negative GEP tumours. Nucl Med Commun 28:473–477

    PubMed  Google Scholar 

  • Antunes P, Ginj M, Zhang H et al (2007) Are radiogallium-labelled DOTA-conjugated somatostatin analogues superior to those labelled with other radiometals? Eur J Nucl Med Mol Imaging 34:982–993

    CAS  PubMed  Google Scholar 

  • Auernhammer CJ, Göke B (2011) Therapeutic strategies for advanced neuroendocrine carcinomas of jejunum/ileum and pancreatic origin. Gut 60:1009–1021

    CAS  PubMed  Google Scholar 

  • Bahri H, Laurence L, Edeline J et al (2014) High prognostic value of 18F-FDG PET for metastatic gastroenteropancreatic neuroendocrine tumors: a long-term evaluation. J Nucl Med 55:1786–1790

    CAS  PubMed  Google Scholar 

  • Baumann T, Rottenburger C, Nicolas G et al (2016) Gastroenteropancreatic neuroendocrine tumours (GEP-NET) - imaging and staging. Best Pract Res Clin Endocrinol Metab 30:45–57

    PubMed  Google Scholar 

  • Binderup T, Knigge U, Loft A et al (2010) 18F-fluorodeoxyglucose positron emission tomography predicts survival of patients with neuroendocrine tumors. Clin Cancer Res 16:978–985

    CAS  PubMed  Google Scholar 

  • Bodei L, Ferone D, Grana CM et al (2009) Peptide receptor therapies in neuroendocrine tumors. J Endocrinol Investig 32:360–369

    CAS  Google Scholar 

  • Bodei L, Mueller-Brand J, Baum RP et al (2013) The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging 40:800–816

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boellaard R, O'Doherty MJ, Weber WA et al (2010) FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging 37:181–200

    PubMed  Google Scholar 

  • Bombardieri E, Aktolun C, Baum RP et al (2003) FDG-PET: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging 30:115–124

    Google Scholar 

  • Breeman WA, de Jong M, de Blois E et al (2005) Radiolabelling DOTA-peptides with 68Ga. Eur J Nucl Med Mol Imaging 32:478–485

    CAS  PubMed  Google Scholar 

  • Buchmann I, Henze M, Engelbrecht S et al (2007) Comparison of 68Ga-DOTATOC PET and 111In-DTPAOC (Octreoscan) SPECT in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging 34:1617–1626

    CAS  PubMed  Google Scholar 

  • Caplin ME, Pavel M, Ruszniewski P (2014) Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N Engl J Med 371:1556–1557

    PubMed  Google Scholar 

  • Cescato R, Waser B, Fani M et al (2011) Evaluation of 177Lu-DOTA-sst2 antagonist versus 177Lu-DOTA-sst2 agonist binding in human cancers in vitro. J Nucl Med 52:1886–1890

    CAS  PubMed  Google Scholar 

  • Christ E, Wild D, Ederer S et al (2013) Glucagon-like peptide-1 receptor imaging for the localisation of insulinomas: a prospective multicentre imaging study. Lancet Diabetes Endocrinol 1(2):115–122

    CAS  PubMed  Google Scholar 

  • Cimitan M, Buonadonna A, Cannizzaro R et al (2003) Somatostatin receptor scintigraphy versus chromogranin A assay in the management of patients with neuroendocrine tumors of different types: clinical role. Ann Oncol 14:1135–1141

    CAS  PubMed  Google Scholar 

  • Decristoforo C, Mather SJ, Cholewinski W et al (2000) 99mTc-EDDA/HYNIC-TOC: a new 99mTc-labelled radiopharmaceutical for imaging somatostatin receptor-positive tumours; first clinical results and intra-patient comparison with 111In-labelled octreotide derivatives. Eur J Nucl Med 27:1318–1325

    CAS  PubMed  Google Scholar 

  • Dromain C, de Baere T, Lumbroso J et al (2005) Detection of liver metastases from endocrine tumors: a prospective comparison of somatostatin receptor scintigraphy, computed tomography, and magnetic resonance imaging. J Clin Oncol 23:​70–78

    PubMed  Google Scholar 

  • Eriksson B, Bergström M, Orlefors H et al (2000) Use of PET in neuroendocrine tumors. In vivo applications and in vitro studies. Q J Nucl Med 44:68–76

    CAS  PubMed  Google Scholar 

  • Ezziddin S, Lohmar J, Yong-Hing CJ et al (2012) Does the pretherapeutic tumor SUV in 68Ga DOTATOC PET predict the absorbed dose of 177Lu octreotate? Clin Nucl Med 37:e141–e147

    PubMed  Google Scholar 

  • Fottner C, Helisch A, Anlauf M et al (2010) 6-18F-fluoro-L-dihydroxyphenylalanine positron emission tomography is superior to 123I-metaiodobenzyl-guanidine scintigraphy in the detection of extraadrenal and hereditary pheochromocytomas and paragangliomas: correlation with vesicular monoamine transporter expression. J Clin Endocrinol Metab 95:2800–2810

    CAS  PubMed  Google Scholar 

  • Frilling A, Sotiropoulos GC, Radtke A et al (2010) The impact of 68Ga-DOTATOC positron emission tomography/computed tomography on the multimodal management of patients with neuroendocrine tumors. Ann Surg 252:850–856

    PubMed  Google Scholar 

  • Gabriel M, Decristoforo C, Donnemiller E et al (2003) An intrapatient comparison of 99mTc-EDDA/HYNIC-TOC with 111In-DTPA-octreotide for diagnosis of somatostatin receptor-expressing tumors. J Nucl Med 44:708–716

    CAS  PubMed  Google Scholar 

  • Gabriel M, Decristoforo C, Kendler D et al (2007) 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med 48:508–518

    CAS  PubMed  Google Scholar 

  • Gabriel M, Muehllechner P, Decristoforo C et al (2005) 99mTc-EDDA/HYNIC-Tyr(3)-octreotide for staging and follow-up of patients with neuroendocrine gastro-entero-pancreatic tumors. Q J Nucl Med Mol Imaging 49:237–244

    CAS  PubMed  Google Scholar 

  • Gabriel M, Oberauer A, Dobrozemsky G et al (2009) 68Ga-DOTA-Tyr3-octreotide PET for assessing response to somatostatin-receptor-mediated radionuclide therapy. J Nucl Med 50:1427–1434

    CAS  PubMed  Google Scholar 

  • Garin E, Le Jeune F, Devillers A et al (2009) Predictive value of 18F-FDG PET and somatostatin receptor scintigraphy in patients with metastatic endocrine tumors. J Nucl Med 50:858–864

    CAS  PubMed  Google Scholar 

  • Ginj M, Zhang H, Waser B et al (2006) Radiolabelled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. Proc Natl Acad Sci 103:16436–16441

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grozinsky-Glasberg S, Barak D, Fraenkel M et al (2011) Peptide receptor radioligand therapy is an effective treatment for the long-term stabilization of malignant gastrinomas. Cancer 117:1377–1385

    CAS  PubMed  Google Scholar 

  • Haug A, Auernhammer CJ, Wängler B et al (2009) Intraindividual comparison of 68Ga-DOTA-TATE and 18F-DOPA PET in patients with well-differentiated metastatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging 36:765–770

    CAS  PubMed  Google Scholar 

  • Haug AR, Auernhammer CJ, Wangler B et al (2010) 68Ga-DOTATATE PET/CT for the early prediction of response to somatostatin receptor-mediated radionuclide therapy in patients with well-differentiated neuroendocrine tumors. J Nucl Med 51:1349–1356

    CAS  PubMed  Google Scholar 

  • Haug AR, Cindea-Drimus R, Auernhammer CJ et al (2012) The role of 68Ga-DOTATATE PET/CT in suspected neuroendocrine tumors. J Nucl Med 53:1686–1692

    CAS  PubMed  Google Scholar 

  • Haug AR, Cindea-Drimus R, Auernhammer CJ et al (2014) Neuroendocrine tumor recurrence: diagnosis with 68Ga-DOTATATE PET/CT. Radiology 270:517–525

    PubMed  Google Scholar 

  • Hellman P, Lundstrom T, Ohrvall U et al (2002) Effect of surgery on the outcome of midgut carcinoid disease with lymph node and liver metastases. World J Surg 26:991–997

    PubMed  Google Scholar 

  • Hoffman JM, Melega WP, Hawk TC et al (1992) The effects of carbidopa administration on 6-[18F]fluoro-L-dopa kinetics in positron emission tomography. J Nucl Med 33:1472–1477

    CAS  PubMed  Google Scholar 

  • Hope TA, Pampaloni MH, Nakakura E et al (2015) Simultaneous 68Ga-DOTA-TOC PET/MRI with gadoxetate disodium in patients with neuroendocrine tumor. Abdom Imaging 40:1432–1440

    PubMed  Google Scholar 

  • Ichikawa T, Peterson MS, Federle MP et al (2000) Islet cell tumor of the pancreas: biphasic CT versus MR imaging in tumor detection. Radiology 216:163–171

    CAS  PubMed  Google Scholar 

  • Kabasakal L, Demirci E, Ocak M et al (2012) Comparison of 68Ga-DOTATATE and 68Ga-DOTANOC PET/CT imaging in the same patient group with neuroendocrine tumours. Eur J Nucl Med Mol Imaging 39:1271–1277

    PubMed  Google Scholar 

  • Kaemmerer D, Peter L, Lupp A et al (2011) Molecular imaging with 68Ga-SSTR PET/CT and correlation to immunohistochemistry of somatostatin receptors in neuroendocrine tumours. Eur J Nucl Med Mol Imaging 38:1659–1668

    CAS  PubMed  Google Scholar 

  • Kauhanen S, Seppanen M, Minn H et al (2007) Fluorine-18-L-dihydroxyphenylalanine (18F-DOPA) positron emission tomography as a tool to localize an insulinoma or beta-cell hyperplasia in adult patients. J Clin Endocrinol Metab 92:1237–1244

    CAS  PubMed  Google Scholar 

  • Kayani I, Bomanji JB, Groves A et al (2008) Functional imaging of neuroendocrine tumors with combined PET/CT using 68Ga-DOTATATE (DOTA-DPhe1,Tyr3-octreotate) and 18F-FDG. Cancer 112:2447–2455

    PubMed  Google Scholar 

  • Kazmierczak PM, Rominger A, Wenter V et al (2016) The added value of 68Ga-DOTA-TATE-PET to contrast-enhanced CT for primary site detection in CUP of neuroendocrine origin. Eur Radiol. doi:10.1007/s00330-016-4475-3

    Article  PubMed  Google Scholar 

  • Kjaer A, Knigge U (2015) Use of radioactive substances in diagnosis and treatment of neuroendocrine tumors. Scand J Gastroenterol 50:740–747

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koopmans KP, de Vries EG, Kema IP et al (2006) Staging of carcinoid tumours with 18F-DOPA PET: a prospective, diagnostic accuracy study. Lancet Oncol 7:728–734

    CAS  PubMed  Google Scholar 

  • Körner M, Christ E, Wild D et al (2012) Glucagon-like peptide-1 receptor overexpression in cancer and its impact on clinical applications. Front Endocrinol 3:158

    Google Scholar 

  • Kratochwil C, Stefanova M, Mavriopoulou E et al (2015) SUV of [68Ga]DOTATOC-PET/CT predicts response probability of PRRT in neuroendocrine tumors. Mol Imaging Biol 17:313–318

    CAS  PubMed  Google Scholar 

  • Kwee TC, van Ufford HM, Beek FJ et al (2009) Whole-body MRI, including diffusion-weighted imaging, for the initial staging of malignant lymphoma: comparison to computed tomography. Investig Radiol 44:683–690

    Google Scholar 

  • Kwekkeboom DJ, Krenning EP (2002) Somatostatin receptor imaging. Semin Nucl Med 32:84–91

    PubMed  Google Scholar 

  • Lee JR, Kim JS, Roh JL et al (2015) Detection of occult primary tumors in patients with cervical metastases of unknown primary tumors: comparison of 18F FDG PET/CT with contrast-enhanced CT or CT/MR imaging-prospective study. Radiology 274:764–771

    PubMed  Google Scholar 

  • Look Hong NJ, Petrella T, Chan K (2015) Cost-effectiveness analysis of staging strategies in patients with regionally metastatic melanoma. J Surg Oncol 111:423–430

    PubMed  Google Scholar 

  • Modlin IM, Oberg K, Chung DC et al (2008) Gastroenteropancreatic neuroendocrine tumours. Lancet Oncol 9:61–72

    CAS  PubMed  Google Scholar 

  • Montravers F, Grahek D, Kerrou K et al (2006) Can fluorodihydroxyphenylalanine PET replace somatostatin receptor scintigraphy in patients with digestive endocrine tumors? J Nucl Med 47:1455–1462

    CAS  PubMed  Google Scholar 

  • Muros MA, Varsavsky M, Iglesias Rozas P et al (2009) Outcome of treating advanced neuroendocrine tumours with radiolabelled somatostatin analogues. Clin Transl Oncol 11:48–53

    CAS  PubMed  Google Scholar 

  • Naswa N, Sharma P, Kumar A et al (2012) 68Ga-DOTANOC PET/CT in patients with carcinoma of unknown primary of neuroendocrine origin. Clin Nucl Med 37:245–251

    PubMed  Google Scholar 

  • Öksüz MÖ, Winter L, Pfannenberg C et al (2014) Peptide receptor radionuclide therapy of neuroendocrine tumors with 90Y-DOTATOC: is treatment response predictable by pre-therapeutic uptake of 68Ga-DOTATOC? Diagn Interv Imaging 95:289–300

    PubMed  Google Scholar 

  • Pasquali C, Rubello D, Sperti C et al (1998) Neuroendocrine tumor imaging: can 18F-fluorodeoxyglucose positron emission tomography detect tumors with poor prognosis and aggressive behavior? World J Surg 22:588–592

    CAS  PubMed  Google Scholar 

  • Pavel M, O'Toole D, Costa F et al (2016) ENETS consensus guidelines update for the management of distant metastatic disease of intestinal, pancreatic, bronchial neuroendocrine neoplasms (NEN) and NEN of unknown primary site. Neuroendocrinology 103:172–185

    CAS  PubMed  Google Scholar 

  • Poeppel TD, Binse I, Petersenn S et al (2011) 68Ga-DOTATOC versus 68Ga-DOTATATE PET/CT in functional imaging of neuroendocrine tumors. J Nucl Med 52:1864–1870

    CAS  PubMed  Google Scholar 

  • Prasad V, Ambrosini V, Hommann M et al (2010) Detection of unknown primary neuroendocrine tumours (CUP-NET) using 68Ga-DOTA-NOC receptor PET/CT. Eur J Nucl Med Mol Imaging 37:67–77

    CAS  PubMed  Google Scholar 

  • Rappeport ED, Hansen CP, Kjaer A et al (2006) Multidetector computed tomography and neuroendocrine pancreaticoduodenal tumors. Acta Radiol 47:248–256

    CAS  PubMed  Google Scholar 

  • Reubi JC, Waser B (2003) Concomitant expression of several peptide receptors in neuroendocrine tumours: molecular basis for in vivo multireceptor tumour targeting. Eur J Nucl Med Mol Imaging 30:781–793

    CAS  PubMed  Google Scholar 

  • Rindi G, Arnold R, Bosman FT et al (2010) Nomenclature and classification of neuroendocrine neoplasms of the digestive system. In: Bosman TF, Carneiro F, Hruban RH, Theise ND (eds) WHO classification of tumours of the digestive system, 4th edn. International Agency for Research on cancer (IARC), Lyon, p 13

    Google Scholar 

  • Ruf J, Heuck F, Schiefer J et al (2010) Impact of multiphase 68Ga-DOTATOC-PET/CT on therapy management in patients with neuroendocrine tumors. Neuroendocrinology 91:101–109

    CAS  PubMed  Google Scholar 

  • Sadowski SM, Neychev V, Millo C et al (2016) Prospective study of 68Ga-DOTATATE positron emission tomography/computed tomography for detecting gastro-Entero-pancreatic neuroendocrine tumors and unknown primary sites. J Clin Oncol 34:588–596

    CAS  PubMed  Google Scholar 

  • Severi S, Nanni O, Bodei L et al (2013) Role of 18FDG PET/CT in patients treated with 177Lu-DOTATATE for advanced differentiated neuroendocrine tumours. Eur J Nucl Med Mol Imaging 40:881–888

    CAS  PubMed  Google Scholar 

  • Singh S, Asa SL, Dey C et al (2016) Diagnosis and management of gastrointestinal neuroendocrine tumors: An evidence-based Canadian consensus. Cancer Treat Rev 2016; 47: 32–45

    Google Scholar 

  • Strosberg J, El-Haddad G, Wolin E et al (2017) Phase 3 trial of 177Lu-Dotatate for Midgut neuroendocrine tumors. N Engl J Med 376:125–135

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tessonnier L, Sebag F, Ghander C et al (2010) Limited value of 18F-F-DOPA PET to localize pancreatic insulin-secreting tumors in adults with hyperinsulinemic hypoglycemia. J Clin Endocrinol Metab 95:303–307

    CAS  PubMed  Google Scholar 

  • Teunissen JJ, Kwekkeboom DJ, Valkema R et al (2011) Nuclear medicine techniques for the imaging and treatment of neuroendocrine tumours. Endocr Relat Cancer 18(Suppl 1):S27–S51

    CAS  PubMed  Google Scholar 

  • Wild D, Bomanji JB, Benkert P et al (2013) Comparison of 68Ga-DOTANOC and 68Ga-DOTATATE PET/CT within patients with gastroenteropancreatic neuroendocrine tumors. J Nucl Med 54:364–372

    CAS  PubMed  Google Scholar 

  • Wild D, Fani M, Behe M et al (2011) First clinical evidence that imaging with somatostatin receptor antagonists is feasible. J Nucl Med 52:1412–1417

    CAS  PubMed  Google Scholar 

  • Wulfert S, Kratochwil C, Choyke PL et al (2014) Multimodal imaging for early functional response assessment of 90Y−/177Lu-DOTATOC peptide receptor targeted radiotherapy with DW-MRI and 68Ga-DOTATOC-PET/CT. Mol Imaging Biol 16:586–594

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clemens Cyran M.D., Dr.med .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pöpperl, G., Cyran, C. (2017). Multislice PET/CT in Neuroendocrine Tumors. In: Nikolaou, K., Bamberg, F., Laghi, A., Rubin, G.D. (eds) Multislice CT. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/174_2017_46

Download citation

  • DOI: https://doi.org/10.1007/174_2017_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42585-6

  • Online ISBN: 978-3-319-42586-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics