Skip to main content

Proton MRI Based Ventilation Imaging: Oxygen-Enhanced Lung MRI and Alternative Approaches

  • Chapter
MRI of the Lung

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

The direct visual assessment of the lung parenchyma and of lung ventilation using proton MRI is considerably more difficult than MRI of most other organs due to the very low signal intensity of the lung parenchyma. The low signal intensity is caused by the low average proton density and the short T2* relaxation time of lung tissue.

Several methods for proton MRI based ventilation measurements have been proposed to overcome these difficulties. Currently, the most established technique is oxygen-enhanced MRI of the lung, employing inhaled molecular oxygen as a T1-reducing contrast agent, which enhances the signal of the protons in the lung. Clinical applications of oxygen-enhanced lung MRI have been assessed in a relatively large number of studies. Main advantages of oxygen-enhanced MRI are the general availability of oxygen and the relative safety of oxygen administration. Potential limitations of oxygen-enhanced lung MRI are the relatively low signal enhancement corresponding to a T1 reduction of about 10 %, and the complex contrast mechanism with contributions from ventilation, perfusion, and oxygen-diffusion properties of the lung tissue.

Newer emerging techniques such as Fourier decomposition pulmonary MRI based on nonenhanced dynamic MR acquisitions appear to be a promising tool for ventilation assessment that may be clinically available in the near future. Other proposed techniques such as imaging after administration of aerosolized gadolinium contrast agents or after infusion of water-in-perfluorocarbon emulsions into the lung require still considerably more research before they might become applicable in clinical MR imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This introduction and the subsequent subsection on oxygen-enhanced lung MRI are modified and extensively updated from Chap. 38 “Oxygen-enhanced Imaging of the Lung” of the book “Parallel Imaging in Clinical MR Applications” (Dietrich 2007b).

  2. 2.

    All magnetic susceptibilities are given at normal temperature (20 °C) and pressure (1 atm, 1013.25 hPa), and in SI units, i.e., multiplied by 4π when converted from cgs units.

References

  • Abolmaali ND, Schmitt J, Krauss S, Bretz F, Deimling M, Jacobi V, Vogl TJ (2004) MR imaging of lung parenchyma at 0.2T: evaluation of imaging techniques, comparative study with chest radiography and interobserver analysis. Eur Radiol 14:703–708

    Article  PubMed  Google Scholar 

  • Arai TJ, Henderson AC, Dubowitz DJ, Levin DL, Friedman PJ, Buxton RB, Prisk GK, Hopkins SR (2009) Hypoxic pulmonary vasoconstriction does not contribute to pulmonary blood flow heterogeneity in normoxia in normal supine humans. J Appl Physiol 106:1057–1064

    CAS  PubMed  Google Scholar 

  • Arnold JF, Fidler F, Wang T, Pracht ED, Schmidt M, Jakob PM (2004) Imaging lung function using rapid dynamic acquisition of T1-maps during oxygen enhancement. MAGMA 16:246–253

    CAS  PubMed  Google Scholar 

  • Arnold JF, Kotas M, Fidler F, Pracht ED, Flentje M, Jakob PM (2007) Quantitative regional oxygen transfer imaging of the human lung. J Magn Reson Imaging 26:637–645

    PubMed  Google Scholar 

  • Bankier AA, O'Donnell CR, Mai VM, Storey P, De Maertelaer V, Edelman RR, Chen Q (2004) Impact of lung volume on MR signal intensity changes of the lung parenchyma. J Magn Reson Imaging 20:961–966

    PubMed  Google Scholar 

  • Bianchi A, Lux F, Tillement O, Crémillieux Y (2013) Contrast enhanced lung MRI in mice using ultra-short echo time radial imaging and intratracheally administrated Gd-DOTA-based nanoparticles. Magn Reson Med 70:1419–1426

    CAS  PubMed  Google Scholar 

  • Bauman G, Bieri O (2016) Matrix pencil decomposition of time-resolved proton MRI for robust and improved assessment of pulmonary ventilation and perfusion. Magn Reson Med. doi:10.1002/mrm.26096 [Epub ahead of print]

    Article  PubMed  Google Scholar 

  • Bauman G, Puderbach M, Deimling M, Jellus V, Chefd'hotel C, Dinkel J, Hintze C, Kauczor HU, Schad LR (2009) Non-contrast-enhanced perfusion and ventilation assessment of the human lung by means of fourier decomposition in proton MRI. Magn Reson Med 62:656–664

    PubMed  Google Scholar 

  • Bauman G, Lützen U, Ullrich M, Gaass T, Dinkel J, Elke G, Meybohm P, Frerichs I, Hoffmann B, Borggrefe J, Knuth HC, Schupp J, Prüm H, Eichinger M, Puderbach M, Biederer J, Hintze C (2011) Pulmonary functional imaging: qualitative comparison of Fourier decomposition MR imaging with SPECT/CT in porcine lung. Radiology 260:551–559

    PubMed  Google Scholar 

  • Bauman G, Scholz A, Rivoire J, Terekhov M, Friedrich J, de Oliveira A, Semmler W, Schreiber LM, Puderbach M (2013) Lung ventilation- and perfusion-weighted Fourier decomposition magnetic resonance imaging: in vivo validation with hyperpolarized 3He and dynamic contrast-enhanced MRI. Magn Reson Med 69:229–237

    CAS  PubMed  Google Scholar 

  • Bauman G, Pusterla O, Bieri O (2016) Ultra-fast steady-state free precession pulse sequence for fourier decomposition pulmonary MRI. Magn Reson Med 75:1647–1653

    CAS  PubMed  Google Scholar 

  • Beer M, Stäb D, Oechsner M, Hahn D, Köstler H, Hebestreit H, Jakob P (2009) Sauerstoffverstärkte funktionelle MR-Lungenbildgebung. Radiologe 49:732–738

    CAS  PubMed  Google Scholar 

  • Berthezene Y, Vexler V, Clement O, Muhler A, Moseley ME, Brasch RC (1992) Contrast-enhanced MR imaging of the lung: assessments of ventilation and perfusion. Radiology 183:667–672

    CAS  PubMed  Google Scholar 

  • Berthezène Y, Mühler A, Lang P, Shames DM, Clément O, Rosenau W, Kuwatsuru R, Brasch RC (1993) Safety aspects and pharmacokinetics of inhaled aerosolized gadolinium. J Magn Reson Imaging 3:125–130

    PubMed  Google Scholar 

  • Capaldi DP, Sheikh K, Guo F, Svenningsen S, Etemad-Rezai R, Coxson HO, Leipsic JA, McCormack DG, Parraga G (2015) Free-breathing pulmonary 1H and Hyperpolarized 3He MRI: comparison in COPD and bronchiectasis. Acad Radiol 22:320–329

    PubMed  Google Scholar 

  • Carinci F, Meyer C, Breuer FA, Jakob PM (2016) In vivo imaging of the spectral line broadening of the human lung in a single breathhold. J Magn Reson Imaging 44(3):745–757

    PubMed  Google Scholar 

  • Chen Q, Jakob PM, Griswold MA, Levin DL, Hatabu H, Edelman RR (1998) Oxygen enhanced MR ventilation imaging of the lung. MAGMA 7:153–161

    CAS  PubMed  Google Scholar 

  • Chen Q, Mai VM, Bankier AA, Napadow VJ, Gilbert RJ, Edelman RR (2001) Ultrafast MR grid-tagging sequence for assessment of local mechanical properties of the lungs. Magn Reson Med 45:24–28

    CAS  PubMed  Google Scholar 

  • Corteville DM, Kjørstad Å, Henzler T, Zöllner FG, Schad LR (2015) Fourier decomposition pulmonary MRI using a variable flip angle balanced steady-state free precession technique. Magn Reson Med 73:1999–2004

    CAS  PubMed  Google Scholar 

  • Dietrich O (2007a) Single-shot pulse sequences. In: Schoenberg SO, Dietrich O, Reiser MF (eds) Parallel imaging in clinical MR applications. Springer, Berlin/Heidelberg/New York, pp. 119–126

    Google Scholar 

  • Dietrich O (2007b) Oxygen-enhanced imaging of the lung. In: Schoenberg SO, Dietrich O, Reiser MF (eds) Parallel imaging in clinical MR applications. Springer, Berlin/Heidelberg/New York, pp. 429–440

    Google Scholar 

  • Dietrich O, Losert C, Attenberger U, Fasol U, Peller M, Nikolaou K, Reiser MF, Schoenberg SO (2005) Fast oxygen-enhanced multislice imaging of the lung using parallel acquisition techniques. Magn Reson Med 53:1317–1325

    PubMed  Google Scholar 

  • Dietrich O, Losert C, Attenberger U, Reuter C, Fasol U, Peller M, Nikolaou K, Reiser MF, Schoenberg SO (2006a) Sauerstoff-MRT der Lunge: Optimierte Berechnung von Differenzbildern. Radiologe 46:300–308

    CAS  PubMed  Google Scholar 

  • Dietrich O, Raya JG, Fasol U, Peller M, Reiser MF, Schoenberg SO (2006b) Oxygen-enhanced MRI of the lung at 3Tesla: feasibility and T1 relaxation times. Proc Int Soc Magn Reson Med 14:1307

    Google Scholar 

  • Dietrich O, Attenberger UI, Ingrisch M, Maxien D, Peller M, Nikolaou K, Reiser MF (2010) Analysis of signal dynamics in oxygen-enhanced magnetic resonance imaging. Invest Radiol 45:165–173

    PubMed  Google Scholar 

  • Edelman RR, Hatabu H, Tadamura E, Li W, Prasad PV (1996) Noninvasive assessment of regional ventilation in the human lung using oxygen-enhanced magnetic resonance imaging. Nat Med 2:1236–1239

    CAS  PubMed  Google Scholar 

  • Eibel R (2007) Lung imaging. In: Schoenberg SO, Dietrich O, Reiser MF (eds) Parallel imaging in clinical MR applications. Springer, Berlin/Heidelberg/New York, pp. 209–217

    Google Scholar 

  • Eichinger M, Tetzlaff R, Puderbach M, Woodhouse N, Kauczor HU (2007) Proton magnetic resonance imaging for assessment of lung function and respiratory dynamics. Eur J Radiol 64:329–334

    PubMed  Google Scholar 

  • Fischer A, Weick S, Ritter CO, Beer M, Wirth C, Hebestreit H, Jakob PM, Hahn D, Bley T, Köstler H (2014) SElf-gated Non-Contrast-Enhanced FUnctional Lung imaging (SENCEFUL) using a quasi-random fast low-angle shot (FLASH) sequence and proton MRI. NMR Biomed 27:907–917

    PubMed  Google Scholar 

  • Gee J, Sundaram T, Hasegawa I, Uematsu H, Hatabu H (2003) Characterization of regional pulmonary mechanics from serial magnetic resonance imaging data. Acad Radiol 10:1147–1152

    PubMed  Google Scholar 

  • Goodrich KC, Hackmann A, Ganesan K, Ailion DC, Cutillo AG (1992) Spin-lattice relaxation in excised rat lung. Proc Int Soc Magn Reson Med 11:1307

    Google Scholar 

  • Griswold MA, Jakob PM, Chen Q, Goldfarb JW, Manning WJ, Edelman RR, Sodickson DK (1999) Resolution enhancement in single-shot imaging using simultaneous acquisition of spatial harmonics (SMASH). Magn Reson Med 41:1236–1245

    CAS  PubMed  Google Scholar 

  • Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210

    PubMed  Google Scholar 

  • Haage P, Adam G, Misselwitz B, Karaagac S, Pfeffer JG, Glowinski A, Döhmen S, Tacke J, Günther RW (2000) Aerosoliertes Gadolinium-DTPA zur Darstellung der Lungenventilation in der Magnetresonanztomographie. Rofo Fortschr Röntgenstr 172:323–328

    CAS  Google Scholar 

  • Haage P, Adam G, Karaagac S, Pfeffer J, Glowinski A, Döhmen S, Günther RW (2001a) Mechanical delivery of aerosolized gadolinium-DTPA for pulmonary ventilation assessment in MR imaging. Invest Radiol 36:240–243

    CAS  PubMed  Google Scholar 

  • Haage P, Karaagac S, Adam G, Glowinski A, Günther RW (2001b) Comparison of aerosolized gadoteridol and gadopentetate dimeglumine for magnetic resonance ventilation imaging of the lung. Magn Reson Med 46:803–806

    CAS  PubMed  Google Scholar 

  • Haage P, Karaagac S, Adam G, Spüntrup E, Pfeffer J, Günther RW (2002) Gadolinium containing contrast agents for pulmonary ventilation magnetic resonance imaging: preliminary results. Invest Radiol 37:120–125

    PubMed  Google Scholar 

  • Haage P, Karaagac S, Spüntrup E, Adam G, Günther RW (2003) MR-Bildgebung der Lungenventilation mittels aerosolierter Gadolinium-Chelate. Rofo Fortschr Röntgenstr 175:187–193

    CAS  Google Scholar 

  • Haage P, Karaagac S, Spuntrup E, Truong HT, Schmidt T, Gunther RW (2005) Feasibility of pulmonary ventilation visualization with aerosolized magnetic resonance contrast media. Invest Radiol 40:85–88

    PubMed  Google Scholar 

  • Halaweish AF, Charles HC (2014) Physiorack: an integrated MRI safe/conditional, gas delivery, respiratory gating, and subject monitoring solution for structural and functional assessments of pulmonary function. J Magn Reson Imaging 39:735–741

    PubMed  Google Scholar 

  • Heidemann RM, Griswold MA, Kiefer B, Nittka M, Wang J, Jellus V, Jakob PM (2003) Resolution enhancement in lung 1H imaging using parallel imaging methods. Magn Reson Med 49:391–394

    CAS  PubMed  Google Scholar 

  • Hemberger KR, Jakob PM, Breuer FA (2015) Multiparametric oxygen-enhanced functional lung imaging in 3D. MAGMA 28:217–226

    CAS  PubMed  Google Scholar 

  • Huang MQ, Ye Q, Williams DS, Ho C (2002) MRI of lungs using partial liquid ventilation with water-in-perfluorocarbon emulsions. Magn Reson Med 48:487–492

    PubMed  Google Scholar 

  • Huang MQ, Basse PH, Yang Q, Horner JA, Hichens TK, Ho C (2004) MRI detection of tumor in mouse lung using partial liquid ventilation with a perfluorocarbon-in-water emulsion. Magn Reson Imaging 22:645–652

    CAS  PubMed  Google Scholar 

  • Jakob PM, Hillenbrand CM, Wang T, Schultz G, Hahn D, Haase A (2001) Rapid quantitative lung 1H T1 mapping. J Magn Reson Imaging 14:795–799

    CAS  PubMed  Google Scholar 

  • Jakob PM, Wang T, Schultz G, Hebestreit H, Hebestreit A, Hahn D (2004) Assessment of human pulmonary function using oxygen-enhanced T(1) imaging in patients with cystic fibrosis. Magn Reson Med 51:1009–1016

    PubMed  Google Scholar 

  • Jobst BJ, Triphan SM, Sedlaczek O, Anjorin A, Kauczor HU, Biederer J, Ley-Zaporozhan J, Ley S, Wielpütz MO (2015) Functional lung MRI in chronic obstructive pulmonary disease: comparison of T1 mapping, oxygen-enhanced T1 mapping and dynamic contrast enhanced perfusion. PLoS One 10:e0121520

    PubMed  PubMed Central  Google Scholar 

  • Kauczor HU, Kreitner KF (1999) MRI of the pulmonary parenchyma. Eur Radiol 9:1755–1764

    CAS  PubMed  Google Scholar 

  • Kershaw LE, Naish JH, McGrath DM, Waterton JC, Parker GJ (2010) Measurement of arterial plasma oxygenation in dynamic oxygen-enhanced MRI. Magn Reson Med 64:1838–1842

    PubMed  Google Scholar 

  • Kjørstad Å, Corteville DM, Henzler T, Schmid-Bindert G, Hodneland E, Zöllner FG, Schad LR (2014) Quantitative lung ventilation using Fourier decomposition MRI; comparison and initial study. MAGMA 27:467–476

    PubMed  Google Scholar 

  • Kjørstad Å, Corteville DM, Henzler T, Schmid-Bindert G, Zöllner FG, Schad LR (2015) Non-invasive quantitative pulmonary V/Q imaging using Fourier decomposition MRI at 1.5T. Z Med Phys 25:326–332

    PubMed  Google Scholar 

  • Kruger SJ, Fain SB, Johnson KM, Cadman RV, Nagle SK (2014) Oxygen-enhanced 3D radial ultrashort echo time magnetic resonance imaging in the healthy human lung. NMR Biomed 27:1535–1541

    PubMed  PubMed Central  Google Scholar 

  • Kruger SJ, Nagle SK, Couch MJ, Ohno Y, Albert M, Fain SB (2016) Functional imaging of the lungs with gas agents. J Magn Reson Imaging 43:295–315

    PubMed  Google Scholar 

  • Larkman DJ, Nunes RG (2007) Parallel magnetic resonance imaging. Phys Med Biol 52:R15–R55

    PubMed  Google Scholar 

  • Lederlin M, Bauman G, Eichinger M, Dinkel J, Brault M, Biederer J, Puderbach M (2013) Functional MRI using Fourier decomposition of lung signal: reproducibility of ventilation- and perfusion-weighted imaging in healthy volunteers. Eur J Radiol 82:1015–1022

    PubMed  Google Scholar 

  • Lee HJ, Park J, Hur J, Kim YJ, Nam JE, Choi BW, Choe KO (2013) The effect of pulmonary blood flow changes on oxygen-enhanced lung magnetic resonance imaging. Magn Reson Med 69:1645–1649

    CAS  PubMed  Google Scholar 

  • Ley S, Puderbach M, Risse F, Ley-Zaporozhan J, Eichinger M, Takenaka D, Kauczor HU, Bock M (2007) Impact of oxygen inhalation on the pulmonary circulation: assessment by magnetic resonance (MR)-perfusion and MR-flow measurements. Invest Radiol 42:283–290

    CAS  PubMed  Google Scholar 

  • Lide DR (ed) (2005) CRC handbook of chemistry and physics, 85th edn. CRC Press, Boca Raton

    Google Scholar 

  • Löffler R, Müller CJ, Peller M, Penzkofer H, Deimling M, Schwaiblmair M, Scheidler J, Reiser M (2000) Optimization and evaluation of the signal intensity change in multisection oxygen-enhanced MR lung imaging. Magn Reson Med 43:860–866

    PubMed  Google Scholar 

  • Losert C, Nikolaou K, Scheidler J, Mueller CJ, Schwaiblmair M, Reiser MF (2002) Optimized respiratory and ECG gating in oxygen-enhanced MR ventilation imaging of the lung. Proc Int Soc Magn Reson Med 10:1971

    Google Scholar 

  • Lowe KC (1987) Perfluorocarbons as oxygen-transport fluids. Comp Biochem Physiol A Comp Physiol 87:825–838

    CAS  PubMed  Google Scholar 

  • Mai VM, Chen Q, Li W, Hatabu H, Edelman RR (2000) Effect of respiratory phases on MR lung signal intensity and lung conspicuity using segmented multiple inversion recovery turbo spin echo (MIR-TSE). Magn Reson Med 43:760–763

    CAS  PubMed  Google Scholar 

  • Mai VM, Liu B, Li W, Polzin J, Kurucay S, Chen Q, Edelman RR (2002) Influence of oxygen flow rate on signal and T(1) changes in oxygen-enhanced ventilation imaging. J Magn Reson Imaging 16:37–41

    PubMed  Google Scholar 

  • Mai VM, Tutton S, Prasad PV, Chen Q, Li W, Chen C, Liu B, Polzin J, Kurucay S, Edelman RR (2003) Computing oxygen-enhanced ventilation maps using correlation analysis. Magn Reson Med 49:591–594

    PubMed  Google Scholar 

  • Marcus JT, Korporaal JG, Rietema H, Boonstra A, Vonk Noordegraaf A (2007) MRI estimation of dynamic regional lung ventilation, derived from pulmonary density changes during respiration. Proc Int Soc Magn Reson Med 15:2777

    Google Scholar 

  • Maxien D, Dietrich O, Thieme SF, Förster S, Behr J, Reiser MF, Nikolaou K (2012) Value of oxygen-enhanced MRI of the lungs in patients with pulmonary hypertension: a qualitative and quantitative approach. J Magn Reson Imaging 35:86–94

    PubMed  Google Scholar 

  • Misselwitz B, Mühler A, Heinzelmann I, Böck JC, Weinmann HJ (1997) Magnetic resonance imaging of pulmonary ventilation. Initial experiences with a gadolinium-DTPA-based aerosol. Invest Radiol 32:797–801

    CAS  PubMed  Google Scholar 

  • Molinari F, Gaudino S, Fink C, Corbo GM, Valente S, Pirronti T, Bonomo L (2006) Simultaneous cardiac and respiratory synchronization in oxygen-enhanced magnetic resonance imaging of the lung using a pneumotachograph for respiratory monitoring. Invest Radiol 41:476–485

    PubMed  Google Scholar 

  • Molinari F, Eichinger M, Risse F, Plathow C, Puderbach M, Ley S, Herth F, Bonomo L, Kauczor HU, Fink C (2007) Navigator-triggered oxygen-enhanced MRI with simultaneous cardiac and respiratory synchronization for the assessment of interstitial lung disease. J Magn Reson Imaging 26:1523–1529

    PubMed  Google Scholar 

  • Molinari F, Puderbach M, Eichinger M, Ley S, Fink C, Bonomo L, Kauczor HU, Bock M (2008) Oxygen-enhanced magnetic resonance imaging: influence of different gas delivery methods on the T1-changes of the lungs. Invest Radiol 43:427–432

    PubMed  Google Scholar 

  • Molinari F, Bauman G, Paolantonio G, Geisler T, Geiger B, Bonomo L, Kauczor HU, Puderbach M (2012) Improvement of multislice oxygen-enhanced MRI of the lung by fully automatic non-rigid image registration. Eur J Radiol 81:2900–2906

    PubMed  Google Scholar 

  • Montgomery AB, Paajanen H, Brasch RC, Murray JF (1987) Aerosolized gadolinium-DTPA enhances the magnetic resonance signal of extravascular lung water. Invest Radiol 22:377–381

    CAS  PubMed  Google Scholar 

  • Morgan AR, Parker GJ, Roberts C, Buonaccorsi GA, Maguire NC, Hubbard Cristinacce PL, Singh D, Vestbo J, Bjermer L, Jögi J, Taib Z, Sarv J, Bruijnzeel PL, Olsson LE, Bondesson E, Nihlén U, McGrath DM, Young SS, Waterton JC, Nordenmark LH (2014) Feasibility assessment of using oxygen-enhanced magnetic resonance imaging for evaluating the effect of pharmacological treatment in COPD. Eur J Radiol 83:2093–2101

    PubMed  Google Scholar 

  • Müller CJ, Löffler R, Deimling M, Peller M, Reiser M (2001) MR lung imaging at 0.2T with T1-weighted true FISP: native and oxygen-enhanced. J Magn Reson Imaging 14:164–168

    PubMed  Google Scholar 

  • Müller CJ, Schwaiblmair M, Scheidler J, Deimling M, Weber J, Löffler RB, Reiser MF (2002) Pulmonary diffusing capacity: assessment with oxygen-enhanced lung MR imaging preliminary findings. Radiology 222:499–506

    PubMed  Google Scholar 

  • Naish JH, Parker GJ, Beatty PC, Jackson A, Young SS, Waterton JC, Taylor CJ (2005) Improved quantitative dynamic regional oxygen-enhanced pulmonary imaging using image registration. Magn Reson Med 54:464–469

    PubMed  Google Scholar 

  • Nakagawa T, Sakuma H, Murashima S, Ishida N, Matsumura K, Takeda K (2001) Pulmonary ventilation-perfusion MR imaging in clinical patients. J Magn Reson Imaging 14:419–424

    CAS  PubMed  Google Scholar 

  • Napadow VJ, Mai V, Bankier A, Gilbert RJ, Edelman R, Chen Q (2001) Determination of regional pulmonary parenchymal strain during normal respiration using spin inversion tagged magnetization MRI. J Magn Reson Imaging 13:467–474

    CAS  PubMed  Google Scholar 

  • Nogami M, Ohno Y, Higashino T, Takenaka D, Yoshikawa T, Koyama H, Kawamitsu H, Fujii M, Sugimura K (2007) Influences of prolonged apnea and oxygen inhalation on pulmonary hemodynamics during breath holding: quantitative assessment by velocity-encoded MR imaging with SENSE technique. Eur J Radiol 64:375–380

    PubMed  Google Scholar 

  • Oechsner M, Pracht ED, Staeb D, Arnold JF, Köstler H, Hahn D, Beer M, Jakob PM (2009) Lung imaging under free-breathing conditions. Magn Reson Med 61:723–727

    PubMed  Google Scholar 

  • Ogasawara N, Suga K, Kawakami Y, Yamashita T, Zaki M, Matsunaga N (2004) Assessment of regional lung function impairment in airway obstruction and pulmonary embolic dogs with combined noncontrast electrocardiogram-gated perfusion and gadolinium diethylenetriaminepentaacetic acid aerosol magnetic resonance images. J Magn Reson Imaging 20:46–55

    PubMed  Google Scholar 

  • Ohno Y, Hatabu H, Takenaka D, Adachi S, Van Cauteren M, Sugimura K (2001) Oxygen-enhanced MR ventilation imaging of the lung: preliminary clinical experience in 25 subjects. AJR Am J Roentgenol 177:185–194

    CAS  PubMed  Google Scholar 

  • Ohno Y, Hatabu H, Takenaka D, Van Cauteren M, Fujii M, Sugimura K (2002) Dynamic oxygen-enhanced MRI reflects diffusing capacity of the lung. Magn Reson Med 47:1139–1144

    PubMed  Google Scholar 

  • Ohno Y, Oshio K, Uematsu H, Nakatsu M, Gefter WB, Hatabu H (2004) Single-shot half-Fourier RARE sequence with ultra-short inter-echo spacing for lung imaging. J Magn Reson Imaging 20:336–339

    PubMed  Google Scholar 

  • Ohno Y, Hatabu H, Higashino T, Nogami M, Takenaka D, Watanabe H, Van Cauteren M, Yoshimura M, Satouchi M, Nishimura Y, Sugimura K (2005) Oxygen-enhanced MR imaging: correlation with postsurgical lung function in patients with lung cancer. Radiology 236:704–711

    PubMed  Google Scholar 

  • Ohno Y, Iwasawa T, Seo JB, Koyama H, Takahashi H, Oh YM, Nishimura Y, Sugimura K (2008a) Oxygen-enhanced magnetic resonance imaging versus computed tomography: multicenter study for clinical stage classification of smoking-related chronic obstructive pulmonary disease. Am J Respir Crit Care Med 177:1095–1102

    PubMed  Google Scholar 

  • Ohno Y, Koyama H, Nogami M, Takenaka D, Matsumoto S, Obara M, Sugimura K (2008b) Dynamic oxygen-enhanced MRI versus quantitative CT: pulmonary functional loss assessment and clinical stage classification of smoking-related COPD. AJR Am J Roentgenol 190:W93–W99

    PubMed  Google Scholar 

  • Ohno Y, Koyama H, Matsumoto K, Onishi Y, Nogami M, Takenaka D, Matsumoto S, Sugimura K (2011) Oxygen-enhanced MRI vs. quantitatively assessed thin-section CT: pulmonary functional loss assessment and clinical stage classification of asthmatics. Eur J Radiol 77:85–91

    PubMed  Google Scholar 

  • Ohno Y, Koyama H, Yoshikawa T, Matsumoto K, Aoyama N, Onishi Y, Takenaka D, Matsumoto S, Nishimura Y, Sugimura K (2012a) Comparison of capability of dynamic O2-enhanced MRI and quantitative thin-section MDCT to assess COPD in smokers. Eur J Radiol 81:1068–1075

    PubMed  Google Scholar 

  • Ohno Y, Nishio M, Koyama H, Yoshikawa T, Matsumoto S, Takenaka D, Sugimura K (2012b) Oxygen-enhanced MRI, thin-section MDCT, and perfusion SPECT/CT: comparison of clinical implications to patient care for lung volume reduction surgery. AJR Am J Roentgenol 199:794–802

    PubMed  Google Scholar 

  • Ohno Y, Nishio M, Koyama H, Seki S, Yoshikawa T, Matsumoto S, Obara M, van Cauteren M, Sugimura K (2014a) Asthma: comparison of dynamic oxygen-enhanced MR imaging and quantitative thin-section CT for evaluation of clinical treatment. Radiology 273:907–916

    PubMed  Google Scholar 

  • Ohno Y, Nishio M, Koyama H, Yoshikawa T, Matsumoto S, Seki S, Tsubakimoto M, Sugimura K (2014b) Oxygen-enhanced MRI for patients with connective tissue diseases: comparison with thin-section CT of capability for pulmonary functional and disease severity assessment. Eur J Radiol 83:391–397

    PubMed  Google Scholar 

  • Pracht ED, Arnold JF, Wang T, Jakob PM (2005) Oxygen-enhanced proton imaging of the human lung using T2*. Magn Reson Med 53:1193–1196

    PubMed  Google Scholar 

  • Price A, Prior M, Busza A, Morris P (2004) Single point imaging (SPI) of lung tissue. Proc Int Soc Magn Reson Med 12:858

    Google Scholar 

  • Price A, White A, Busza A, Morris P (2005) Gadolinium enhanced SPI to assess lung ventilation. Proc Int Soc Magn Reson Med 13:45

    Google Scholar 

  • Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962

    CAS  PubMed  Google Scholar 

  • Puderbach M, Ohno Y, Kawamitsu H, Koyama H, Takenaka D, Nogami M, Obara M, Van Cauteren M, Kauczor HU, Sugimura K (2007) Influence of inversion pulse type in assessing lung-oxygen-enhancement by centrically-reordered non-slice-selective inversion-recovery half-Fourier single-shot turbo spin-echo (HASTE) sequence. J Magn Reson Imaging 26:1133–1138

    PubMed  Google Scholar 

  • Renne J, Hinrichs J, Schönfeld C, Gutberlet M, Winkler C, Faulenbach C, Jakob P, Schaumann F, Krug N, Wacker F, Hohlfeld JM, Vogel-Claussen J (2015a) Noninvasive quantification of airway inflammation following segmental allergen challenge with functional MR imaging: a proof of concept study. Radiology 274:267–275

    PubMed  Google Scholar 

  • Renne J, Lauermann P, Hinrichs JB, Schönfeld C, Sorrentino S, Gutberlet M, Jakob P, Haverich A, Warnecke G, Welte T, Wacker FK, Gottlieb J, Vogel-Claussen J (2015b) Chronic lung allograft dysfunction: Oxygen-enhanced T1-mapping MR imaging of the lung. Radiology 276:266–273

    PubMed  Google Scholar 

  • Renne J, Lauermann P, Hinrichs J, Schönfeld C, Sorrentino S, Gutberlet M, Jakob P, Wacker F, Vogel-Claussen J (2015c) Clinical use of oxygen-enhanced T1 mapping MRI of the lung: reproducibility and impact of closed versus loose fit oxygen delivery system. J Magn Reson Imaging 41:60–66

    PubMed  Google Scholar 

  • Rupprecht T, Böwing B, Kuth R, Deimling M, Rascher W, Wagner M (2002) Steady-state free precession projection MRI as a potential alternative to the conventional chest X-ray in pediatric patients with suspected pneumonia. Eur Radiol 12:2752–2756

    PubMed  Google Scholar 

  • Rupprecht T, Kuth R, Deimling M, Wagner M (2003) Functional lung imaging by MRI – is there a simple solution for a complex problem? Proc Int Soc Magn Reson Med 11:1371

    Google Scholar 

  • Sá RC, Cronin MV, Henderson AC, Holverda S, Theilmann RJ, Arai TJ, Dubowitz DJ, Hopkins SR, Buxton RB, Prisk GK (2010) Vertical distribution of specific ventilation in normal supine humans measured by oxygen-enhanced proton MRI. J Appl Physiol 109:1950–1959

    PubMed  PubMed Central  Google Scholar 

  • Sá RC, Asadi AK, Theilmann RJ, Hopkins SR, Prisk GK, Darquenne C (2014) Validating the distribution of specific ventilation in healthy humans measured using proton MR imaging. J Appl Physiol 116:1048–1056

    PubMed  PubMed Central  Google Scholar 

  • Schoenberg SO, Dietrich O, Reiser MF (eds) (2007) Parallel imaging in clinical MR applications. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Sodickson DK, Manning WJ (1997) Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 38:591–603

    CAS  PubMed  Google Scholar 

  • Sood BG, Shen Y, Latif Z, Chen X, Sharp J, Neelavalli J, Joshi A, Slovis TL, Haacke EM (2008) Aerosol delivery in ventilated newborn pigs: an MRI evaluation. Pediatr Res 64:159–164

    PubMed  Google Scholar 

  • Sood BG, Shen Y, Latif Z, Galli B, Dawe EJ, Haacke EM (2010) Effective aerosol delivery during high-frequency ventilation in neonatal pigs. Respirology 15:551–555

    PubMed  Google Scholar 

  • Sood BG, Latif Z, Shen Y, Galli RJ, Dunlap CW, Gelmini MJ, Haacke EM (2012) Aerosol delivery during high frequency jet ventilation: an MRI evaluation. Respir Care 57:1901–1907

    PubMed  Google Scholar 

  • Stock KW, Chen Q, Morrin M, Hatabu H, Edelman RR (1999) Oxygen-enhanced magnetic resonance ventilation imaging of the human lung at 0.2 and 1.5 T. J Magn Reson Imaging 9:838–841

    CAS  PubMed  Google Scholar 

  • Suga K, Ogasawara N, Okada M, Matsunaga N, Arai M (2002a) Regional lung functional impairment in acute airway obstruction and pulmonary embolic dog models assessed with gadolinium-based aerosol ventilation and perfusion magnetic resonance imaging. Invest Radiol 37:281–291

    PubMed  Google Scholar 

  • Suga K, Ogasawara N, Tsukuda T, Matsunaga N (2002b) Assessment of regional lung ventilation in dog lungs with Gd-DTPA aerosol ventilation MR imaging. Acta Radiol 43:282–291

    CAS  PubMed  Google Scholar 

  • Suga K, Yuan Y, Ogasawara N, Tsukuda T, Matsunaga N (2003) Altered clearance of gadolinium diethylenetriaminepentaacetic acid aerosol from bleomycin-injured dog lungs: initial observations. Am J Respir Crit Care Med 167:1704–1710

    PubMed  Google Scholar 

  • Sundaram TA, Gee JC (2005) Towards a model of lung biomechanics: pulmonary kinematics via registration of serial lung images. Med Image Anal 9:524–537

    PubMed  Google Scholar 

  • Takenaka D, Puderbach M, Ohno Y, Risse F, Ley S, Sugimura K, Kauczor HU (2011) Oxygen-enhanced lung magnetic resonance imaging: influence of inversion pulse slice selectivity on inversion recovery half-Fourier single-shot turbo spin-echo signal. Jpn J Radiol 29:244–250

    PubMed  Google Scholar 

  • Thieme SF, Dietrich O, Maxien D, Nikolaou K, Schoenberg SO, Reiser M, Fink C (2011) Oxygen-enhanced MRI of the lungs: intraindividual comparison between 1.5 and 3 Tesla. Rofo Fortschr Röntgenstr 183:358–364

    CAS  Google Scholar 

  • Togao O, Ohno Y, Dimitrov I, Hsia CC, Takahashi M (2011) Ventilation/perfusion imaging of the lung using ultra-short echo time (UTE) MRI in an animal model of pulmonary embolism. J Magn Reson Imaging 34:539–546

    PubMed  PubMed Central  Google Scholar 

  • Topf HG, Wagner M, Kuth R, Kreisler P, Deimling M, Geiger B, Chefd’hotel C, Rupprecht T (2004) Measuring quantitative regional lung ventilation by alveolar ventilation imaging (AVI) – phantom data and results of a feasibility study in 50 patients. Proc Int Soc Magn Reson Med 12:671

    Google Scholar 

  • Topf HG, Zapke M, Kuth R, Kreisler P, Deimling M, Geiger B, Chefd’hotel C, Rupprecht T (2005) 1.5 Tesla can do too – measuring quantitative regional lung ventilation by AVI (alveolar ventilation imaging) – phantom data and results of a feasibility study in 10 patients. Proc Int Soc Magn Reson Med 13:–46

    Google Scholar 

  • Topf HG, Biondetti P, Zapke M, Kuth R, Deimling M, Chefd’hotel C, Geiger B, Rupprecht T (2006) Quantitative regional lung ventilation – results in 15 single lung transplanted patients. Proc Int Soc Magn Reson Med 14:1660

    Google Scholar 

  • Triphan SM, Breuer FA, Gensler D, Kauczor HU, Jakob PM (2015a) Oxygen enhanced lung MRI by simultaneous measurement of T1 and T2* during free breathing using ultrashort TE. J Magn Reson Imaging 41:1708–1714

    PubMed  Google Scholar 

  • Triphan SM, Jobst BJ, Breuer FA, Wielpütz MO, Kauczor HU, Biederer J, Jakob PM (2015b) Echo time dependence of observed T1 in the human lung. J Magn Reson Imaging 42:610–616

    PubMed  Google Scholar 

  • Vaninbroukx J, Bosmans H, Sunaert S, Demedts M, Delcroix M, Marchal G, Verschakelen J (2003) The use of ECG and respiratory triggering to improve the sensitivity of oxygen-enhanced proton MRI of lung ventilation. Eur Radiol 13:1260–1265

    PubMed  Google Scholar 

  • Voorhees A, An J, Berger KI, Goldring RM, Chen Q (2005) Magnetic resonance imaging-based spirometry for regional assessment of pulmonary function. Magn Reson Med 54:1146–1154

    PubMed  Google Scholar 

  • Voskrebenzev A, Gutberlet M, Becker L, Wacker F, Vogel-Claussen J (2016) Reproducibility of fractional ventilation derived by Fourier decomposition after adjusting for tidal volume with and without an MRI compatible spirometer. Magn Reson Med. 76:1542–1550

    PubMed  Google Scholar 

  • Wagner M, Böwing B, Kuth R, Deimling M, Rascher W, Rupprecht T (2001) Low field thoracic MRI – a fast and radiation free routine imaging modality in children. Magn Reson Imaging 19:975–983

    CAS  PubMed  Google Scholar 

  • Wang H, Sebrié C, Ruaud JP, Guillot G, Bouazizi-Verdier K, Willoquet G, Maître X, Darrasse L, de Rochefort L (2016) Aerosol deposition in the lungs of spontaneously breathing rats using Gd-DOTA-based contrast agents and ultra-short echo time MRI at 1.5 Tesla. Magn Reson Med 75:594–605

    PubMed  Google Scholar 

  • Wujcicki A, Corteville D, Materka A, Schad LR (2015) Perfusion and ventilation filters for Fourier-decomposition MR lung imaging. Z Med Phys 25:66–76

    PubMed  Google Scholar 

  • Zaharchuk G, Busse RF, Rosenthal G, Manley GT, Glenn OA, Dillon WP (2006) Noninvasive oxygen partial pressure measurement of human body fluids in vivo using magnetic resonance imaging. Acad Radiol 13:1016–1024

    PubMed  Google Scholar 

  • Zapke M, Topf HG, Zenker M, Kuth R, Deimling M, Kreisler P, Rauh M, Chefd'hotel C, Geiger B, Rupprecht T (2006) Magnetic resonance lung function – a breakthrough for lung imaging and functional assessment? A phantom study and clinical trial. Respir Res 7:106

    PubMed  PubMed Central  Google Scholar 

  • Zapp J, Domsch S, Weingärtner S, Schad LR (2016) Gaussian signal relaxation around spin echoes: implications for precise reversible transverse relaxation quantification of pulmonary tissue at 1.5 and 3 Tesla. Magn Reson Med. doi:10.1002/mrm.26280 [Epub ahead of print]

    Article  PubMed  Google Scholar 

  • Zhang WJ, Niven RM, Young SS, Liu YZ, Parker GJ, Naish JH (2015) Dynamic oxygen-enhanced magnetic resonance imaging of the lung in asthma – initial experience. Eur J Radiol 84:318–326

    PubMed  Google Scholar 

  • Zurek M, Johansson E, Risse F, Alamidi D, Olsson LE, Hockings PD (2014) Accurate T(1) mapping for oxygen-enhanced MRI in the mouse lung using a segmented inversion-recovery ultrashort echo-time sequence. Magn Reson Med 71:2180–2185

    CAS  PubMed  Google Scholar 

  • Zurek M, Sladen L, Johansson E, Olsson M, Jackson S, Zhang H, Mayer G, Hockings PD (2016) Assessing the relationship between lung density and function with oxygen-enhanced magnetic resonance imaging in a mouse model of emphysema. PLoS One 11:e0151211

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Dietrich PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dietrich, O. (2016). Proton MRI Based Ventilation Imaging: Oxygen-Enhanced Lung MRI and Alternative Approaches. In: Kauczor, HU., Wielpütz, M.O. (eds) MRI of the Lung. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/174_2016_80

Download citation

  • DOI: https://doi.org/10.1007/174_2016_80

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42616-7

  • Online ISBN: 978-3-319-42617-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics