Skip to main content

Lung Cancer

  • Chapter
  • First Online:
Alternate Fractionation in Radiotherapy

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 648 Accesses

Abstract

Non-small-cell lung cancer (NSCLC), the most common cause of cancer death worldwide, is amenable to surgery in patients with early or localized disease (approximately 15–20% of cases) (Shields 1993). Surgical resection of stage I (T1–2, N0) NSCLC yields satisfying outcome results with 5-year survival rates of 60–70%, and remains at present the golden standard in this population. Nevertheless its use is restricted to compliant, medically fit patients (Naruke et al. 1988; Mountain 1997; Adebonojo et al. 1999). Patients refusing surgery or deemed medically inoperable due to comorbidities, who despite impaired life expectancy would ultimately die of cancer progression in more than half of cases if no specific cancer treatment is performed (McGarry et al. 2002), have been treated with nonsurgical therapies such as standard fractionated radiotherapy, with disappointing results (Dosoretz et al. 1992). Optimal tumor control might be obtained by adequate dose escalation, though at the expense of increased toxicity with traditional radiotherapy techniques and schedules (Rosenzweig et al. 2005). Moreover, irradiation of lung lesions must also take into account tumor motion during the breathing cycle that can result, during expiration and deep inspiration, in excursions up to 3 cm as a function of tumor location and respiratory pattern (Seppenwoolde et al. 2002). Since wide margins would be needed to cover the presumed range of motion, detection of tumor position during the treatment course may contribute to maintain acceptable treatment volumes, thus reducing exposure of healthy lung to radiation damage. Therefore improvement in dose delivery and in target recognition became of primary interest in radiation research during the last decade, pushing toward development of stereotactic body radiotherapy (SBRT) as a valuable option in this setting. In a pivotal work comparing four-dimensional SBRT with three-dimensional conformal radiotherapy, an increase up to 75% in mean biological dose was possible without significant additional dose to the organs at risk, in particular lung (Prevost et al. 2008). Data from retrospective series of unresectable patients showed promising local control rates of 80–100% (Onishi et al. 2004; van der Voort et al. 2009; Lagerwaard et al. 2008) and overall survival rates of 40–80% at 3 years (Simone et al. 2013), in particular when biologically effective dose (BED) superior to 100 Gy is delivered (Onishi et al. 2004). It is also noteworthy that overall survival was comparable to surgery in SBRT patients when treatment groups were adjusted for variables (age, comorbidities, etc.) that might lead to a selection bias (Palma et al. 2011; Soldà et al. 2013). However, no direct comparison is available at present since the two phase III trials; STARS (StereoTActic Radiotherapy vs. Surgery) and ROSEL (Radiosurgery Or Surgery for operable Early stage non-small-cell Lung cancer) comparing SBRT to surgical resection were prematurely closed due to low accrual (Chang et al. 2015). These favorable results are achieved by modern image-guided radiotherapy systems that combine high-dose delivery with accurate treatment guidance by integration of linear accelerators with medical imaging devices like Cone-Beam CT, MegaVoltage CT (Tomotherapy®: Accuray Inc., Sunnyvale, California, USA) or X-ray tubes (CyberKnife®; Accuray Inc., Sunnyvale, California, USA). In this chapter, a summary of methods to minimize the impact of tumor motion and clinical aspects of SBRT in the treatment of primary lung tumors is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adebahr S, Collette S, Shash E et al (2015) LungTech, an EORTC phase II trial of stereotactic body radiotherapy for centrally located lung tumours: a clinical perspective. Br J Radiol 88:20150036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adebonojo SA, Bowser AN et al (1999) Impact of revised stage classification of lung cancer on survival: a military experience. Chest 115:1507–1513

    Article  CAS  PubMed  Google Scholar 

  • Adler JR Jr, Chang SD, Murphy MJ et al (1997) The Cyberknife®: a frameless robotic system for radiosurgery. Stereotact Funct Neurosurg 69:124–128

    Article  PubMed  Google Scholar 

  • Asai K, Shioyama Y, Nakamura K et al (2012) Radiation-induced rib fractures after hypofractionated stereotactic body radiation therapy: risk factors and dose-volume relationship. Int J Radiat Oncol Biol Phys 84:768–773

    Article  PubMed  Google Scholar 

  • Bahig H, Campeau MP, Vu T et al (2013) Predictive parameters of CyberKnife fiducial-less (XSight Lung) applicability for treatment of early non-small cell lung cancer: a single-center experience. Int J Radiat Oncol Biol Phys 87:583–589

    Article  PubMed  Google Scholar 

  • Barnes EA, Murray BR, Robinson DM et al (2001) Dosimetric evaluation of lung tumor immobilization using breath hold at deep inspiration. Int J Radiat Oncol Biol Phys 50:1091–1098

    Article  CAS  PubMed  Google Scholar 

  • Barriger RB, Forquer JA, Brabham JG et al (2012) A dose-volume analysis of radiation pneumonitis in non-small cell lung cancer patients treated with stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys 82:457–462

    Article  PubMed  Google Scholar 

  • Baumann P, Nyman J, Hoyer M et al (2009) Outcome in a prospective phase II trial of medically inoperable stage I non-small-cell lung cancer patients treated with stereotactic body radiotherapy. J Clin Oncol 27(20):3290–3296

    Article  PubMed  Google Scholar 

  • Bibault JE, Prevost B, Dansin E et al (2012) Image-guided robotic stereotactic radiation therapy with fiducial-free tumor tracking for lung cancer. Radiat Oncol 7:102

    Article  PubMed  PubMed Central  Google Scholar 

  • Bongers EM, Haasbeek CJ, Lagerwaard FJ et al (2011) Incidence and risk factors for chest wall toxicity after risk-adapted stereotactic radiotherapy for early-stage lung cancer. J Thorac Oncol 6:2052–2057

    Article  PubMed  Google Scholar 

  • Borst GR, Ishikawa M, Nijkamp J et al (2009) Radiation pneumonitis in patients treated for malignant pulmonary lesions with hypofractionated radiation therapy. Radiother Oncol 91:307–313

    Article  PubMed  Google Scholar 

  • Bral S, Gevaert T, Linthout N et al (2011) Prospective, risk-adapted strategy of stereotactic body radiotherapy for early-stage non-small-cell lung cancer: results of a phase II trial. Int J Radiat Oncol Biol Phys 80:1343–1349

    Article  PubMed  Google Scholar 

  • Casamassima F, Cavedon C, Francescon P et al (2006) Use of motion tracking in stereotactic body radiotherapy: evaluation of uncertainty in off-target dose distribution and optimization strategies. Acta Oncol 45:943–947

    Article  CAS  PubMed  Google Scholar 

  • Chang SD, Adler JR (2001) Robotics and radiosurgery—the cyberknife. Stereotact Funct Neurosurg 76:204–208

    Article  CAS  PubMed  Google Scholar 

  • Chang JY, Balter PA, Dong L et al (2008) Stereotactic body radiation therapy in centrally and superiorly located stage I or isolated recurrent non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 72:967–971

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang JY, Li QQ, Xu QY et al (2014) Stereotactic ablative radiation therapy for centrally located early stage or isolated parenchymal recurrences of non-small cell lung cancer: how to fly in a “no fly zone”. Int J Radiat Oncol Biol Phys 88:1120–1128

    Article  PubMed  Google Scholar 

  • Chang JY, Senan S, Paul MA et al (2015) Stereotactic ablative radiotherapy versus lobectomy for operable stage I non-small-cell lung cancer: a pooled analysis of two randomised trials. Lancet Oncol 16:630–637

    Article  PubMed  PubMed Central  Google Scholar 

  • Chi A, Liao Z, Nguyen NP et al (2010) Systemic review of the patterns of failure following stereotactic body radiation therapy in early-stage non-small-cell lung cancer: clinical implications. Radiother Oncol 94:1–11

    Article  PubMed  Google Scholar 

  • Crabtree TD, Denlinger CE, Meyers BF et al (2010) Stereotactic body radiation therapy versus surgical resection for stage I non-small cell lung cancer. J Thorac Cardiovasc Surg 140:377–386

    Article  PubMed  Google Scholar 

  • Darby SC, Ewertz M, McGale P et al (2013) Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med 368:987–998

    Article  CAS  PubMed  Google Scholar 

  • Dosoretz DE, Katin MJ, Blitzer PH et al (1992) Radiation therapy in the management of medically inoperable carcinoma of the lung: results and implications for future treatment strategies. Int J Radiat Oncol Biol Phys 24:3–9

    Article  CAS  PubMed  Google Scholar 

  • Duijm M, Schillemans W, Aerts JG et al (2016) Dose and volume of the irradiated main bronchi and related side effects in the treatment of central lung tumors with stereotactic radiotherapy. Semin Radiat Oncol 26:140–148

    Article  PubMed  Google Scholar 

  • Dunlap NE, Cai J, Biedermann GB et al (2010) Chest wall volume receiving >30 Gy predicts risk of severe pain and/or rib fracture after lung stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys 76:796–801

    Article  PubMed  Google Scholar 

  • Fakiris AJ, McGarry RC, Yiannoutsos CT et al (2009) Stereotactic body radiation therapy for early-stage non-small-cell lung carcinoma: four-year results of a prospective phase II study. Int J Radiat Oncol Biol Phys 75:677–682

    Article  PubMed  Google Scholar 

  • Forquer JA, Fakiris AJ, Timmerman RD et al (2009) Brachial plexopathy from stereotactic body radiotherapy in early-stage NSCLC: dose-limiting toxicity in apical tumor sites. Radiother Oncol 93:408–413

    Article  PubMed  Google Scholar 

  • Giraud P, Yorke E, Ford EC et al (2006) Reduction of organ motion in lung tumors with respiratory gating. Lung Cancer 51:41–51

    Article  PubMed  Google Scholar 

  • Grills IS, Mangona VS, Welsh R et al (2010) Outcomes after stereotactic lung radiotherapy or wedge resection for stage I non-small-cell lung cancer. J Clin Oncol 28:928–935

    Article  PubMed  Google Scholar 

  • Guckenberger M, Wilbert J, Meyer J et al (2007a) Is a single respiratory correlated 4D-CT study sufficient for evaluation of breathing motion? Int J Radiat Oncol Biol Phys 67:1352–1359

    Article  PubMed  Google Scholar 

  • Guckenberger M, Heilman K, Wulf J et al (2007b) Pulmonary injury and tumor response after stereotactic body radiotherapy (SBRT): results of a serial follow-up CT study. Radiother Oncol 85:435–442

    Article  PubMed  Google Scholar 

  • Haasbeek CJ, Lagerwaard FJ, Slotman BJ et al (2011 Dec) Outcomes of stereotactic ablative radiotherapy for centrally located early-stage lung cancer. J Thorac Oncol 6(12):2036–2043

    Article  PubMed  Google Scholar 

  • Hansen AT, Petersen JB, Hoyer M (2006) Internal movement, set-up accuracy and margins for stereotactic body radiotherapy using a stereotactic body frame. Acta Oncol 45:948–952

    Article  PubMed  Google Scholar 

  • Hara R, Itami J, Kondo T et al (2002) Stereotactic single high dose irradiation of lung tumors under respiratory gating. Radiother Oncol 63:159–163

    Article  PubMed  Google Scholar 

  • Hof H, Muenter M, Oetzel D et al (2007) Stereotactic single-dose radiotherapy (radiosurgery) of early stage nonsmall-cell lung cancer (NSCLC). Cancer 110:148–155

    Article  PubMed  Google Scholar 

  • Hunjan S, Starkschall G, Prado K et al (2010) Lack of correlation between external fiducial positions and internal tumor positions during breath-hold CT. Int J Radiat Oncol Biol Phys 76:1586–1591

    Article  PubMed  Google Scholar 

  • Jensen HR, Hansen O, Hjelm-Hansen M et al (2008) Inter- and intrafractional movement of the tumour in extracranial stereotactic radiotherapy of NSCLC. Acta Oncol 47:1432–1437

    Article  PubMed  Google Scholar 

  • Jiang SB (2006) Radiotherapy of mobile tumors. Semin Radiat Oncol 16:239–248

    Article  CAS  PubMed  Google Scholar 

  • Kocak Z, Evans ES, Zhou SM et al (2005) Challenges in defining radiation pneumonitis in patients with lung cancer. Int J Radiat Oncol Biol Phys 62:635–638

    Article  PubMed  Google Scholar 

  • Lagerwaard FJ, Haasbeek CJ, Smit EF et al (2008) Outcomes of risk-adapted fractionated stereotactic radiotherapy for stage I non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 70:685–692

    Article  PubMed  Google Scholar 

  • Le QT, Loo BW, Ho A et al (2006) Results of a phase I dose-escalation study using single-fraction stereotactic radiotherapy for lung tumors. J Thorac Oncol 1:802–809

    Article  PubMed  Google Scholar 

  • Mah D, Hanley J, Rosenzweig KE et al (2000) Technical aspects of the deep inspiration breath-hold technique in the treatment of thoracic cancer. Int J Radiat Oncol Biol Phys 48:1175–1185

    Article  CAS  PubMed  Google Scholar 

  • McGarry RC, Song G, des Rosiers P et al (2002) Observation-only management of early stage, medically inoperable lung cancer: poor outcome. Chest 121:1155–1158

    Article  PubMed  Google Scholar 

  • Milano MT, Chen Y, Katz AW et al (2009) Central thoracic lesions treated with hypofractionated stereotactic body radiotherapy. Radiother Oncol 91:301–306

    Article  PubMed  Google Scholar 

  • Miller KL, Shafman TD, Anscher MS et al (2005) Bronchial stenosis: an underreported complication of high-dose external beam radiotherapy for lung cancer? Int J Radiat Oncol Biol Phys 61:64–69

    Article  PubMed  Google Scholar 

  • Modh A, Rimner A, Williams E et al (2014) Local control and toxicity in a large cohort of central lung tumors treated with stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys 90:1168–1176

    Article  PubMed  PubMed Central  Google Scholar 

  • Mountain CF (1997) Revisions in the international system for staging lung cancer. Chest 111:1710–1717

    Article  CAS  PubMed  Google Scholar 

  • Murphy MJ (2004) Tracking moving organs in real time. Semin Radiat Oncol 14:91–100

    Article  PubMed  Google Scholar 

  • Nagata Y, Takayama K, Matsuo Y et al (2005) Clinical outcomes of a phase I/II study of 48 Gy of stereotactic body radiotherapy in 4 fractions for primary lung cancer using a stereotactic body frame. Int J Radiat Oncol Biol Phys 63:1427–1431

    Article  PubMed  Google Scholar 

  • Nambu A, Onishi H, Aoki S, Koshiishi T et al (2011) Rib fracture after stereotactic radiotherapy on follow-up thin-section computed tomography in 177 primary lung cancer patients. Radiother Oncol 6:137

    Article  Google Scholar 

  • Naruke T, Goya T, Tsuchiya R et al (1988) Prognosis and survival in resected lung carcinoma based on the new international staging system. J Thorac Cardiovasc Surg 96:440–447

    CAS  PubMed  Google Scholar 

  • Ng AW, Tung SY, Wong VY (2008) Hypofractionated stereotactic radiotherapy for medically inoperable stage I non-small cell lung cancer—report on clinical outcome and dose to critical organs. Radiother Oncol 87:24–28

    Article  PubMed  Google Scholar 

  • Nishimura S, Takeda A, Sanuki N et al (2014) Toxicities of organs at risk in the mediastinal and hilar regions following stereotactic body radiotherapy for centrally located lung tumors. J Thorac Oncol 9:1370–1376

    Article  CAS  PubMed  Google Scholar 

  • Nuyttens JJ, van de Pol M (2012 Sep) The CyberKnife® radiosurgery system for lung cancer. Expert Rev Med Devices 9(5):465–475

    Article  CAS  PubMed  Google Scholar 

  • Nuyttens JJ, van der Voort van Zyp NC, Praag J et al (2012) Outcome of four-dimensional stereotactic radiotherapy for centrally located lung tumors. Radiother Oncol 102:383–387

    Article  PubMed  Google Scholar 

  • Nuyttens JJ, Moiseenko V, McLaughlin M et al (2016) Esophageal dose tolerance in patients treated with stereotactic body radiation therapy. Semin Radiat Oncol 26:120–128

    Article  PubMed  Google Scholar 

  • Nyman J, Johansson KA, Hulten U (2006) Stereotactic hypofractionated radiotherapy for stage I non-small cell lung cancer—mature results for medically inoperable patients. Lung Cancer 51:97–103

    Article  PubMed  Google Scholar 

  • Onimaru R, Shirato H, Shimizu S et al (2003) Tolerance of organs at risk in small-volume, hypofractionated, image-guided radiotherapy for primary and metastatic lung cancers. Int J Radiat Oncol Biol Phys 56:126–135

    Article  PubMed  Google Scholar 

  • Onishi H, Araki T, Shirato H et al (2004) Stereotactic hypofractionated high-dose irradiation for stage I nonsmall cell lung carcinoma: clinical outcomes in 245 subjects in a Japanese multiinstitutional study. Cancer 101:1623–1631

    Article  PubMed  Google Scholar 

  • Palma D, Visser O, Lagerwaard FJ et al (2011) Treatment of stage I NSCLC in elderly patients: a population-based matched-pair comparison of stereotactic radiotherapy versus surgery. Radiother Oncol 101:240–244

    Article  PubMed  Google Scholar 

  • Paravati AJ, Johnstone DW, Seltzer MA et al (2014) Negative predictive value (NPV) of FDG PET-CT for nodal disease in clinically node-negative early stage lung cancer (AJCC 7th ed T1-T2aN0) and identification of risk factors for occult nodal (pN1-N2) metastasis: implications for SBRT. Transl Cancer Res 3:313–319

    Google Scholar 

  • Prevost JB, Voet P, Hoogeman M et al (2008) Four-dimensional stereotactic radiotherapy for early stage non-small cell lung cancer: a comparative planning study. Technol Cancer Res Treat 7:27–34

    Article  PubMed  Google Scholar 

  • Purdy JA (2004) Current ICRU definitions of volumes: limitations and future directions. Semin Radiat Oncol 14:27–40

    Article  PubMed  Google Scholar 

  • Puri V, Crabtree TD, Kymes S et al (2012) A comparison of surgical intervention and stereotactic body radiation therapy for stage I lung cancer in high-risk patients: a decision analysis. J Thorac Cardiovasc Surg 143:428–436

    Article  PubMed  Google Scholar 

  • Ricardi U, Filippi AR, Guarneri A et al (2010) Stereotactic body radiation therapy for early stage non-small cell lung cancer: results of a prospective trial. Lung Cancer 68:72–77

    Article  PubMed  Google Scholar 

  • Robinson CG, DeWees TA, El Naqa IM et al (2013) Patterns of failure after stereotactic body radiation therapy or lobar resection for clinical stage I non-small-cell lung cancer. J Thorac Oncol 8:192–201

    Article  PubMed  Google Scholar 

  • Rosenzweig KE, Hanley J, Mah D et al (2000) The deep inspiration breath-hold technique in the treatment of inoperable non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 48:81–87

    Article  CAS  PubMed  Google Scholar 

  • Rosenzweig KE, Fox JL, Yorke E et al (2005) Results of a phase I dose-escalation study using three-dimensional conformal radiotherapy in the treatment of inoperable nonsmall cell lung carcinoma. Cancer 103:2118–2127

    Article  PubMed  Google Scholar 

  • Sayeh S, Wang J, Main WT et al (2007) Respiratory motion tracking for robotic radiosurgery. In: Urschel HC Jr, Kresl JJ, Luketich JD, Papiez L, Timmerman RD (eds) Robotic radiosurgery: treating tumors that move with respiration. Springer, Berlin, pp 15–29

    Chapter  Google Scholar 

  • Senthi S, Lagerwaard FJ, Haasbeek CJ, Slotman BJ et al (2012) Patterns of disease recurrence after stereotactic ablative radiotherapy for early stage non-small-cell lung cancer: a retrospective analysis. Lancet Oncol 13:802–809

    Article  PubMed  Google Scholar 

  • Seppenwoolde Y, Shirato H, Kitamura K et al (2002) Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys 53:822–834

    Article  PubMed  Google Scholar 

  • Shah A, Hahn SM, Stetson RL, Friedberg JS, Pechet TT, Sher DJ (2013) Cost-effectiveness of stereotactic body radiation therapy versus surgical resection for stage I non-small cell lung cancer. Cancer 119:3123–3132

    Article  PubMed  Google Scholar 

  • Shields TW (1993) Surgical therapy for carcinoma of the lung. Clin Chest Med 14:121–147

    CAS  PubMed  Google Scholar 

  • Shirata Y, Jingu K, Koto M et al (2012) Prognostic factors for local control of stage I non-small cell lung cancer in stereotactic radiotherapy: a retrospective analysis. Radiat Oncol 7:182

    Article  PubMed  PubMed Central  Google Scholar 

  • Shirato H, Shimizu S, Kitamura K et al (2000a) Four-dimensional treatment planning and fluoroscopic real-time tumor tracking radiotherapy for moving tumor. Int J Radiat Oncol Biol Phys 48:435–442

    Article  CAS  PubMed  Google Scholar 

  • Shirato H, Shimizu S, Kunieda T et al (2000b) Physical aspects of a real-time tumor-tracking system for gated radiotherapy. Int J Radiat Oncol Biol Phys 48:1187–1195

    Article  CAS  PubMed  Google Scholar 

  • Shirvani SM, Jiang J, Chang JY et al (2012) Comparative effectiveness of 5 treatment strategies for early-stage non-small cell lung cancer in the elderly. Int J Radiat Oncol Biol Phys 84:1060–1070

    Article  PubMed  PubMed Central  Google Scholar 

  • Simone CB 2nd, Wildt B, Haas AR et al (2013) Stereotactic body radiation therapy for lung cancer. Chest 143:1784–1790

    Article  CAS  PubMed  Google Scholar 

  • Soldà F, Lodge M, Ashley S et al (2013) Stereotactic radiotherapy (SABR) for the treatment of primary non-small cell lung cancer systematic review and comparison with a surgical cohort. Radiother Oncol 109:1–7

    Article  PubMed  Google Scholar 

  • Song SY, Choi W, Shin SS et al (2009) Fractionated stereotactic body radiation therapy for medically inoperable stage I lung cancer adjacent to central large bronchus. Lung Cancer 66:89–93

    Article  PubMed  Google Scholar 

  • Stephans KL, Djemil T, Reddy CA et al (2009) Comprehensive analysis of pulmonary function test (PFT) changes after stereotactic body radiotherapy (SBRT) for stage I lung cancer in medically inoperable patients. J Thorac Oncol 4:838–844

    Article  PubMed  Google Scholar 

  • Stephans KL, Djemil T, Diaconu C et al (2014) Esophageal dose tolerance to hypofractionated stereotactic body radiation therapy: risk factors for late toxicity. Int J Radiat Oncol Biol Phys 90:197–202

    Article  PubMed  Google Scholar 

  • Taremi M, Hope A, Dahele M et al (2012) Stereotactic body radiotherapy for medically inoperable lung cancer: prospective, single-center study of 108 consecutive patients. Int J Radiat Oncol Biol Phys 82:967–973

    Article  PubMed  Google Scholar 

  • Timmerman R, Papiez L, McGarry R et al (2003) Extracranial stereotactic radioablation: results of a phase I study in medically inoperable stage I non-small cell lung cancer. Chest 124:1946–1955

    Article  PubMed  Google Scholar 

  • Timmerman R, McGarry R, Yiannoutsos C et al (2006) Excessive toxicity when treating central tumors in a phase II study of stereotactic body radiation therapy for medically inoperable early-stage lung cancer. J Clin Oncol 24:4833–4839

    Article  PubMed  Google Scholar 

  • Timmerman R, Paulus R, Galvin J et al (2010) Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA 303:1070–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Underberg RW, Lagerwaard FJ, Slotman BJ et al (2005) Use of maximum intensity projections (MIP) for target volume generation in 4D-CT scans for lung cancer. Int J Radiat Oncol Biol Phys 63:253–260

    Article  PubMed  Google Scholar 

  • Varlotto J, Fakiris A, Flickinger J et al (2013) Matched-pair and propensity score comparisons of outcomes of patients with clinical stage I non-small cell lung cancer treated with resection or stereotactic radiosurgery. Cancer 119:2683–2691

    Article  PubMed  Google Scholar 

  • Verstegen NE, Lagerwaard FJ, Haasbeek CJ et al (2011) Outcomes of stereotactic ablative radiotherapy following a clinical diagnosis of stage I NSCLC: comparison with a contemporaneous cohort with pathologically proven disease. Radiother Oncol 101:250–254

    Article  PubMed  Google Scholar 

  • Verstegen NE, Oosterhuis JW, Palma DA et al (2013) Stage I-II non-small-cell lung cancer treated using either stereotactic ablative radiotherapy (SABR) or lobectomy by video-assisted thoracoscopic surgery (VATS): outcomes of a propensity score-matched analysis. Ann Oncol 24:1543–1548

    Article  CAS  PubMed  Google Scholar 

  • Videtic GM, Hu C, Singh AK et al (2015) A randomized phase 2 study comparing 2 stereotactic body radiation therapy schedules for medically inoperable patients with stage I peripheral non-small cell lung cancer: NRG Oncology RTOG 0915 (NCCTG N0927). Int J Radiat Oncol Biol Phys 93:757–764

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Voort van Zyp NC, Prevost JB et al (2009) Stereotactic radiotherapy with real-time tumor tracking for non-small cell lung cancer: clinical outcome. Radiother Oncol 91:296–300

    Article  PubMed  Google Scholar 

  • van der Voort N, van Zyp NC, Prevost JB et al (2009) Stereotactic radiotherapy with real-time tumor tracking for non-small cell lung cancer: clinical outcome. Radiother Oncol 91:296–300

    Article  Google Scholar 

  • Welsh J, Thomas J, Shah D et al (2011) Obesity increases the risk of chest wall pain from thoracic stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys 81:91–96

    Article  PubMed  Google Scholar 

  • Whyte RI, Crownover R, Murphy MJ et al (2003) Stereotactic radiosurgery for lung tumors: preliminary report of a phase I trial. Ann Thorac Surg 75:1097–1101

    Article  PubMed  Google Scholar 

  • Wong JW, Sharpe MB, Jaffray DA et al (1999) The use of active breathing control (ABC) to reduce margin for breathing motion. Int J Radiat Oncol Biol Phys 44:911–919

    Article  CAS  PubMed  Google Scholar 

  • Wu AJ, Williams E, Modh A et al (2014) Dosimetric predictors of esophageal toxicity after stereotactic body radiotherapy for central lung tumors. Radiother Oncol 112:267–271

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia T, Li H, Sun Q, Wang Y et al (2006) Promising clinical outcome of stereotactic body radiation therapy for patients with inoperable stage I/II non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 66:117–125

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.J. Nuyttens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Loi, M., Nuyttens, J. (2017). Lung Cancer. In: Trombetta, M., Pignol, JP., Montemaggi, P., Brady, L.W. (eds) Alternate Fractionation in Radiotherapy. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/174_2017_34

Download citation

  • DOI: https://doi.org/10.1007/174_2017_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51197-9

  • Online ISBN: 978-3-319-51198-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics