Skip to main content

Single Ventricle and Fontan Procedures

  • Chapter
  • First Online:
Congenital Heart Diseases in Adults

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 705 Accesses

Abstract

Univentricular congenital heart diseases include a range of pathologies that result in a functionally single ventricular chamber. The most common pathologies in this group are tricuspid atresia, pulmonary atresia with an intact ventricular septum, hypoplastic left heart syndrome, and a double-inlet ventricle. Although the only curative therapy for these patients is cardiac transplantation, there are several palliative surgical techniques that divert part or all the systemic venous circulation into the pulmonary arteries bypassing the single ventricular chamber. The modern Fontan procedure consists in anastomosing both SVC and IVC to the right pulmonary artery; it is nowadays the last step of single ventricle palliation.

The importance of imaging in these pathologies lies not only in the understanding of the new circuit established after surgical correction, but also in the early detection of the wide spectrum of cardiac and extracardiac complications that can happen due to the new physiological condition. Due to the increased survival of these patients, long-term complications are becoming more common. Imaging patients with single ventricle physiology and particularly following single ventricle palliative procedures is challenging due to the altered anatomy and hemodynamics. While MRI and MRA should be considered the modality of choice due to the inherent lack of ionizing radiation in this patient population, CT angiography is an important alternative noninvasive imaging technique. In this chapter, we review the different palliative surgical techniques in patients with univentricular heart diseases, and we describe the optimal imaging protocol and the expected surgical anatomy as well as the long-term complications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ashrafian H, Swan L (2002) The mechanism of formation of pulmonary arteriovenous malformations associated with the classic Glenn shunt (superior cavopulmonary anastomosis). Heart 88:639

    Article  CAS  Google Scholar 

  • Asrani SK, Warnes CA, Kamath PS (2013) Hepatocellular carcinoma after the Fontan procedure. N Engl J Med 368:1756–1757

    Article  CAS  Google Scholar 

  • Bachler P, Valverde I, Pinochet N et al (2013) Caval blood flow distribution in patients with Fontan circulation: quantification by using particle traces from 4D flow MR imaging. Radiology 267:67–75

    Article  Google Scholar 

  • Bove EL, de Leval MR, Migliavacca F, Guadagni G, Dubini G (2003) Computational fluid dynamics in the evaluation of hemodynamic performance of cavopulmonary connections after the Norwood procedure for hypoplastic left heart syndrome. J Thorac Cardiovasc Surg 126:1040–1047

    Article  Google Scholar 

  • Bradley SM (2006) Extracardiac conduit Fontan procedure. Oper Tech Thorac Cardiovasc Surg 11:123–140

    Article  Google Scholar 

  • Bridges ND, Mayer JE Jr, Lock JE et al (1992) Effect of baffle fenestration on outcome of the modified Fontan operation. Circulation 86:1762–1769

    Article  CAS  Google Scholar 

  • Bryant T, Ahmad Z, Millward-Sadler H et al (2011) Arterialised hepatic nodules in the Fontan circulation: hepatico-cardiac interactions. Int J Cardiol 151:268–272

    Article  Google Scholar 

  • ACR NASCI SIR SPR practice parameters for the performance and interpretation of body computed tomography angiography (CTA) (2016). Available: https://www.acr.org/~/media/168A72F0C6004CA9A649DBD6EA9368DE.pdf. Accessed 2 Jan 2017

  • Duncan BW, Desai S (2003) Pulmonary arteriovenous malformations after cavopulmonary anastomosis. Ann Thorac Surg 76:1759–1766

    Article  Google Scholar 

  • Feldt RH, Driscoll DJ, Offord KP et al (1996) Protein-losing enteropathy after the Fontan operation. J Thorac Cardiovasc Surg 112:672–680

    Article  CAS  Google Scholar 

  • Fontan F, Baudet E (1971) Surgical repair of tricuspid atresia. Thorax 26:240–248

    Article  CAS  Google Scholar 

  • Fredenburg TB, Johnson TR, Cohen MD (2011) The Fontan procedure: anatomy, complications, and manifestations of failure. Radiographics 31:453–463

    Article  Google Scholar 

  • Gewillig M (2005) The Fontan circulation. Heart 91:839–846

    Article  Google Scholar 

  • Ghadimi Mahani M, Agarwal PP, Rigsby CK et al (2016) CT for assessment of thrombosis and pulmonary embolism in multiple stages of single-ventricle palliation: challenges and suggested protocols. Radiographics 36:1273–1284

    Article  Google Scholar 

  • Ghaferi AA, Hutchins GM (2005) Progression of liver pathology in patients undergoing the Fontan procedure: chronic passive congestion, cardiac cirrhosis, hepatic adenoma, and hepatocellular carcinoma. J Thorac Cardiovasc Surg 129:1348–1352

    Article  Google Scholar 

  • Goo HW, Yang DH, Park IS et al (2007) Time-resolved three-dimensional contrast-enhanced magnetic resonance angiography in patients who have undergone a Fontan operation or bidirectional cavopulmonary connection: initial experience. J Magn Reson Imaging 25:727–736

    Article  Google Scholar 

  • Goo HW, Jhang WK, Kim YH et al (2008) CT findings of plastic bronchitis in children after a Fontan operation. Pediatr Radiol 38:989–993

    Article  Google Scholar 

  • Grosse-Wortmann L, Al-Otay A, Yoo SJ (2009) Aortopulmonary collaterals after bidirectional cavopulmonary connection or Fontan completion: quantification with MRI. Circ Cardiovasc Imaging 2:219–225

    Article  Google Scholar 

  • Hashemi S, Parks WJ, Slesnick TC (2014) 3D inversion recovery gradient echo respiratory navigator imaging using Gadofosveset Trisodium in a Fontan Y-graft patient. Int J Cardiovasc Imaging 30:993–994

    Article  Google Scholar 

  • Khanna G, Bhalla S, Krishnamurthy R, Canter C (2012) Extracardiac complications of the Fontan circuit. Pediatr Radiol 42:233–241

    Article  Google Scholar 

  • Kiesewetter CH, Sheron N, Vettukattill JJ et al (2007) Hepatic changes in the failing Fontan circulation. Heart 93:579–584

    Article  Google Scholar 

  • Kim SJ, Bae EJ, Lee JY, Lim HG, Lee C, Lee CH (2009) Inclusion of hepatic venous drainage in patients with pulmonary arteriovenous fistulas. Ann Thorac Surg 87:548–553

    Article  Google Scholar 

  • Latus H, Gerstner B, Kerst G et al (2016) Effect of inhaled nitric oxide on blood flow dynamics in patients after the Fontan procedure using cardiovascular magnetic resonance flow measurements. Pediatr Cardiol 37:504–511

    Article  Google Scholar 

  • de Leval MR (1998) The Fontan circulation: what have we learned? What to expect? Pediatr Cardiol 19:316–320

    Article  Google Scholar 

  • Lewis G, Thorne S, Clift P, Holloway B (2015) Cross-sectional imaging of the Fontan circuit in adult congenital heart disease. Clin Radiol 70:667–675

    Article  CAS  Google Scholar 

  • Lu JC, Dorfman AL, Attili AK, Ghadimi Mahani M, Dillman JR, Agarwal PP (2012) Evaluation with cardiovascular MR imaging of baffles and conduits used in palliation or repair of congenital heart disease. Radiographics 32:E107–E127

    Article  Google Scholar 

  • McCrindle BW, Manlhiot C, Cochrane A et al (2013) Factors associated with thrombotic complications after the Fontan procedure: a secondary analysis of a multicenter, randomized trial of primary thromboprophylaxis for 2 years after the Fontan procedure. J Am Coll Cardiol 61:346–353

    Article  Google Scholar 

  • Norwood WI, Jacobs ML (1993) Fontan’s procedure in two stages. Am J Surg 166:548–551

    Article  CAS  Google Scholar 

  • Ohye RG, Schranz D, D’Udekem Y (2016) Current therapy for hypoplastic left heart syndrome and related single ventricle lesions. Circulation 134:1265–1279

    Article  Google Scholar 

  • Pushparajah K, Tzifa A, Bell A et al (2015) Cardiovascular magnetic resonance catheterization derived pulmonary vascular resistance and medium-term outcomes in congenital heart disease. J Cardiovasc Magn Reson 17:28

    Article  Google Scholar 

  • Rathod RH, Prakash A, Powell AJ, Geva T (2010) Myocardial fibrosis identified by cardiac magnetic resonance late gadolinium enhancement is associated with adverse ventricular mechanics and ventricular tachycardia late after Fontan operation. J Am Coll Cardiol 55:1721–1728

    Article  Google Scholar 

  • Rathod RH, Prakash A, Kim YY et al (2014) Cardiac magnetic resonance parameters predict transplantation-free survival in patients with fontan circulation. Circ Cardiovasc Imaging 7:502–509

    Article  Google Scholar 

  • Rodbard S, Wagner D (1949) By-passing the right ventricle. Proc Soc Exp Biol Med 71:69

    Article  CAS  Google Scholar 

  • Rychik J (2016) The relentless effects of the Fontan paradox. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 19:37–43

    Article  Google Scholar 

  • Sandler KL, Markham LW, Mah ML, Byrum EP, Williams JR (2014) Optimizing CT angiography in patients with Fontan physiology: single-center experience of dual-site power injection. Clin Radiol 69:e562–e567

    Article  CAS  Google Scholar 

  • Schwartz MC, Sullivan L, Cohen MS et al (2012) Hepatic pathology may develop before the Fontan operation in children with functional single ventricle: an autopsy study. J Thorac Cardiovasc Surg 143:904–909

    Article  Google Scholar 

  • Soler R, Rodriguez E, Alvarez M, Raposo I (2007) Postoperative imaging in cyanotic congenital heart diseases: part 2 complications. AJR Am J Roentgenol 189:1361–1369

    Article  Google Scholar 

  • Spray TL (2013) Hemi-Fontan procedure. Oper Tech Thorac Cardiovasc Surg 18:124–137

    Article  Google Scholar 

  • Srivastava D, Preminger T, Lock JE et al (1995) Hepatic venous blood and the development of pulmonary arteriovenous malformations in congenital heart disease. Circulation 92:1217–1222

    Article  CAS  Google Scholar 

  • Talwar S, Nair VV, Choudhary SK, Airan B (2014) The Hemi-Fontan operation: a critical overview. Ann Pediatr Cardiol 7:120–125

    Article  Google Scholar 

  • Whitehead KK, Gillespie MJ, Harris MA, Fogel MA, Rome JJ (2009) Noninvasive quantification of systemic-to-pulmonary collateral flow: a major source of inefficiency in patients with superior cavopulmonary connections. Circ Cardiovasc Imaging 2:405–411

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Flors M.D., Ph.D. .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Time-resolved contrast-enhanced MRA permits acquisition of images with a temporal resolution of approximately 2 s, with excellent depiction of the hemodynamics in patients with surgical correction for univentricular heart. In this 13-year-old girl after Fontan procedure for pulmonary atresia (same patient as in Fig. 10) time-resolved contrast-enhanced MRA shows early enhancement of Glenn conduit anastomosed to the right pulmonary artery and strong and early contrast opacification of the right upper pulmonary vein (white arrow) due to the presence of the PAVFs. (AVI 21063 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Flors, L., Norton, P.T., Hagspiel, K.D. (2017). Single Ventricle and Fontan Procedures. In: Ley, S., Ley-Zaporozhan, J. (eds) Congenital Heart Diseases in Adults. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/174_2017_109

Download citation

  • DOI: https://doi.org/10.1007/174_2017_109

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61886-9

  • Online ISBN: 978-3-319-61888-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics