Skip to main content

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 807 Accesses

Abstract

Radiotherapy is a well-established therapeutic modality in oncology that results in survival benefits in several different cancer types, including breast, prostate, rectum, brain, lung, and head and neck cancers. It is generally used to control or eliminate malignant cells as a definitive treatment or a part of adjuvant therapy and to prevent tumor recurrence after surgery. It may also be used as palliative treatment for local disease control or symptomatic pain relief.

Side effects from radiation are usually limited to the area confined to the treatment field, and most of them are predictable and expected. The main effects on the bone include bone marrow fatty conversion, disruption of normal growth and bone maturation, scoliosis, osteonecrosis, insufficiency fractures, and secondary neoplasm formation. To evaluate radiation-induced effects on the bone marrow, it is essential to understand the normal composition and distribution of bone marrow and the normal age-related pattern of bone marrow maturation. Magnetic resonance imaging (MRI) is the only imaging technique that allows direct visualization of bone marrow with high spatial resolution.

In this chapter, the bone marrow composition and distribution will be covered, routine MRI sequences for bone marrow evaluation will be explained, and the radiation-induced changes and radiation-induced complications will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arlen M, Higinbotham NL, Huvos AG et al (1971) Radiation-induced sarcoma of bone. Cancer 28:1087–1099

    Article  CAS  PubMed  Google Scholar 

  • Blomlie V, Rofstad EK, Skonsberg A et al (1995) Female pelvic bone marrow: serial MR imaging before, during and after radiation therapy. Radiology 194:537–543

    Article  CAS  PubMed  Google Scholar 

  • Bowen J, Gregory R, Squier M et al (1996) The post-irradiation lower motor neuron syndrome neuronopathy or radiculopathy? Brain 119:1429–1439

    Article  PubMed  Google Scholar 

  • Burdiles A, Babyn PS (2009) Pediatric bone marrow MR imaging. Magn Reson Imaging Clin N Am 17(3):391–409

    Article  PubMed  Google Scholar 

  • Cahan WG, Woodard HQ et al (1948) Sarcoma arising in irradiated bone; report of 11 cases. Cancer 1:3–29

    Article  CAS  PubMed  Google Scholar 

  • Chellinger D, Lin CS, Fertikh D et al (2000) Normal lumbar vertebrae: anatomic, age, and sex variance in subjects at proton MR spectroscopy: initial experience. Radiology 215:910–916

    Article  Google Scholar 

  • Daldrup-Link HE, Henning T, Link TM (2007) MR imaging of therapy-induced changes of bone marrow. Eur Radiol 17:743–761

    Article  PubMed Central  PubMed  Google Scholar 

  • Delanian S, Lefaix JL, Pradat PF (2012) Radiation-induced neuropathy in cancer survivors. Radiother Oncol 105:273–282

    Article  PubMed  Google Scholar 

  • Ducray F, Guillevin R, Psimaras D et al (2008) Postradiation lumbosacral radiculopathy with spinal root cavernomas mimicking carcinomatous meningitis. Neuro Oncol 10:1035–1039

    Article  PubMed Central  PubMed  Google Scholar 

  • Enneking WF, Spanier SS, Goodman MA (1980) A system for the surgical staging of musculoskeletal sarcoma. Clin Orthop 153:106–120

    PubMed  Google Scholar 

  • Gladdy RA, Qin LX, Moraco N et al (2010) Do radiation-associated soft tissue sarcomas have the same prognosis as sporadic soft tissue sarcomas? J Clin Oncol 28:2064–2069

    Article  PubMed Central  PubMed  Google Scholar 

  • Gocheva L (2000) Radiation tolerance of the spinal cord: doctrine, dogmas, data. Arch Oncol 8(3):131–134

    Google Scholar 

  • Hanrahan CJ, Shah LM (2011) MRI of spinal bone marrow: part 2, T1-weighted imaging-based differential diagnosis. Am J Roentgenol 197:1309–1321

    Article  Google Scholar 

  • Hawkins MM, Wilson LM, Burton HS et al (1996) Radiotherapy, alkylating agents, and risk of bone cancer after childhood cancer. J Natl Cancer Inst 88:270–278

    Article  CAS  PubMed  Google Scholar 

  • Huvos AG, Woodward HQ, Cahan WG et al (1985) Postirradiation osteogenic sarcoma of bone and soft tissues: a clinicopathologic study of 66 patients. Cancer 55:1244–1255

    Article  CAS  PubMed  Google Scholar 

  • Hwang S, Panicek DM (2007) Magnetic resonance imaging of bone marrow in oncology, part 1. Skeletal Radiol 36:913–920

    Article  PubMed  Google Scholar 

  • Inoue YZ, Frassica FJ, Sim FH et al (2000) Clinicopathologic features and treatment of postirradiation sarcoma of bone and soft tissue. J Surg Oncol 75:42–50

    Article  CAS  PubMed  Google Scholar 

  • Kadir T, Sarica FB, Ozgur K et al (2012) Delayed radiation myelopathy: differential diagnosis with positron emission tomography/computed tomography examination. Asian J Neurosurg 7(4):206–209

    Article  PubMed Central  PubMed  Google Scholar 

  • Kalra S, Grimer RJ, Spooner D et al (2007) Radiation-induced sarcomas of bone. J Bone Joint Surg Br 89-B:808–813

    Article  Google Scholar 

  • Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc 53:457–481

    Article  Google Scholar 

  • Koshurnikova NA, Gilbert ES, Sokolnikov M et al (2000) Bone cancers in Mayak workers. Radiat Res 154:237–245

    Article  CAS  PubMed  Google Scholar 

  • Labidi-Galy SI, Tassy L, Blay JY (2011) Radiation-induced soft tissue sarcoma. http://sarcomahelp.org/radiation-induced-sarcoma.html

  • Wu LA, Liu HM, Wang CW et al (2012) Osteoradionecrosis of the upper cervical spine after radiation therapy for head and neck cancer: differentiation from recurrent or metastatic disease with MR imaging. Radiology 264–1:136–145

    Article  Google Scholar 

  • Maranzano E, Bellavita R, Floridi P et al (2001) Radiation–induced myelopathy in long–term surviving metastatic spinal cord compression patients after hypofractionated radiotherapy: a clinical and magnetic resonance imaging analysis. Radiother Oncol 60:281–288

    Article  CAS  PubMed  Google Scholar 

  • Mammone J and Schweitzer ME (1995) MRI of occult sacral insufficiency fractures following radiotherapy. Skeletal Radiol 24(2):101–104

    Google Scholar 

  • Mark RJ, Poen J, Tran LM et al (1994) Postirradiation sarcomas: a single-institution study and review of the literature. Cancer 73:2653–2662

    Article  CAS  PubMed  Google Scholar 

  • Menu-Branthomme A, Rubino C, Shamsaldin A et al (2004) Radiation dose, chemotherapy and risk of soft tissue sarcoma after solid tumours during childhood. Int J Cancer 110:87–93

    Article  CAS  PubMed  Google Scholar 

  • Mertens F, Larramendy M, Gustavsson D et al (2000) Radiation-associated sarcomas are characterized by complex karotypes with frequent rearrangements of chromo- some arm 3p. Cancer Genet Cytogenet 116:89–96

    Article  CAS  PubMed  Google Scholar 

  • Montazel JL, Divine M, Lepage E et al (2003) Normal spinal bone marrow in adults: dynamic gadolinium-enhanced MR imaging. Radiology 229:703–709

    Article  PubMed  Google Scholar 

  • Nakanishi H, Tamita Y, Myoui A et al (1998) Mutation of the p53 gene in postirradiation sarcoma. Lab Invest 78:727–733

    CAS  PubMed  Google Scholar 

  • Otake S, Mayr NA, Ueda T, Magnotta VA, Yuh WTC (2002) Radiation-induced changes in MR signal intensity and contrast enhancement of lumbosacral vertebrae: do changes occur only inside the radiation therapy field? Radiology 222:179–183

    Article  PubMed  Google Scholar 

  • Pichler BJ, Judenhofer MS, Catana C et al (2006) Performance test of an LSO- APD detector in a 7-T MRI scanner for simultaneous PET/MRI. J Nucl Med 47:639–647

    PubMed  Google Scholar 

  • Poe LB (2010) Evaluating the varied appearances of normal and abnormal marrow. MRI Web Clinic – December 2010. http://radsource.us/appearances-of-normal-and-abnormal-marrow

  • Ricci C, Cova M, Kang YS et al (1990) Normal age-related patterns of cellular and fatty bone marrow distribution in the axial skeleton: MR imaging study. Radiology 177:83–88

    Article  CAS  PubMed  Google Scholar 

  • Rolton DJ, Blagg SE, Hughes RJ (2011) Osteoradionecrosis of the lumbar spine 25 years after radiotherapy. J Bone Joint Surg Br 93-B:1279–1281

    Article  Google Scholar 

  • Romanos O, Solomou E, Georgiadis P et al (2013) Magnetic resonance imaging and image analysis of post – radiation changes of bone marrow in patients with skeletal metastases. J BUON 18(3):789

    Google Scholar 

  • Rowland RE, Stehney AF, Lucas HF (1983) Dose-response relationships for radium-induced bone sarcomas. Health Phys 44:15–31

    Article  PubMed  Google Scholar 

  • Sacks EL, Goris ML, Glatstein E et al (1978) Bone marrow regeneration following large field radiation: influence of volume, age, dose, and time. Cancer 42:1057–1065

    Article  CAS  PubMed  Google Scholar 

  • Seneterre E, Weissleder R, Jaramillo D et al (1991) Bone marrow: ultrasmall superparamagnetic iron oxide for MR imaging. Radiology 179:529–533

    Article  CAS  PubMed  Google Scholar 

  • Shah LM, Hanrahan CJ (2011) MRI of spinal bone marrow: part 1, techniques and normal age-related appearances. Am J Roentgenol 197:1298–1308

    Article  Google Scholar 

  • Shaheen M, Deheshi BM, Riad S et al (2006) Prognosis of radiation- induced bone sarcoma is similar to primary osteosarcoma. Clin Orthop Relat Res 450:76–81

    Article  PubMed  Google Scholar 

  • Snyder WS, Cook MJ, Nasset ES, et al International Commission on Radiological Protection (1975) Report of the task group on reference man. Oxford: Pergamon; pp. 79–98

    Google Scholar 

  • Somer EJ, Marsden PK, Benatar NA et al (2003) PET-MR image fusion in soft tissue sarcoma: accuracy, reliability and practicality of interactive point-based and automated mutual information techniques. Eur J Nucl Med Mol Imaging 30:54–62

    Article  PubMed  Google Scholar 

  • Steiner RM, Mitchell DG, Rao VM, Schweitzer ME (1993) Magnetic resonance imaging of diffuse bone marrow disease. Radiol Clin North Am 31:383–409

    CAS  PubMed  Google Scholar 

  • Stevens SK, Moore SG, Kaplan ID (1990) Early and late bone marrow changes after irradiation: MR evaluation. Am J Roentgenol 154:745–750

    Article  CAS  Google Scholar 

  • Store G, Boysen M (2000) Mandibular osteoradionecrosis: clinical behaviour and diagnostic aspects. Clin Otolaryngol Allied Sci 25:378–384

    Article  CAS  PubMed  Google Scholar 

  • Tabone MD, Terrier P, Pacquement H et al (1999) Outcome of radiation-related osteosarcoma after treatment of childhood and adolescent cancer: a study of 23 cases. J Clin Oncol 17:2789–2795

    CAS  PubMed  Google Scholar 

  • Virtanen A, Pukkala E, Auvinen A (2006) Incidence of bone and soft tissue sarcoma after radiotherapy: a cohort study of 295,712 Finnish cancer patients. Int J Cancer 118:1017–1021

    Article  CAS  PubMed  Google Scholar 

  • Wang DT (2012) Magnetic resonance imaging of bone marrow: a review – part I. J Am Osteopath Coll Radiol 1(2):2–12

    Google Scholar 

  • Wang CK, Li CW, Hsieh TJ et al (2004) Characterization of bone and soft-tissue tumors with in vivo 1H MR spectroscopy: initial results. Radiology 232:599–605

    Article  PubMed  Google Scholar 

  • Wyk FC, Sharma MP, Tranter R (2009) Osteoradionecrosis of the cervical spine presenting with quadriplegia in a patient previously treated with radiotherapy for laryngeal cancer: a case report. J Med Case Reports 3:7262

    Article  PubMed Central  Google Scholar 

  • Yankelevitz DF, Henshke CI, Knapp PH et al (1991) Effect of radiation therapy on thoracic and lumbar bone marrow: evaluation with MR imaging. Am J Roentgenol 157:87–92

    Article  CAS  Google Scholar 

  • Yasui T, Yagura H, Komiyama M et al (1992) Significance of gadolinium- enhanced magnetic resonance imaging in differentiating spinal cord radiation myelopathy from tumor: case report. J Neurosurg 77:628–631

    Article  CAS  PubMed  Google Scholar 

  • Yu CW, Hsu CY, Shih TT et al (2007) Vertebral osteonecrosis: MR imaging findings and related changes on adjacent levels. AJNR Am J Neuroradiol 28:42–47

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joana Ramalho MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ramalho, J., Castillo, M. (2014). Radiotherapy Induced Changes in Spine and Spinal Contents. In: Kauczor, HU., Bäuerle, T. (eds) Imaging of Complications and Toxicity following Tumor Therapy. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/174_2014_1039

Download citation

  • DOI: https://doi.org/10.1007/174_2014_1039

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12840-5

  • Online ISBN: 978-3-319-12841-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics