Skip to main content

Alternate Fractionation for Hepatic Tumors

  • Chapter
  • First Online:
Alternate Fractionation in Radiotherapy

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 660 Accesses

Abstract

Historically, the liver was thought to be an organ unsuitable for radical doses needed to treat primary or secondary tumors. This determination was made in the time where only 2D treatment planning was available (Ingold et al. 1965; Wharton et al. 1973). However, the consequent interpretation of liver toxicities with 3D-conformal radiotherapy with the use of dose–volume histograms allowed us to describe the normal tissue complication probability (NTCP) characteristics of the liver, an organ with a parallel tissue structure which is reflected in a high “volume effect parameter,” n = 0.69 (Jackson et al. 1995). The data underlying the NTCP modeling came from a series of 79 patients including nine patients that developed clinical radiation hepatitis. All of the patients with radiation hepatitis, also called radiation-induced liver disease (RILD), had whole-liver radiation with doses of at least 37 Gy in conventional fractionation. On the other hand, patients who had partial liver radiotherapy to much higher doses did not develop RILD. Subsequently, a phase I trial of escalated focal liver radiation and concurrent hepatic artery fluorodeoxyuridine (FUdR) was conducted for patients with unresectable intrahepatic malignancies (Dawson et al. 2000). Twenty-seven patients had hepatobiliary cancer and 16 colorectal liver metastases. This trial employed a dose per fraction of 1.5 Gy twice daily with concomitant intra-arterial FUdR during the first 4 weeks of radiotherapy. Continuous-infusion FUdR required placement of a percutaneous brachial artery catheter to deliver a dose of 0.2 mg/kg/d. The trial was designed to be isotoxic and to escalate radiation dose in cases where the target volumes were small enough to allow dose escalation according to the above-described NTCP model. This resulted in a median radiotherapy dose of 58.5 Gy with a range from 28.5 to 90 Gy. Of note, the median tumor size was as large as 10 × 10 × 8 cm. The dose to the stomach and duodenum was restricted to a maximum of 68 Gy in 1.5 Gy fractions. Twenty-five patients were assessable for response evaluation achieving 16 partial and 1 complete response. Intriguingly, improved progression-free and overall survival depended on multivariate analysis on escalated dose. There was only one incidence of late liver toxicity, namely one patient suffering a reversible grade 3 RILD.

The original version of this chapter was revised. The affiliations of the authors have been updated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al Hamad AA, Hassanain M, Michel RP et al (2009) Stereotactic radiotherapy of the liver: a bridge to transplantation stereotactic radiotherapy of the liver: a bridge to transplantation. Technol Cancer Res Treat 8(6):401–405

    Article  PubMed  Google Scholar 

  • Ambrosino G, Polistina F, Costantin G et al (2009) Image-guided robotic stereotactic radiosurgery for unresectable liver metastases: preliminary results. Anticancer Res 29(8):3381–3384

    PubMed  Google Scholar 

  • Andolino DL, Johnson CS, Maluccio M et al (2011) Stereotactic body radiotherapy for primary hepatocellular carcinoma. Int J Radiat Oncol Biol Phys 81(4):e447–e453

    Article  PubMed  Google Scholar 

  • Bae SH, Kim MS, Cho CK et al (2013) Feasibility and efficacy of stereotactic ablative radiotherapy for Barcelona Clinic Liver Cancer-C stage hepatocellular carcinoma. J Korean Med Sci 28(2):213–219

    Article  PubMed  PubMed Central  Google Scholar 

  • Barney BM, Olivier KR, Miller RC et al (2012) Clinical outcomes and toxicity using stereotactic body radiotherapy (SBRT) for advanced cholangiocarcinoma. Radiat Oncol 7:67

    Article  PubMed  PubMed Central  Google Scholar 

  • Benavides M, Anton A, Gallego J et al (2015) Biliary tract cancers: SEOM clinical guidelines. Clin Transl Oncol 17(12):982–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben-Josef E, Normolle D, Ensminger WD et al (2005) Phase II trial of high-dose conformal radiation therapy with concurrent hepatic artery floxuridine for unresectable intrahepatic malignancies. J Clin Oncol 23(34):8739–8747

    Article  PubMed  Google Scholar 

  • Bibault JE, Dewas S, Vautravers-Dewas C et al (2013) Stereotactic body radiation therapy for hepatocellular carcinoma: prognostic factors of local control, overall survival, and toxicity. PLoS One 8(10):e77472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blomgren H, Lax I, Naslund I et al (1995) Stereotactic high dose fraction radiation therapy of extracranial tumors using an accelerator. Clinical experience of the first thirty-one patients. Acta Oncol 34(6):861–870

    Article  CAS  PubMed  Google Scholar 

  • Boda-Heggemann J, Knopf AC, Simeonova-Chergou A et al (2016) Deep inspiration breath hold-based radiation therapy: a clinical review. Int J Radiat Oncol Biol Phys 94(3):478–492

    Article  PubMed  Google Scholar 

  • Brade AM, Ng S, Brierley J et al (2016) Phase 1 trial of sorafenib and stereotactic body radiation therapy for hepatocellular carcinoma. Int J Radiat Oncol Biol Phys 94(3):580–587

    Article  CAS  PubMed  Google Scholar 

  • Breedveld S, Storchi PR, Heijmen BJ (2009) The equivalence of multi-criteria methods for radiotherapy plan optimization. Phys Med Biol 54(23):7199–7209

    Article  PubMed  Google Scholar 

  • Breedveld S, Storchi PR, Voet PW et al (2012) iCycle: integrated, multicriterial beam angle, and profile optimization for generation of coplanar and noncoplanar IMRT plans. Med Phys 39(2):951–963

    Article  PubMed  Google Scholar 

  • Brook OR, Thornton E, Mendiratta-Lala M et al (2015) CT imaging findings after stereotactic radiotherapy for liver tumors. Gastroenterol Res Pract 2015:126245

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruix J, Sherman M (2005) Management of hepatocellular carcinoma. Hepatology 42(5):1208–1236

    Article  PubMed  Google Scholar 

  • Bruix J, Sherman M (2011) Management of hepatocellular carcinoma: an update. Hepatology 53(3):​1020–1022

    Article  PubMed  Google Scholar 

  • Brunner TB, Seufferlein T (2016) Radiation therapy in cholangiocellular carcinomas. Best Pract Res Clin Gastroenterol 30(4):593–602

    Article  PubMed  Google Scholar 

  • Brunner TB, Nestle U, Adebahr S et al (2016) Simultaneous integrated protection: a new concept for high-precision radiation therapy. Strahlenther Onkol 192(12):886–894

    Article  PubMed  PubMed Central  Google Scholar 

  • Bujold A, Massey CA, Kim JJ et al (2013) Sequential phase I and II trials of stereotactic body radiotherapy for locally advanced hepatocellular carcinoma. J Clin Oncol 31(13):1631–1639

    Article  PubMed  Google Scholar 

  • Cardenes HR, Price TR, Perkins SM et al (2010) Phase I feasibility trial of stereotactic body radiation therapy for primary hepatocellular carcinoma. Clin Transl Oncol 12(3):218–225

    Article  CAS  PubMed  Google Scholar 

  • Chang DT, Swaminath A, Kozak M et al (2011) Stereotactic body radiotherapy for colorectal liver metastases: a pooled analysis. Cancer 117(17):4060–4069

    Article  PubMed  Google Scholar 

  • Chi A, Nguyen NP (2014) 4D PET/CT as a strategy to reduce respiratory motion artifacts in FDG-PET/CT. Front Oncol 4:205

    PubMed  PubMed Central  Google Scholar 

  • Crane CH, Macdonald KO, Vauthey JN et al (2002) Limitations of conventional doses of chemoradiation for unresectable biliary cancer. Int J Radiat Oncol Biol Phys 53(4):969–974

    Article  PubMed  Google Scholar 

  • Culleton S, Jiang H, Haddad CR et al (2014) Outcomes following definitive stereotactic body radiotherapy for patients with Child-Pugh B or C hepatocellular carcinoma. Radiother Oncol 111(3):412–417

    Article  PubMed  Google Scholar 

  • Dawson LA, McGinn CJ, Normolle D et al (2000) Escalated focal liver radiation and concurrent hepatic artery fluorodeoxyuridine for unresectable intrahepatic malignancies. J Clin Oncol 18(11):​2210–2218

    Article  CAS  PubMed  Google Scholar 

  • Dawson LA, Eccles C, Bissonnette JP et al (2005) Accuracy of daily image guidance for hypofractionated liver radiotherapy with active breathing control. Int J Radiat Oncol Biol Phys 62(4):1247–1252

    Article  PubMed  Google Scholar 

  • Dawson LA, Eccles C, Craig T (2006) Individualized image guided iso-NTCP based liver cancer SBRT. Acta Oncol 45(7):856–864

    Article  PubMed  Google Scholar 

  • Dong P, Lee P, Ruan D et al (2013) 4pi non-coplanar liver SBRT: a novel delivery technique. Int J Radiat Oncol Biol Phys 85(5):1360–1366

    Article  PubMed  Google Scholar 

  • Eisenhauer EA, Therasse P, Bogaerts J et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247

    Article  CAS  PubMed  Google Scholar 

  • European Association for the Study of the Liver, European Organisation for Research and Treatment of Cancer (2012) EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol 56(4):908–943

    Article  Google Scholar 

  • Facciuto ME, Singh MK, Rochon C et al (2012) Stereotactic body radiation therapy in hepatocellular carcinoma and cirrhosis: evaluation of radiological and pathological response. J Surg Oncol 105(7):​692–698

    Article  PubMed  Google Scholar 

  • Forner A, Vilana R, Ayuso C et al (2008) Diagnosis of hepatic nodules 20 mm or smaller in cirrhosis: Prospective validation of the noninvasive diagnostic criteria for hepatocellular carcinoma. Hepatology 47(1):97–104

    Article  PubMed  Google Scholar 

  • Fowler JF (1989) The linear-quadratic formula and progress in fractionated radiotherapy. Br J Radiol 62(740):679–694

    Article  CAS  PubMed  Google Scholar 

  • Fowler JF, Tome WA, Fenwick JD et al (2004) A challenge to traditional radiation oncology. Int J Radiat Oncol Biol Phys 60(4):1241–1256

    Article  PubMed  Google Scholar 

  • Glide-Hurst CK, Schwenker SM, Ajlouni M et al (2013) Evaluation of two synchronized external surrogates for 4D CT sorting. J Appl Clin Med Phys 14(6):4301

    Article  PubMed  Google Scholar 

  • Goodman ZD (2007) Neoplasms of the liver. Mod Pathol 20(Suppl 1):S49–S60

    Article  PubMed  Google Scholar 

  • Goodman KA, Wiegner EA, Maturen KE et al (2010) Dose-escalation study of single-fraction stereotactic body radiotherapy for liver malignancies. Int J Radiat Oncol Biol Phys 78(2):486–493

    Article  PubMed  Google Scholar 

  • Goodman BD, Mannina EM, Althouse SK et al (2016) Long-term safety and efficacy of stereotactic body radiation therapy for hepatic oligometastases. Pract Radiat Oncol 6(2):86–95

    Article  PubMed  Google Scholar 

  • Guckenberger M, Richter A, Boda-Heggemann J et al (2012) Motion compensation in radiotherapy. Crit Rev Biomed Eng 40(3):187–197

    Article  PubMed  Google Scholar 

  • Hatfield MK, Beres RA, Sane SS et al (2008) Percutaneous imaging-guided solid organ core needle biopsy: coaxial versus noncoaxial method. Am J Roentgenol 190(2):413–417

    Article  Google Scholar 

  • Heijmen B, de Pooter JA, Mendez Romero A, et al (2007) Computer generation of fully non-coplanar plans for SBRT of liver tumours based on gEUD optimisation. In: Proceedings of the XVth International Conference on the use of Computers in Radiation Therapy, Toronto, 2007. pp 333–337

    Google Scholar 

  • Heinzerling JH, Anderson JF, Papiez L et al (2008) Four-dimensional computed tomography scan analysis of tumor and organ motion at varying levels of abdominal compression during stereotactic treatment of lung and liver. Int J Radiat Oncol Biol Phys 70(5):1571–1578

    Article  PubMed  Google Scholar 

  • Hoyer M, Roed H, Traberg HA et al (2006) Phase II study on stereotactic body radiotherapy of colorectal metastases. Acta Oncol 45(7):823–830

    Article  PubMed  Google Scholar 

  • Huang WY, Jen YM, Lee MS et al (2012) Stereotactic body radiation therapy in recurrent hepatocellular carcinoma. Int J Radiat Oncol Biol Phys 84(2):355–361

    Article  PubMed  Google Scholar 

  • Huertas A, Baumann AS, Saunier-Kubs F et al (2015) Stereotactic body radiation therapy as an ablative treatment for inoperable hepatocellular carcinoma. Radiother Oncol 115(2):211–216

    Article  PubMed  Google Scholar 

  • Ibarra RA, Rojas D, Snyder L et al (2012) Multicenter results of stereotactic body radiotherapy (SBRT) for non-resectable primary liver tumors. Acta Oncol 51(5):575–583

    Article  PubMed  Google Scholar 

  • Ingold JA, Reed GB, Kaplan HS et al (1965) Radiation Hepatitis. Am J Roentgenol Radium Therapy, Nucl Med 93:200–208

    CAS  Google Scholar 

  • Iwata H, Shibamoto Y, Hashizume C et al (2010) Hypofractionated stereotactic body radiotherapy for primary and metastatic liver tumors using the Novalis image-guided system: preliminary results regarding efficacy and toxicity. Technol Cancer Res Treat 9(6):619–627

    Article  PubMed  Google Scholar 

  • Jackson A, Ten Haken RK, Robertson JM et al (1995) Analysis of clinical complication data for radiation hepatitis using a parallel architecture model. Int J Radiat Oncol Biol Phys 31(4):883–891

    Article  CAS  PubMed  Google Scholar 

  • Jang WI, Kim MS, Bae SH et al (2013) High-dose stereotactic body radiotherapy correlates increased local control and overall survival in patients with inoperable hepatocellular carcinoma. Radiat Oncol 8:250

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang SB, Wolfgang J, Mageras GS (2008) Quality assurance challenges for motion-adaptive radiation therapy: gating, breath holding, and four-dimensional computed tomography. Int J Radiat Oncol Biol Phys 71(1 Suppl):S103–S107

    Article  PubMed  Google Scholar 

  • Jung J, Yoon SM, Kim SY et al (2013) Radiation-induced liver disease after stereotactic body radiotherapy for small hepatocellular carcinoma: clinical and dose-volumetric parameters. Radiat Oncol 8:249

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung J, Kong M, Hong SE (2014a) Conventional fractionated helical tomotherapy for patients with small to medium hepatocellular carcinomas without portal vein tumor thrombosis. Onco Targets Ther 7:1769–1775

    PubMed  PubMed Central  Google Scholar 

  • Jung DH, Kim MS, Cho CK et al (2014b) Outcomes of stereotactic body radiotherapy for unresectable primary or recurrent cholangiocarcinoma. Radiat Oncol J 32(3):163–169

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang JK, Kim MS, Cho CK et al (2012) Stereotactic body radiation therapy for inoperable hepatocellular carcinoma as a local salvage treatment after incomplete transarterial chemoembolization. Cancer 118(21):5424–5431

    Article  PubMed  Google Scholar 

  • Katz AW, Chawla S, Qu Z et al (2011) Stereotactic hypofractionated radiation therapy as a bridge to transplantation for hepatocellular carcinoma: clinical outcome and pathologic correlation. Int J Radiat Oncol Biol Phys 83(3):895–900

    Article  PubMed  Google Scholar 

  • Kavanagh BD, Timmerman RD, Benedict SH et al (2003) How should we describe the radioblologic effect of extracranial stereotactic radlosurgery: equivalent uniform dose or tumor control probability? Med Phys 30(3):321–324

    Article  CAS  PubMed  Google Scholar 

  • Keall PJ, Mageras GS, Balter JM et al (2006) The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys 33(10):3874–3900

    Article  PubMed  Google Scholar 

  • Khan SA, Davidson BR, Goldin RD et al (2012) Guidelines for the diagnosis and treatment of cholangiocarcinoma: an update. Gut 61(12):1657–1669

    Article  CAS  PubMed  Google Scholar 

  • Kim MN, Kim BK, Han KH et al (2015) Evolution from WHO to EASL and mRECIST for hepatocellular carcinoma: considerations for tumor response assessment. Expert Rev Gastroenterol Hepatol 9(3):335–348

    Article  CAS  PubMed  Google Scholar 

  • Kimura T, Aikata H, Takahashi S et al (2015) Stereotactic body radiotherapy for patients with small hepatocellular carcinoma ineligible for resection or ablation therapies. Hepatol Res 45(4):378–386

    Article  PubMed  Google Scholar 

  • Klein J, Dawson LA (2013) Hepatocellular carcinoma radiation therapy: review of evidence and future opportunities. Int J Radiat Oncol Biol Phys 87(1):22–32

    Article  PubMed  Google Scholar 

  • Kong M, Hong SE (2015) Optimal follow-up duration for evaluating objective response to radiotherapy in patients with hepatocellular carcinoma: a retrospective study. Chin J Cancer 34(2):79–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong M, Hong SE, Choi WS et al (2013) Treatment outcomes of helical intensity-modulated radiotherapy for unresectable hepatocellular carcinoma. Gut Liver 7(3):343–351

    Article  PubMed  PubMed Central  Google Scholar 

  • Kopek N, Holt MI, Hansen AT et al (2010) Stereotactic body radiotherapy for unresectable cholangiocarcinoma. Radiother Oncol 94(1):47–52

    Article  PubMed  Google Scholar 

  • Kudo M (2010) Real practice of hepatocellular carcinoma in Japan: conclusions of the Japan Society of Hepatology 2009 Kobe Congress. Oncology 78(Suppl 1):180–188

    Article  PubMed  Google Scholar 

  • Kwon JH, Bae SH, Kim JY et al (2010) Long-term effect of stereotactic body radiation therapy for primary hepatocellular carcinoma ineligible for local ablation therapy or surgical resection. Stereotactic radiotherapy for liver cancer. BMC Cancer 10:475

    Article  PubMed  PubMed Central  Google Scholar 

  • Lagendijk JJ, Raaymakers BW, van Vulpen M (2014) The magnetic resonance imaging-linac system. Semin Radiat Oncol 24(3):207–209

    Article  PubMed  Google Scholar 

  • Lee MT, Kim JJ, Dinniwell R et al (2009) Phase I study of individualized stereotactic body radiotherapy of liver metastases. J Clin Oncol 27(10):1585–1591

    Article  PubMed  Google Scholar 

  • Leinders SM, Breedveld S, Mendez Romero A et al (2013) Adaptive liver stereotactic body radiation therapy: automated daily plan reoptimization prevents dose delivery degradation caused by anatomy deformations. Int J Radiat Oncol Biol Phys 87(5):1016–1021

    Article  PubMed  Google Scholar 

  • Lencioni R, Llovet JM (2010) Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin Liver Dis 30(1):52–60

    Article  CAS  PubMed  Google Scholar 

  • Li J, Xiao Y (2013) Application of FDG-PET/CT in radiation oncology. Front Oncol 3:80

    PubMed  PubMed Central  Google Scholar 

  • Li XA, Stepaniak C, Gore E (2006) Technical and dosimetric aspects of respiratory gating using a pressure-sensor motion monitoring system. Med Phys 33(1):145–154

    Article  PubMed  Google Scholar 

  • Liu MT, Li SH, Chu TC et al (2004) Three-dimensional conformal radiation therapy for unresectable hepatocellular carcinoma patients who had failed with or were unsuited for transcatheter arterial chemoembolization. Jpn J Clin Oncol 34(9):532–539

    Article  PubMed  Google Scholar 

  • Lo SS, Teh BS, Mayr NA et al (2010) Stereotactic body radiation therapy for oligometastases. Discov Med 10(52):247–254

    PubMed  Google Scholar 

  • Lock M, Malayeri AA, Mian OY et al (2016) Computed tomography imaging assessment of postexternal beam radiation changes of the liver. Future Oncol 12(23):2729–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Louis C, Dewas S, Mirabel X et al (2010) Stereotactic radiotherapy of hepatocellular carcinoma: preliminary results. Technol Cancer Res Treat 9(5):479–487

    Article  CAS  PubMed  Google Scholar 

  • Mahadevan A, Dagoglu N, Mancias J et al (2015) Stereotactic Body Radiotherapy (SBRT) for intrahepatic and hilar cholangiocarcinoma. J Cancer 6(11):1099–1104

    Article  PubMed  PubMed Central  Google Scholar 

  • McCammon R, Schefter TE, Gaspar LE et al (2009) Observation of a dose-control relationship for lung and liver tumors after stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys 73(1):112–118

    Article  PubMed  Google Scholar 

  • Mendez Romero A, de Man RA (2016) Stereotactic body radiation therapy for primary and metastatic liver tumors: from technological evolution to improved patient care. Best Pract Res Clin Gastroenterol 30(4):603–616

    Article  PubMed  Google Scholar 

  • Mendez Romero A, Hoyer M (2012) Radiation therapy for liver metastases. Curr Opin Support Palliat Care 6(1):97–102

    Article  PubMed  Google Scholar 

  • Mendez Romero A, Wunderink W, Hussain SM et al (2006) Stereotactic body radiation therapy for primary and metastatic liver tumors: a single institution phase i-ii study. Acta Oncol 45(7):831–837

    Article  PubMed  Google Scholar 

  • Meyer JJ, Foster RD, Lev-Cohain N et al (2016) A phase I dose-escalation trial of single-fraction stereotactic radiation therapy for liver metastases. Ann Surg Oncol 23(1):218–224

    Article  PubMed  Google Scholar 

  • Molinelli S, de Pooter J, Mendez-Romero A et al (2008) Simultaneous tumour dose escalation and liver sparing in Stereotactic Body Radiation Therapy (SBRT) for liver tumours due to CTV-to-PTV margin reduction. Radiother Oncol 87(3):432–438

    Article  PubMed  Google Scholar 

  • Momm F, Schubert E, Henne K et al (2010) Stereotactic fractionated radiotherapy for Klatskin tumours. Radiother Oncol 95(1):99–102

    Article  PubMed  Google Scholar 

  • Mutic S, Dempsey JF (2014) The ViewRay system: magnetic resonance-guided and controlled radiotherapy. Semin Radiat Oncol 24(3):196–199

    Article  PubMed  Google Scholar 

  • Nehmeh SA, Erdi YE, Pan T et al (2004) Quantitation of respiratory motion during 4D-PET/CT acquisition. Med Phys 31(6):1333–1338

    Article  CAS  PubMed  Google Scholar 

  • Niemierko A (1997) Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Med Phys 24(1):103–110

    Article  CAS  PubMed  Google Scholar 

  • O’Connor JK, Trotter J, Davis GL et al (2012) Long-term outcomes of stereotactic body radiation therapy in the treatment of hepatocellular cancer as a bridge to transplantation. Liver Transpl 18(8):949–954

    Article  PubMed  Google Scholar 

  • Ohri N, Jackson A, Mendez-Romero A et al (2014) Local control following stereotactic body radiotherapy for liver tumors: a preliminary report of the AAPM Working Group for SBRT. Int J Radiat Oncol Biol Phys 90(1):S52

    Article  Google Scholar 

  • Olsen CC, Welsh J, Kavanagh BD et al (2009) Microscopic and macroscopic tumor and parenchymal effects of liver stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys 73(5):1414–1424

    Article  CAS  PubMed  Google Scholar 

  • Omata M, Lesmana LA, Tateishi R et al (2010) Asian Pacific Association for the study of the liver consensus recommendations on hepatocellular carcinoma. Hepatol Int 4(2):439–474

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan T, Mawlawi O (2008) PET/CT in radiation oncology. Med Phys 35(11):4955–4966

    Article  PubMed  Google Scholar 

  • Park JH, Yoon SM, Lim YS et al (2013) Two-week schedule of hypofractionated radiotherapy as a local salvage treatment for small hepatocellular carcinoma. J Gastroenterol Hepatol 28(10):1638–1642

    Article  PubMed  Google Scholar 

  • Polistina FA, Guglielmi R, Baiocchi C et al (2011) Chemoradiation treatment with gemcitabine plus stereotactic body radiotherapy for unresectable, non-metastatic, locally advanced hilar cholangiocarcinoma. Results of a five year experience. Radiother Oncol 99(2):120–123

    Article  CAS  PubMed  Google Scholar 

  • Pollom EL, Deng L, Pai RK et al (2015) Gastrointestinal toxicities with combined antiangiogenic and stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys 92(3):568–576

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Pool AE, Mendez Romero A, Wunderink W et al (2010) Stereotactic body radiation therapy for colorectal liver metastases. Br J Surg 97(3):377–382

    Article  PubMed  Google Scholar 

  • de Pooter JA, Mendez Romero A, Jansen WP et al (2006) Computer optimization of noncoplanar beam setups improves stereotactic treatment of liver tumors. Int J Radiat Oncol Biol Phys 66(3):913–922

    Article  PubMed  Google Scholar 

  • de Pooter JA, Wunderink W, Mendez Romero A et al (2007) PTV dose prescription strategies for SBRT of metastatic liver tumours. Radiother Oncol 85(2):260–266

    Article  PubMed  Google Scholar 

  • de Pooter JA, Mendez Romero A, Wunderink W et al (2008) Automated non-coplanar beam direction optimization improves IMRT in SBRT of liver metastasis. Radiother Oncol 88(3):376–381

    Article  PubMed  Google Scholar 

  • Price TR, Perkins SM, Sandrasegaran K et al (2012) Evaluation of response after stereotactic body radiotherapy for hepatocellular carcinoma. Cancer 118(12):3191–3198

    Article  PubMed  Google Scholar 

  • Que JY, Lin LC, Lin KL et al (2014) The efficacy of stereotactic body radiation therapy on huge hepatocellular carcinoma unsuitable for other local modalities. Radiat Oncol 9:120

    Article  PubMed  PubMed Central  Google Scholar 

  • Rim CH, Yang DS, Park YJ et al (2012) Effectiveness of high-dose three-dimensional conformal radiotherapy in hepatocellular carcinoma with portal vein thrombosis. Jpn J Clin Oncol 42(8):721–729

    Article  PubMed  Google Scholar 

  • Rossi L, Breedveld S, Heijmen BJ et al (2012) On the beam direction search space in computerized non-coplanar beam angle optimization for IMRT-prostate SBRT. Phys Med Biol 57(17):5441–5458

    Article  PubMed  Google Scholar 

  • Rule W, Timmerman R, Tong L et al (2011) Phase I dose-escalation study of stereotactic body radiotherapy in patients with hepatic metastases. Ann Surg Oncol 18(4):1081–1087

    Article  PubMed  Google Scholar 

  • Rusthoven KE, Kavanagh BD, Cardenes H et al (2009) Multi-institutional phase I/II trial of stereotactic body radiation therapy for liver metastases. J Clin Oncol 27(10):1572–1578

    Article  PubMed  Google Scholar 

  • Sandroussi C, Dawson LA, Lee M et al (2010) Radiotherapy as a bridge to liver transplantation for hepatocellular carcinoma. Transpl Int 23(3):299–306

    Article  PubMed  Google Scholar 

  • Sanuki N, Takeda A, Oku Y et al (2014) Stereotactic body radiotherapy for small hepatocellular carcinoma: a retrospective outcome analysis in 185 patients. Acta Oncol 53(3):399–404

    Article  PubMed  Google Scholar 

  • Sanuki-Fujimoto N, Takeda A, Ohashi T et al (2010) CT evaluations of focal liver reactions following stereotactic body radiotherapy for small hepatocellular carcinoma with cirrhosis: relationship between imaging appearance and baseline liver function. Br J Radiol 83(996):1063–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schefter TE, Kavanagh BD, Timmerman RD et al (2005) A phase I trial of stereotactic body radiation therapy (SBRT) for liver metastases. Int J Radiat Oncol Biol Phys 62(5):1371–1378

    Article  PubMed  Google Scholar 

  • Scorsetti M, Arcangeli S, Tozzi A et al (2013) Is stereotactic body radiation therapy an attractive option for unresectable liver metastases? A preliminary report from a phase 2 trial. Int J Radiat Oncol Biol Phys 86(2):336–342

    Article  PubMed  Google Scholar 

  • Scorsetti M, Comito T, Tozzi A et al (2015a) Final results of a phase II trial for stereotactic body radiation therapy for patients with inoperable liver metastases from colorectal cancer. J Cancer Res Clin Oncol 141(3):543–553

    Article  CAS  PubMed  Google Scholar 

  • Scorsetti M, Comito T, Cozzi L et al (2015b) The challenge of inoperable hepatocellular carcinoma (HCC): results of a single-institutional experience on stereotactic body radiation therapy (SBRT). J Cancer Res Clin Oncol 141(7):1301–1309

    Article  CAS  PubMed  Google Scholar 

  • Seo YS, Kim MS, Yoo SY et al (2010) Preliminary result of stereotactic body radiotherapy as a local salvage treatment for inoperable hepatocellular carcinoma. J Surg Oncol 102(3):209–214

    Article  PubMed  Google Scholar 

  • Seppenwoolde Y, Wunderink W, Wunderink-van Veen SR et al (2011) Treatment precision of image-guided liver SBRT using implanted fiducial markers depends on marker-tumour distance. Phys Med Biol 56(17):5445–5468

    Article  CAS  PubMed  Google Scholar 

  • Sharfo AW, Voet PW, Breedveld S et al (2015) Comparison of VMAT and IMRT strategies for cervical cancer patients using automated planning. Radiother Oncol 114(3):395–401

    Article  PubMed  Google Scholar 

  • Sharfo AW, Breedveld S, Voet PW et al (2016) Validation of fully automated VMAT plan generation for library-based plan-of-the-day cervical cancer radiotherapy. PLoS One 11(12):e0169202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharfo AWM, Dirkx MLP, Breedveld S, Méndez Romero A, Heijmen BJM (n.d.) VMAT plus a few computer-optimized non-coplanar IMRT beams (VMAT+)—a novel treatment strategy tested for liver SBRT. Radioth Oncol (accepted for publication)

    Google Scholar 

  • Shinohara ET, Mitra N, Guo M et al (2008) Radiation therapy is associated with improved survival in the adjuvant and definitive treatment of intrahepatic cholangiocarcinoma. Int J Radiat Oncol Biol Phys 72(5):1495–1501

    Article  PubMed  Google Scholar 

  • Simmonds PC, Primrose JN, Colquitt JL et al (2006) Surgical resection of hepatic metastases from colorectal cancer: a systematic review of published studies. Br J Cancer 94(7):982–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stintzing S, Hoffmann RT, Heinemann V et al (2010) Frameless single-session robotic radiosurgery of liver metastases in colorectal cancer patients. Eur J Cancer 46(6):1026–1032

    Article  CAS  PubMed  Google Scholar 

  • Stintzing S, Grothe A, Hendrich S et al (2013) Percutaneous radiofrequency ablation (RFA) or robotic radiosurgery (RRS) for salvage treatment of colorectal liver metastases. Acta Oncol 52(5):971–977

    Article  PubMed  Google Scholar 

  • Su TS, Liang P, Lu HZ et al (2016) Stereotactic body radiation therapy for small primary or recurrent hepatocellular carcinoma in 132 Chinese patients. J Surg Oncol 113(2):181–187

    Article  PubMed  Google Scholar 

  • Suit H, Skates S, Taghian A et al (1992) Clinical implications of heterogeneity of tumor response to radiation therapy. Radiother Oncol 25(4):251–260

    Article  CAS  PubMed  Google Scholar 

  • Swaminath A, Knox JJ, Brierley JD et al (2016) Changes in liver volume observed following sorafenib and liver radiation therapy. Int J Radiat Oncol Biol Phys 94(4):729–737

    Article  CAS  PubMed  Google Scholar 

  • Takeda A, Sanuki N, Eriguchi T et al (2014) Stereotactic ablative body radiotherapy for previously untreated solitary hepatocellular carcinoma. J Gastroenterol Hepatol 29(2):372–379

    Article  CAS  PubMed  Google Scholar 

  • Tao R, Krishnan S, Bhosale PR et al (2016) Ablative radiotherapy doses lead to a substantial prolongation of survival in patients with inoperable intrahepatic cholangiocarcinoma: a retrospective dose response analysis. J Clin Oncol 34(3):219–226

    Article  CAS  PubMed  Google Scholar 

  • Tse RV, Hawkins M, Lockwood G et al (2008) Phase I study of individualized stereotactic body radiotherapy for hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J Clin Oncol 26(4):657–664

    Article  PubMed  Google Scholar 

  • Valle J, Wasan H, Palmer DH et al (2010) Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med 362(14):1273–1281

    Article  CAS  PubMed  Google Scholar 

  • Vautravers-Dewas C, Dewas S, Bonodeau F et al (2011) Image-guided robotic stereotactic body radiation therapy for liver metastases: is there a dose response relationship? Int J Radiat Oncol Biol Phys 81(3):e39–e47

    Article  PubMed  Google Scholar 

  • Voet PW, Breedveld S, Dirkx ML et al (2012) Integrated multicriterial optimization of beam angles and intensity profiles for coplanar and noncoplanar head and neck IMRT and implications for VMAT. Med Phys 39(8):4858–4865

    Article  PubMed  Google Scholar 

  • Voet PW, Dirkx n, Breedveld S et al (2013a) Automated generation of IMRT treatment plans for prostate cancer patients with metal hip prostheses: comparison of different planning strategies. Med Phys 40(7):701–704

    Article  Google Scholar 

  • Voet PW, Dirkx ML, Breedveld S et al (2013b) Toward fully automated multicriterial plan generation: a prospective clinical study. Int J Radiat Oncol Biol Phys 85(3):866–872

    Article  PubMed  Google Scholar 

  • Voet PW, Dirkx ML, Breedveld S et al (2014) Fully automated volumetric modulated arc therapy plan generation for prostate cancer patients. Int J Radiat Oncol Biol Phys 88(5):1175–1179

    Article  PubMed  Google Scholar 

  • Wahl DR, Stenmark MH, Tao Y et al (2016) Outcomes after stereotactic body radiotherapy or radiofrequency ablation for hepatocellular carcinoma. J Clin Oncol 34(5):452–459

    Article  CAS  PubMed  Google Scholar 

  • Weiner AA, Olsen J, Ma D et al (2016) Stereotactic body radiotherapy for primary hepatic malignancies—report of a phase I/II institutional study. Radiother Oncol 121(1):79–85

    Article  PubMed  PubMed Central  Google Scholar 

  • Welling TH, Feng M, Wan S et al (2014) Neoadjuvant stereotactic body radiation therapy, capecitabine, and liver transplantation for unresectable hilar cholangiocarcinoma. Liver Transpl 20(1):81–88

    Article  PubMed  Google Scholar 

  • Wharton JT, Delclos L, Gallager S et al (1973) Radiation hepatitis induced by abdominal irradiation with the cobalt 60 moving strip technique. Am J Roentgenol Radium Therapy, Nucl Med 117(1):73–80

    Article  CAS  Google Scholar 

  • Withers HR, Thames HD Jr, Peters LJ (1983) A new isoeffect curve for change in dose per fraction. Radiother Oncol 1(2):187–191

    Article  CAS  PubMed  Google Scholar 

  • Wong SL, Mangu PB, Choti MA et al (2010) American Society of Clinical Oncology 2009 clinical evidence review on radiofrequency ablation of hepatic metastases from colorectal cancer. J Clin Oncol 28(3):493–508

    Article  PubMed  Google Scholar 

  • Woods K, Nguyen D, Tran A et al (2016) Viability of non-coplanar VMAT for liver SBRT as compared to coplanar VMAT and beam orientation optimized 4pi IMRT. Adv Radiat Oncol 1(1):67–75

    Article  PubMed  PubMed Central  Google Scholar 

  • Woudstra E, Storchi PR (2000) Constrained treatment planning using sequential beam selection. Phys Med Biol 45(8):2133–2149

    Article  CAS  PubMed  Google Scholar 

  • Wulf J, Guckenberger M, Haedinger U et al (2006) Stereotactic radiotherapy of primary liver cancer and hepatic metastases. Acta Oncol 45(7):838–847

    Article  PubMed  Google Scholar 

  • Wunderink W, Mendez-Romero A, de Kruijf W et al (2008) Reduction of respiratory liver tumor motion by abdominal compression in stereotactic body frame, analyzed by tracking fiducial markers implanted in liver. Int J Radiat Oncol Biol Phys 71(3):907–915

    Article  PubMed  Google Scholar 

  • Wunderink W, Mendez-Romero A, Seppenwoolde Y et al (2010) Potentials and limitations of guiding liver stereotactic body radiation therapy set-up on liver-implanted fiducial markers. Int J Radiat Oncol Biol Phys 77(5):1573–1583

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandra Méndez Romero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Méndez Romero, A. et al. (2017). Alternate Fractionation for Hepatic Tumors. In: Trombetta, M., Pignol, JP., Montemaggi, P., Brady, L.W. (eds) Alternate Fractionation in Radiotherapy. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/174_2017_35

Download citation

  • DOI: https://doi.org/10.1007/174_2017_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51197-9

  • Online ISBN: 978-3-319-51198-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics