Skip to main content

Pre- and Postinterventional/Surgical Evaluation by CT

  • Chapter
  • First Online:
  • 3133 Accesses

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

In patients in whom a revascularization is performed because of significant coronary artery disease, PCI with stent placement remains the preferred method of revascularization. Visualization of the stent lumen in coronary CT angiography (CCTA) is possible, but dependent on both the stent used in a specific patient as well as on the selection of imaging parameters. CCTA is able to delineate the stent lumen in large stents (>3.0 mm) placed in the proximal coronary arteries. Also thin stent struts (<100µm) and stents made from alloys such as nitinolor cobalt-chromium facilitate the delineation of the stent lumen. On the imaging side, sufficient enhancement of the coronary vessel is a prerequisite for visualization of the stent lumen. Also choice of the appropriate reconstruction technique is of great importance for the visualization of the lumen. Iterative reconstruction techniques with edge enhancing algorithms have been shown to yield best results for stent imaging. Recently it has been shown, that monochromatic imaging with photon energies around 80keV also seems to facilitate the diagnosis of stent stenosis. In patients selected for bypass surgery, CCTA has been shown to yield a high sensitivity and specificity for the detection of graft stenosis and occlusions. The distal anastomosis of the graft to the coronary artery is difficult to evaluate due to the small diameter of the lumen and because of artifacts caused by vascular clips used to close branch vessels.

This is a preview of subscription content, log in via an institution.

References

  • Andreini D, Pontone G, Mushtaq S, Pepi M, Bartorelli AL (2010) Multidetector computed tomography coronary angiography for the assessment of coronary in-stent restenosis. Am J Cardiol 105(5):645–655

    PubMed  Google Scholar 

  • Andreini D, Pontone G, Mushtaq S et al (2012) Coronary in-stent restenosis: assessment with CT coronary angiography. Radiology 265(2):410–417

    PubMed  Google Scholar 

  • Cademartiri F, Schuijf J, Pugliese, F et al (2007).Usefulness of 64-slice multislice computed tomography coronary angiography to assess in-stent restenosis. Journal of the American College of Cardiology 49(22):2204–2210.

    Google Scholar 

  • Cassese S, Byrne RA, Ndrepepa G et al (2016) Everolimus-eluting bioresorbable vascular scaffolds versus everolimus-eluting metallic stents: a meta-analysis of randomised controlled trials. Lancet 387(10018):537–544

    CAS  PubMed  Google Scholar 

  • Das KM, El-Menyar AA, Salam AM et al (2007) Contrast-enhanced 64-section coronary multidetector CT angiography versus conventional coronary angiography for stent assessment. Radiology 245(2):424–432.

    Google Scholar 

  • Ehara M, Kawai M, Surmely J et al (2007) Diagnostic accuracy of coronary in-stent restenosis using 64-slice computed tomography: comparison with invasive coronary angiography. Journal of the American College of Cardiology 49(9):951–959.

    Google Scholar 

  • Elezi S, Kastrati A, Neumann F, Hadamitzky M, Dirschinger J, Schomig A (1998a) Vessel size and long-term outcome after coronary stent placement. Circulation 98(18):1875–1880

    CAS  PubMed  Google Scholar 

  • Elezi S, Kastrati A, Pache J et al (1998b) Diabetes mellitus and the clinical and angiographic outcome after coronary stent placement. J Am Coll Cardiol 32(7):1866–1873

    CAS  PubMed  Google Scholar 

  • Fischman D, Leon M, Baim D et al (1994) A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. Stent Restenosis Study Investigators. N Engl J Med 331(8):496–501

    CAS  PubMed  Google Scholar 

  • Fuchs TA, Stehli J, Fiechter M et al (2013) First experience with monochromatic coronary computed tomography angiography from a 64-slice CT scanner with gemstone spectral imaging (GSI). J Cardiovasc Comput Tomogr 7(1):25–31

    PubMed  Google Scholar 

  • Gebhard C, Fiechter M, Fuchs TA et al (2013) Coronary artery stents: influence of adaptive statistical iterative reconstruction on image quality using 64-HDCT. Eur Heart J Cardiovasc Imaging 14(10):969–977

    PubMed  Google Scholar 

  • Geyer LL, Glenn GR, De Cecco CN et al (2015) CT evaluation of small-diameter coronary artery stents: effect of an integrated circuit detector with iterative reconstruction. Radiology 276(3):706–714

    PubMed  Google Scholar 

  • Gilard M, Cornily JC, Pennec PY et al (2006) Assessment of coronary artery stents by 16 slice computed tomography. Heart 92(1):58–61

    CAS  PubMed  Google Scholar 

  • de Graaf FR, Schuijf JD, van Velzen JE et al (2010) Diagnostic accuracy of 320-row multidetector computed tomography coronary angiography to noninvasively assess in-stent restenosis. Investig Radiol 45(6):331–340

    Google Scholar 

  • de Graaf FR, van Velzen JE, Witkowska AJ et al (2011) Diagnostic performance of 320-slice multidetector computed tomography coronary angiography in patients after coronary artery bypass grafting. Eur Radiol 21(11):2285–2296

    PubMed  PubMed Central  Google Scholar 

  • Hecht H, Zaric M, Jelnin V et al (2008) Usefulness of 64-Detector Computed Tomographic Angiography for Diagnosing In-Stent Restenosis in Native Coronary Arteries. The American Journal of Cardiology 101(6):820–824.

    Google Scholar 

  • Hickethier T, Kröger JR, Spiczak Von J et al (2016) Non-invasive imaging of bioresorbable coronary scaffolds using CT and MRI: First in vitro experience. Int J Cardiol 206(C):101–106

    Google Scholar 

  • Hillis LD, Smith PK, Anderson JL et al (2011) ACCF/AHA guideline for coronary artery bypass graft surgery: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Thorac Cardiovasc Surg 2012:4–34

    Google Scholar 

  • Howard DH, Shen Y-C (2014) Trends in PCI volume after negative results from the COURAGE trial. Health Serv Res 49(1):153–170

    PubMed  Google Scholar 

  • Kastrati A, Schömig A, Elezi S et al (1997a) Predictive factors of restenosis after coronary stent placement. J Am Coll Cardiol 30(6):1428–1436

    CAS  PubMed  Google Scholar 

  • Kastrati A, Schuhlen H, Hausleiter J et al (1997b) Restenosis after coronary stent placement and randomization to a 4-week combined antiplatelet or anticoagulant therapy: six-month angiographic follow-up of the Intracoronary Stenting and Antithrombotic Regimen (ISAR) Trial. Circulation 96(2):462–467

    CAS  PubMed  Google Scholar 

  • Kim SY, Lee HJ, Kim YJ et al (2013) Coronary computed tomography angiography for selecting coronary artery bypass graft surgery candidates. Ann Thorac Surg 95(4):1340–1346

    PubMed  Google Scholar 

  • Lee H-J, Kim J-S, Kim YJ et al (2011) Diagnostic accuracy of 64-slice multidetector computed tomography for selecting coronary artery bypass graft surgery candidates. J Thorac Cardiovasc Surg 141(2):571–577

    PubMed  Google Scholar 

  • Leipsic J, Abbara S, Achenbach S et al (2014) SCCT guidelines for the interpretation and reporting of coronary CT angiography: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee. J Cardiovasc Comput Tomogr 8(5):342–358

    PubMed  Google Scholar 

  • Levine GN, Bates ER, Bittl JA et al (2016) ACC/AHA guideline focused update on duration of dual antiplatelet therapy in patients with coronary artery disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines: an update of the 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention, 2011 ACCF/AHA guideline for coronary artery bypass graft surgery, 2012 ACC/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease, 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction, 2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes, and 2014 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery. Circulation 134(10):e123–e155

    PubMed  Google Scholar 

  • Maintz D, Juergens K-U, Wichter T, Grude M, Heindel W, Fischbach R (2003) Imaging of coronary artery stents using multislice computed tomography: in vitro evaluation. Eur Radiol 13(4):830–835

    PubMed  Google Scholar 

  • Mangold S, De Cecco CN, Schoepf UJ et al (2016) A noise-optimized virtual monochromatic reconstruction algorithm improves stent visualization and diagnostic accuracy for detection of in-stent re-stenosis in lower extremity run-off CT angiography. Eur Radiol 26(12):4380–4389

    PubMed  Google Scholar 

  • Montalescot G, Sechtem U et al (2013) 2013 ESC guidelines on the management of stable coronary artery disease: the task force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J 34:2949–3003

    Google Scholar 

  • Moses J, Leon M, Popma J et al (2003) Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N Engl J Med 349(14):1315–1323

    CAS  PubMed  Google Scholar 

  • Mozaffarian D, Benjamin EJ et al (2016) Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation 133(4):e38–e360

    Google Scholar 

  • Oda S, Utsunomiya D, Funama Y et al (2013) Improved coronary in-stent visualization using a combined high-resolution kernel and a hybrid iterative reconstruction technique at 256-slice cardiac CT-pilot study. Eur J Radiol 82(2):288–295

    PubMed  Google Scholar 

  • OECD (2012) Health at a glance: Europe 2012. OECD Publishing, Paris, pp 1–3

    Google Scholar 

  • Opolski MP, Kepka C, Achenbach S et al (2012) Coronary computed tomographic angiography for prediction of procedural and intermediate outcome of bypass grafting to left anterior descending artery occlusion with failed visualization on conventional angiography. Am J Cardiol 109(12):1722–1728

    PubMed  Google Scholar 

  • Opolski MP, Achenbach S, Schuhbäck A et al (2015) Coronary computed tomographic prediction rule for time-efficient guidewire crossing through chronic total occlusion. JACC Cardiovasc Interv 8(2):257–267

    PubMed  Google Scholar 

  • Pflederer T, Marwan M, Renz A et al (2009) Noninvasive assessment of coronary in-stent restenosis by dual-source computed tomography. The American Journal of Cardiology 103(6):812–817.

    Google Scholar 

  • Pregowski J, Kepka C, Kruk M et al (2011) Comparison of usefulness of percutaneous coronary intervention guided by angiography plus computed tomography versus angiography alone using intravascular ultrasound end points. Am J Cardiol 108(12):1728–1734

    PubMed  Google Scholar 

  • Pugliese F, Weustink AC, Van Mieghem C et al (2008) Dual-source coronary computed tomography angiography for detecting in-stent restenosis. Heart 94(7):848–854

    CAS  PubMed  Google Scholar 

  • Ropers D, Pohle F-K, Kuettner A et al (2006) Diagnostic accuracy of noninvasive coronary angiography in patients after bypass surgery using 64-slice spiral computed tomography with 330-ms gantry rotation. Circulation 114(22):2334–2341. quiz 2334

    PubMed  Google Scholar 

  • Sabik JF III, Blackstone EH (2008) Coronary artery bypass graft patency and competitive flow. Editorials published in the Journal of the American College of Cardiology reflect the views of the authors and do not necessarily represent the views of JACC or the American College of Cardiology. J Am Coll Cardiol 51(2):126–128

    PubMed  Google Scholar 

  • Schepis T, Koepfli P, Leschka S et al (2007) Coronary artery stent geometry and in-stent contrast attenuation with 64-slice computed tomography. Eur Radiol 17(6):1464–1473

    PubMed  Google Scholar 

  • Serruys P, de Jaegere P, Kiemeneij F et al (1994) A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. Benestent Study Group. N Engl J Med 331(8):489–495

    CAS  PubMed  Google Scholar 

  • Steen H, André F, Korosoglou G et al (2011) In vitro evaluation of 56 coronary artery stents by 256-slice multi-detector coronary CT. Eur J Radiol 80(1):143–150

    PubMed  Google Scholar 

  • Stehli J, Fuchs TA, Singer A et al (2015) First experience with single-source, dual-energy CCTA for monochromatic stent imaging. Eur Heart J Cardiovasc Imaging 16(5):507–512

    PubMed  Google Scholar 

  • Stone GW, Ellis SG, Colombo A et al (2011) Long-term safety and efficacy of paclitaxel-eluting stents. JACC Cardiovasc Interv 4(5):530–542

    PubMed  Google Scholar 

  • Suzuki S, Furui S, Kuwahara S et al (2007) Assessment of coronary stent in vitro on multislice computed tomography angiography: improved in-stent visibility by the use of 140-kV tube voltage. J Comput Assist Tomogr 31(3):414–421

    PubMed  Google Scholar 

  • Taylor AJ, Cerqueira M, Hodgson JM et al (2010) ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography. A report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance. J Am Coll Cardiol 56:1864–1894

    PubMed  Google Scholar 

  • Tenekecioglu E, Torii R, Bourantas C et al (2017) Assessment of the hemodynamic characteristics of absorb BVS in a porcine coronary artery model. Int J Cardiol 227:467–473

    PubMed  Google Scholar 

  • Ulrich A, Burg MC, Raupach R et al (2015) Coronary stent imaging with dual-source CT: assessment of lumen visibility using different convolution kernels and postprocessing filters. Acta Radiol 56(1):42–50

    PubMed  Google Scholar 

  • Weintraub WS, Spertus JA, Kolm P et al (2008) Effect of PCI on quality of life in patients with stable coronary disease. N Engl J Med 359(7):677–687

    CAS  PubMed  Google Scholar 

  • Wiebe J, Nef HM, Hamm CW (2014) Current status of bioresorbable scaffolds in the treatment of coronary artery disease. J Am Coll Cardiol 64(23):2541–2551

    CAS  PubMed  Google Scholar 

  • Wuest W, May MS, Scharf M et al (2013) Stent evaluation in low-dose coronary CT angiography: effect of different iterative reconstruction settings. Journal of Cardiovascular Computed Tomography 7(5):319–325.

    Google Scholar 

  • Wykrzykowska JJ, Arbab-Zadeh A, Godoy G et al (2010) Assessment of in-stent restenosis using 64-MDCT: analysis of the CORE-64 Multicenter International Trial. Am J Roentgenol 194(1):85–92

    Google Scholar 

  • Yuceler Z, Kantarci M, Yuce I et al (2014) Follow-up of coronary artery bypass graft patency: diagnostic efficiency of high-pitch dual-source 256-slice MDCT findings. J Comput Assist Tomogr 38(1):61–66

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Seifarth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seifarth, H., Maintz, D. (2018). Pre- and Postinterventional/Surgical Evaluation by CT. In: Nikolaou, K., Bamberg, F., Laghi, A., Rubin, G.D. (eds) Multislice CT. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/174_2017_158

Download citation

  • DOI: https://doi.org/10.1007/174_2017_158

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42585-6

  • Online ISBN: 978-3-319-42586-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics