Skip to main content

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

Most systemic diseases affecting the bone marrow (BM) will have a major impact on disease progression and life expectancy. Toxic effects on bone marrow caused by exogenic agents such as chemotherapy or other medications that are non-cell specific significantly influence treatment outcome and survival. The bone marrow with its active hematopoietic components, vital microenvironment, and complex cellular interactions among each other and with adjacent support tissue such as bone is vulnerable to a vast number of toxic stresses. We are just beginning to understand the role of normal and yet disease-unaffected bone marrow in patients treated for various illnesses. Morphological and compositional changes, as imaged with MRI, reflect a static picture of dynamic and ongoing biochemical cellular process. Newer techniques, for example, diffusion-weighted MR imaging brings us now closer to the cellular level. This is particularly important for the correct interpretation of bone marrow signal changes in cancer patients receiving chemotherapy. Bone marrow edema, hypo- or aplasia, reconversion, and necrosis are the most frequent changes associated with a broad spectrum of chemotherapeutic agents and their additives. The knowledge of chemotherapeutic regimes and the timeline of administration are essential for the interpretation of bone marrow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Wb:

Whole-body

SI:

Signal intensity

-w:

-Weighted image(s)

fs:

Fat-saturated

Gd:

Gadolinium

References

  • Altehoefer C, Laubenberger J, Lange W, Kraus A, Allmann KH, Uhrmeister P, Langer M (1997) Prospective evaluation of bone marrow signal changes on magnetic resonance tomography during high-dose chemotherapy and peripheral blood stem cell transplantation in patients with breast cancer. Invest Radiol 32:613–620

    Article  CAS  PubMed  Google Scholar 

  • Altehoefer C, Bertz H, Ghanem NA, Langer M (2001) Extent and time course of morphological changes of bone marrow induced by granulocyte-colony stimulating factor as assessed by magnetic resonance imaging of healthy blood stem cell donors. J Magn Reson Imaging 14:141–146

    Article  CAS  PubMed  Google Scholar 

  • Bartl R (2012) Histology of normal bone and bone marrow and their main disorders. In: Baur-Melnyk A (ed) Medical radiology. Springer, Berlin/Heidelberg, pp 3–20

    Google Scholar 

  • Baur A, Stabler A, Bartl R, Lamerz R, Scheidler J, Reiser M (1997) MRI gadolinium enhancement of bone marrow: age-related changes in normals and in diffuse neoplastic infiltration. Skeletal Radiol 26:414–418

    Article  CAS  PubMed  Google Scholar 

  • Berger FH, van Dijke CF, Maas M (2009) Diffuse marrow changes. Semin Musculoskelet Radiol 13:104–110

    Article  PubMed  Google Scholar 

  • Berman E, Nicolaides M, Maki RG, Fleisher M, Chanel S, Scheu K, Wilson BA, Heller G, Sauter NP (2006) Altered bone and mineral metabolism in patients receiving imatinib mesylate. N Engl J Med 354:2006–2013

    Article  CAS  PubMed  Google Scholar 

  • Bredella MA (2010) Perspective: the bone-fat connection. Skeletal Radiol 39:729–731

    Article  PubMed  Google Scholar 

  • Burton C, Azzi A, Kerridge I (2002) Adverse events after imatinib mesylate therapy. N Engl J Med 346:712–713

    Article  PubMed  Google Scholar 

  • Calderone RR, Larsen JM (1996) Overview and classification of spinal infections. Orthop Clin North Am 27:1–8

    CAS  PubMed  Google Scholar 

  • Campiotti L, Codari R, Appio L, Ultori C, Solbiati F, Maria GA, Venco A (2007) Bone marrow necrosis related to imatinib mesylate therapy for cml bilineal blast crisis. Leuk Res 31:1768–1770

    Article  CAS  PubMed  Google Scholar 

  • Carroll KW, Feller JF, Tirman PF (1997) Useful internal standards for distinguishing infiltrative marrow pathology from hematopoietic marrow at MRI. J Magn Reson Imaging 7:394–398

    Article  CAS  PubMed  Google Scholar 

  • Daldrup-Link HE, Henning T, Link TM (2007) MR imaging of therapy-induced changes of bone marrow. Eur Radiol 17:743–761

    Article  PubMed Central  PubMed  Google Scholar 

  • Daldrup-Link HE, Mohanty A, Cuenod C, Pichler B, Link T (2009) New perspectives on bone marrow contrast agents and molecular imaging. Semin Musculoskelet Radiol 13:145–156

    Article  PubMed  Google Scholar 

  • Dietrich O, Biffar A, Reiser MF, Baur-Melnyk A (2009) Diffusion-weighted imaging of bone marrow. Semin Musculoskelet Radiol 13:134–144

    Article  PubMed  Google Scholar 

  • Dreyer Z, Blah J, Bleyer A (2005) Late effects of childhood cancers and its treatment. In: Principles and practice of pediatric oncology. Lippincott Williams & Wilkins, Philadelphia, pp 1431–1461

    Google Scholar 

  • Duong S, Sallis JG, Zee SY (2004) Malignant fibrous histiocytoma arising within a bone infarct in a patient with sickle cell trait. Int J Surg Pathol 12:67–73

    Article  PubMed  Google Scholar 

  • Ghanem N, Lerche A, Lohrmann C, Altehoefer C, Henke M, Langer M (2007) Quantitative and semiquantitative evaluation of erythropoietin-induced bone marrow signal changes in lumbar spine MRI in patients with tumor anemia. Onkologie 30:303–308

    Article  CAS  PubMed  Google Scholar 

  • Gold GE, Han E, Stainsby J, Wright G, Brittain J, Beaulieu C (2004) Musculoskeletal MRI at 3.0 T: relaxation times and image contrast. AJR Am J Roentgenol 183:343–351

    Article  PubMed  Google Scholar 

  • Hall E (2011) Radiobiology for the radiologist. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Hanna SL, Fletcher BD (2004) Musculoskeletal effects of therapy in patients treated for hematological malignancies. In: Guermazi A (ed) Radiological imaging in hematological malignancies, Medical radiology. Springer, Berlin/Heidelberg, pp 485–509

    Chapter  Google Scholar 

  • Hillengass J, Bauerle T, Bartl R, Andrulis M, McClanahan F, Laun FB, Zechmann CM, Shah R, Wagner-Gund B, Simon D, Heiss C, Neben K, Ho AD, Schlemmer HP, Goldschmidt H, Delorme S, Stieltjes B (2011a) Diffusion-weighted imaging for non-invasive and quantitative monitoring of bone marrow infiltration in patients with monoclonal plasma cell disease: a comparative study with histology. Br J Haematol 153:721–728

    Article  PubMed  Google Scholar 

  • Hillengass J, Stieltjes B, Bauerle T, McClanahan F, Heiss C, Hielscher T, Wagner-Gund B, Habetler V, Goldschmidt H, Schlemmer HP, Delorme S, Zechmann CM (2011b) Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted imaging of bone marrow in healthy individuals. Acta Radiol 52:324–330

    Article  PubMed  Google Scholar 

  • Hirbe A, Morgan EA, Uluckan O, Weilbaecher K (2006) Skeletal complications of breast cancer therapies. Clin Cancer Res 12:6309s–6314s

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hwang S, Panicek DM (2007a) Magnetic resonance imaging of bone marrow in oncology, part 1. Skeletal Radiol 36:913–920

    Article  PubMed  Google Scholar 

  • Hwang S, Panicek DM (2007b) Magnetic resonance imaging of bone marrow in oncology, part 2. Skeletal Radiol 36:1017–1027

    Article  PubMed  Google Scholar 

  • Karmazyn B, Cohen MD, Jennings SG, Robertson KA (2012) Marrow signal changes observed in follow-up whole-body MRI studies in children and young adults with neurofibromatosis type 1 treated with imatinib mesylate (Gleevec) for plexiform neurofibromas. Pediatr Radiol 42:1218–1222

    Article  PubMed  Google Scholar 

  • Kauczor HU, Brix G, Dietl B, Jarosch K, Knopp MV, van Kaick G (1993) Bone marrow after autologous blood stem cell transplantation and total body irradiation: magnetic resonance and chemical shift imaging. Magn Reson Imaging 11:965–975

    Article  CAS  PubMed  Google Scholar 

  • Khosla S, Burr D, Cauley J, Dempster DW, Ebeling PR, Felsenberg D, Gagel RF, Gilsanz V, Guise T, Koka S, McCauley LK, McGowan J, McKee MD, Mohla S, Pendrys DG, Raisz LG, Ruggiero SL, Shafer DM, Shum L, Silverman SL, Van Poznak CH, Watts N, Woo SB, Shane E (2008) Oral bisphosphonate-induced osteonecrosis: risk factors, prediction of risk using serum CTX testing, prevention, and treatment. J Oral Maxillofac Surg 66:1320–1321

    Article  PubMed  Google Scholar 

  • Kornreich L, Horev G, Yaniv I, Stein J, Grunebaum M, Zaizov R (1997) Iron overload following bone marrow transplantation in children: MR findings. Pediatr Radiol 27:869–872

    Article  CAS  PubMed  Google Scholar 

  • Kourbeti IS, Ziakas PD, Mylonakis E (2014) Biologic therapies in rheumatoid arthritis and the risk of opportunistic infections: a meta-analysis. Clin Infect Dis 58:1649–1657

    Article  PubMed  Google Scholar 

  • Lang P, Fritz R, Vahlensieck M, Majumdar S, Berthezene Y, Grampp S, Genant HK (1992) Residual and reconverted hematopoietic bone marrow in the distal femur. Spin-echo and opposed-phase gradient-echo MRT. Rofo 156:89–95

    Article  CAS  PubMed  Google Scholar 

  • Layer G, Sander W, Traber F, Block W, Ko Y, Ziske CG, Konig R, Vahlensieck M, Schild HH (2000) The diagnostic problems in magnetic resonance tomography of the bone marrow in patients with malignomas under G-CSF therapy. Radiologe 40:710–715

    Article  CAS  PubMed  Google Scholar 

  • Liney GP, Bernard CP, Manton DJ, Turnbull LW, Langton CM (2007) Age, gender, and skeletal variation in bone marrow composition: a preliminary study at 3.0 Tesla. J Magn Reson Imaging 26:787–793

    Article  PubMed  Google Scholar 

  • Matsue K, Takeuchi M, Koseki M, Uryu H (2006) Bone marrow necrosis associated with the use of imatinib mesylate in a patient with Philadelphia chromosome-positive acute lymphoblastic leukemia. Ann Hematol 85:542–544

    Article  PubMed  Google Scholar 

  • Noebauer-Huhmann I-M, Uffmann M (2012) Anemias and bone marrow insufficiency. In: Baur-Melnyk A (ed) Medical radiology. Springer, Berlin/Heidelberg, pp 193–220

    Google Scholar 

  • Ollivier L, Gerber S, Vanel D, Brisse H, Leclere J (2006) Improving the interpretation of bone marrow imaging in cancer patients. Cancer Imaging 6:194–198

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Padhani AR, Koh DM, Collins DJ (2011) Whole-body diffusion-weighted MR imaging in cancer: current status and research directions. Radiology 261:700–718

    Article  PubMed  Google Scholar 

  • Padhani AR, van Ree K, Collins DJ, D’Sa S, Makris A (2013) Assessing the relation between bone marrow signal intensity and apparent diffusion coefficient in diffusion-weighted MRI. AJR Am J Roentgenol 200:163–170

    Article  PubMed  Google Scholar 

  • Patsch JM, Li X, Baum T, Yap SP, Karampinos DC, Schwartz AV, Link TM (2013) Bone marrow fat composition as a novel imaging biomarker in postmenopausal women with prevalent fragility fractures. J Bone Miner Res Aug;28(8):1721–1728. doi: 10.1002/jbmr.1950

  • Pereira PL, Schick F, Einsele H, Farnsworth CT, Kollmansberger C, Mattke A, Duda SH, Claussen CD (1999) MR tomography of the bone marrow changes after high-dosage chemotherapy and autologous peripheral stem-cell transplantation. Rofo 170:251–257

    CAS  PubMed  Google Scholar 

  • Rosoff PM (2006) The two-edged sword of curing childhood cancer. N Engl J Med 355:1522–1523

    Article  CAS  PubMed  Google Scholar 

  • Schwartz AM, Leonidas JC (1984) Methotrexate osteopathy. Skeletal Radiol 11:13–16

    Article  CAS  PubMed  Google Scholar 

  • Shapiro MD (2006) MR imaging of the spine at 3 T. Magn Reson Imaging Clin N Am 14:97–108

    Article  PubMed  Google Scholar 

  • Shellock FG, Morris E, Deutsch AL, Mink JH, Kerr R, Boden SD (1992) Hematopoietic bone marrow hyperplasia: high prevalence on MR images of the knee in asymptomatic marathon runners. AJR Am J Roentgenol 158:335–338

    Article  CAS  PubMed  Google Scholar 

  • Solomon DH, Mercer E, Woo SB, Avorn J, Schneeweiss S, Treister N (2013) Defining the epidemiology of bisphosphonate-associated osteonecrosis of the jaw: prior work and current challenges. Osteoporos Int 24:237–244

    Article  CAS  PubMed  Google Scholar 

  • Stevens SK, Moore SG, Amylon MD (1990) Repopulation of marrow after transplantation: MR imaging with pathologic correlation. Radiology 175:213–218

    Article  CAS  PubMed  Google Scholar 

  • Tamura T, Tasaka T, Fujimoto M, Matsuhashi Y, Fukumot T, Mano S, Kuwajima M, Nagai M (2004) Massive bone marrow necrosis in a patient with chronic myelocytic leukemia following imatinib mesylate therapy. Haematologica 89:ECR32

    PubMed  Google Scholar 

  • Tang YM, Jeavons S, Stuckey S, Middleton H, Gill D (2007) MRI features of bone marrow necrosis. AJR Am J Roentgenol 188:509–514

    Article  PubMed  Google Scholar 

  • Travis LB, Demark WW, Allan JM, Wood ME, Ng AK (2013) Aetiology, genetics and prevention of secondary neoplasms in adult cancer survivors. Nat Rev Clin Oncol 10:289–301

    Article  CAS  PubMed  Google Scholar 

  • Umans H, Haramati N, Flusser G (2000) The diagnostic role of gadolinium enhanced MRI in distinguishing between acute medullary bone infarct and osteomyelitis. Magn Reson Imaging 18:255–262

    Article  CAS  PubMed  Google Scholar 

  • Vahlensieck M, Schmidt HM (2000) The normal bone marrow and its variations in MRT. Radiologe 40:688–693

    Article  CAS  PubMed  Google Scholar 

  • Van Berg BC, Omnoumi P, Galant C, Michoux N, Lecouvet FE (2012) MR imaging of the normal bone marrow and normal variants. In: Baur-Melnyk A (ed) Medical radiology. Springer, Berlin/Heidelberg, pp 21–48

    Google Scholar 

  • van Kaick G, Delorme S (2008) Therapy-induced effects in normal tissue. Radiologe 48:871–880

    Article  PubMed  Google Scholar 

  • Vande Berg BC, Malghem J, Lecouvet FE, Devogelaer JP, Maldague B, Houssiau FA (1999) Fat conversion of femoral marrow in glucocorticoid-treated patients: a cross-sectional and longitudinal study with magnetic resonance imaging. Arthritis Rheum 42:1405–1411

    Article  CAS  PubMed  Google Scholar 

  • Vande Berg BC, Lecouvet FE, Galant C, Simoni P, Malghem J (2009) Normal variants of the bone marrow at MR imaging of the spine. Semin Musculoskelet Radiol 13:87–96

    Article  PubMed  Google Scholar 

  • Vanel D, Bonvalot S, Pechoux CL, Cioffi A, Domont J, Cesne AL (2007) Imatimid-induced bone marrow necrosis detected on MRI examination and mimicking bone metastases. Skeletal Radiol 36:895–898

    Article  CAS  PubMed  Google Scholar 

  • Wasser K, Moehler T, Neben K, Nosas S, Heiss J, Goldschmidt H, Hillengass J, Duber C, Kauczor HU, Delorme S (2004) Dynamic MRI of the bone marrow for monitoring multiple myeloma during treatment with thalidomide as monotherapy or in combination with CED chemotherapy. Rofo 176:1285–1295

    Article  CAS  PubMed  Google Scholar 

  • Wood ME, Vogel V, Ng A, Foxhall L, Goodwin P, Travis LB (2012) Second malignant neoplasms: assessment and strategies for risk reduction. J Clin Oncol 30:3734–3745

    Article  PubMed  Google Scholar 

  • Zhao J, Krug R, Xu D, Lu Y, Link TM (2009) MRI of the spine: image quality and normal-neoplastic bone marrow contrast at 3 T versus 1.5 T. AJR Am J Roentgenol 192:873–880

    Article  PubMed  Google Scholar 

  • Zink A, Manger B, Kaufmann J, Eisterhues C, Krause A, Listing J, Strangfeld A (2014) Evaluation of the RABBIT Risk Score for serious infections. Ann Rheum Dis 73:1673–1676

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Jobke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jobke, B., Bloem, H. (2015). Bone Marrow: Chemotherapy. In: Kauczor, HU., Bäuerle, T. (eds) Imaging of Complications and Toxicity following Tumor Therapy. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/174_2015_1051

Download citation

  • DOI: https://doi.org/10.1007/174_2015_1051

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12840-5

  • Online ISBN: 978-3-319-12841-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics