Skip to main content

PET/CT Imaging in Prostate Cancer: Indications and Perspectives for Radiation Therapy

  • Chapter
  • First Online:
Radiotherapy in Prostate Cancer

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

The goal of prostate cancer therapy is to administer risk-adjusted and patient-specific treatment with maximal cancer control and minimal side effects. Modern radiation techniques such as IMRT and IGRT for example enable application of high dose irradiation to the primary/dominant intraprostatic cancer lesions, to a local recurrent nodule after radical prostatectomy, or to the loco-regional lymph node metastases. Such approaches promise to offer significantly improved long term results but require most accurate imaging tools with the ability to reliably detect not only the primary tumor and nodal involvement but more importantly to precisely indicate their location and extent. In addition presence of distant disease should be reliably detected or excluded. In this review we present a detailed overview over numerous PET/CT-studies, with emphasis on choline-PET/CT, that investigated performance of PET/CT in different clinical scenarios, spanning from the initial presentation to PSA recurrent disease. We discuss benefits and limitations of this imaging device in the primary and salvage setting from the radio-oncologists point of view. In the situation of PSA recurrence, there is increasing evidence that in addition to local salvage RT of the prostate fossa after radical prostatectomy, salvage lymph node therapy seems feasible and advantageous for a significant proportion of patients. The accuracy of choline-PET/CT depends on absolute PSA level, PSA kinetics and the investigation depth level (e.g. lesion based vs. region based vs. patient based). Incorporation of metabolic information from Choline PET/CT or other forthcoming PET-tracers with similar or higher accuracy in the process of RT treatment volume definition appears beneficial for both primary and loco-regional recurrence, when lymph node therapy is indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afshar-Oromieh A et al (2014) Comparison of PET imaging with a (68)Ga-labelled PSMA ligand and (18)F-choline-based PET/CT for the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging 41(1):11–20

    Google Scholar 

  • Albrecht S et al (2007) (11)C-acetate PET in the early evaluation of prostate cancer recurrence. Eur J Nucl Med Mol Imaging 34(2):185–196

    PubMed  Google Scholar 

  • Bading JR, Shields AF (2008) Imaging of cell proliferation: status and prospects. J Nucl Med 49(2):64S–80S

    CAS  PubMed  Google Scholar 

  • Bauman G et al (2012) 18F-fluorocholine for prostate cancer imaging: a systematic review of the literature. Prostate Cancer Prostatic Dis 15(1):45–55

    CAS  PubMed  Google Scholar 

  • Beheshti M et al (2008) Detection of bone metastases in patients with prostate cancer by 18F fluorocholine and 18F fluoride PET-CT: a comparative study. Eur J Nucl Med Mol Imaging 35(10):1766–1774

    PubMed  Google Scholar 

  • Beheshti M et al (2009) The use of F-18 choline PET in the assessment of bone metastases in prostate cancer: correlation with morphological changes on CT. Mol Imaging Biol 11(6):446–454

    PubMed  Google Scholar 

  • Beheshti M et al (2010) 18F choline PET/CT in the preoperative staging of prostate cancer in patients with intermediate or high risk of extracapsular disease: a prospective study of 130 patients. Radiology 254(3):925–933

    PubMed  Google Scholar 

  • Bernard JR Jr et al (2010) Salvage radiotherapy for rising prostate-specific antigen levels after radical prostatectomy for prostate cancer: dose-response analysis. Int J Radiat Oncol Biol Phys 76(3):735–740

    PubMed  Google Scholar 

  • Beyer T et al (2004) Acquisition protocol considerations for combined PET/CT imaging. J Nucl Med 45(1):25S–35S

    PubMed  Google Scholar 

  • Boellaard R (2009) Standards for PET image acquisition and quantitative data analysis. J Nucl Med 50(1):11S–20S

    CAS  PubMed  Google Scholar 

  • Boellaard R et al (2004) Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study. J Nucl Med 45(9):1519–1527

    PubMed  Google Scholar 

  • Boellaard R et al (2010) FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging 37(1):181–200

    PubMed Central  PubMed  Google Scholar 

  • Bott SR et al (2010) The index lesion and focal therapy: an analysis of the pathological characteristics of prostate cancer. BJU Int 106(11):1607–1611

    PubMed  Google Scholar 

  • Bouchelouche K, Capala J (2010) Image and treat1: an individualized approach to urological tumors. Curr Opin Oncol 22(3):274–280

    PubMed Central  PubMed  Google Scholar 

  • Bouchelouche K et al (2010) Imaging prostate cancer: an update on positron emission tomography and magnetic resonance imaging. Curr Urol Rep 11(3):180–190

    PubMed Central  PubMed  Google Scholar 

  • Briganti A et al (2009) Two positive nodes represent a significant cut-off value for cancer specific survival in patients with node positive prostate cancer. A new proposal based on a two-institution experience on 703 consecutive N + patients treated with radical prostatectomy, extended pelvic lymph node dissection and adjuvant therapy. Eur Urol 55(2):261–270

    PubMed  Google Scholar 

  • Casamassima F et al (2011) Efficacy of eradicative radiotherapy for limited nodal metastases detected with choline PET scan in prostate cancer patients. Tumori 97(1):49–55

    CAS  PubMed  Google Scholar 

  • Casciani E et al (2008) Endorectal and dynamic contrast-enhanced MRI for detection of local recurrence after radical prostatectomy. AJR Am J Roentgenol 190(5):1187–1192

    PubMed  Google Scholar 

  • Castellucci P, Jadvar H (2012) PET/CT in prostate cancer: non-choline radiopharmaceuticals. Q J Nucl Med Mol Imaging 56(4):367–374

    CAS  PubMed Central  PubMed  Google Scholar 

  • Castellucci P et al (2009) Influence of trigger PSA and PSA kinetics on 11C-Choline PET/CT detection rate in patients with biochemical relapse after radical prostatectomy. J Nucl Med 50(9):1394–1400

    PubMed  Google Scholar 

  • Castellucci P et al (2011) Is there a role for (1)(1)C-choline PET/CT in the early detection of metastatic disease in surgically treated prostate cancer patients with a mild PSA increase <1.5 ng/ml? Eur J Nucl Med Mol Imaging 38(1):55–63

    PubMed  Google Scholar 

  • Cellini N et al (2002) Analysis of intraprostatic failures in patients treated with hormonal therapy and radiotherapy: implications for conformal therapy planning. Int J Radiat Oncol Biol Phys 53(3):595–599

    PubMed  Google Scholar 

  • Chism DB et al (2004) A comparison of the single and double factor high-risk models for risk assignment of prostate cancer treated with 3D conformal radiotherapy. Int J Radiat Oncol Biol Phys 59(2):380–385

    PubMed  Google Scholar 

  • Choo R (2010) Salvage radiotherapy for patients with PSA relapse following radical prostatectomy: issues and challenges. Cancer Res Treat 42(1):1–11

    PubMed Central  PubMed  Google Scholar 

  • Cimitan M et al (2006) [18F]fluorocholine PET/CT imaging for the detection of recurrent prostate cancer at PSA relapse: experience in 100 consecutive patients. Eur J Nucl Med Mol Imaging 33(12):1387–1398

    PubMed  Google Scholar 

  • Connolly JA et al (1996) Local recurrence after radical prostatectomy: characteristics in size, location, and relationship to prostate-specific antigen and surgical margins. Urology 47(2):225–231

    CAS  PubMed  Google Scholar 

  • Crehange et al (2012) Management of prostate cancer patients with lymph node involvement: a rapidly evolving paradigm. Cancer Treat Rev 38(8):956–967

    Google Scholar 

  • Czernin J, Allen-Auerbach M, Schelbert HR (2007) Improvements in cancer staging with PET/CT: literature-based evidence as of September 2006. J Nucl Med 48(1):78S–88S

    CAS  PubMed  Google Scholar 

  • de Jong IJ et al (2002) Visualization of prostate cancer with 11C-choline positron emission tomography. Eur Urol 42(1):18–23

    PubMed  Google Scholar 

  • de Jong IJ et al (2003) Preoperative staging of pelvic lymph nodes in prostate cancer by 11C-choline PET. J Nucl Med 44(3):331–335

    PubMed  Google Scholar 

  • Dehdashti F et al (2005) Positron tomographic assessment of androgen receptors in prostatic carcinoma. Eur J Nucl Med Mol Imaging 32(3):344–350

    PubMed  Google Scholar 

  • Deliveliotis C et al (2007) Diagnostic efficacy of transrectal ultrasound-guided biopsy of the prostatic fossa in patients with rising PSA following radical prostatectomy. World J Urol 25(3):309–313

    PubMed  Google Scholar 

  • Even-Sapir E et al (2007) 18F-Fluoride positron emission tomography and positron emission tomography/computed tomography. Semin Nucl Med 37(6):462–469

    PubMed  Google Scholar 

  • Farsad M et al (2005) Detection and localization of prostate cancer: correlation of (11)C-choline PET/CT with histopathologic step-section analysis. J Nucl Med 46(10):1642–1649

    CAS  PubMed  Google Scholar 

  • Fonteyne V et al (2008) Intensity-modulated radiotherapy as primary therapy for prostate cancer: report on acute toxicity after dose escalation with simultaneous integrated boost to intraprostatic lesion. Int J Radiat Oncol Biol Phys 72(3):799–807

    PubMed  Google Scholar 

  • Fox JJ, Schoder H, Larson SM (2012) Molecular imaging of prostate cancer. Curr Opin Urol 22(4):320–327

    PubMed  Google Scholar 

  • Fox JJ et al (2011) Developing imaging strategies for castration resistant prostate cancer. Acta Oncol 50(1):39–48

    PubMed Central  PubMed  Google Scholar 

  • Fricke E et al (2003) Positron emission tomography with 11C-acetate and 18F-FDG in prostate cancer patients. Eur J Nucl Med Mol Imaging 30(4):607–611

    CAS  PubMed  Google Scholar 

  • Gillies RJ, Robey I, Gatenby RA (2008) Causes and consequences of increased glucose metabolism of cancers. J Nucl Med 49(2):24S–42S

    CAS  PubMed  Google Scholar 

  • Giovacchini G et al (2008) [(11)C]choline uptake with PET/CT for the initial diagnosis of prostate cancer: relation to PSA levels, tumour stage and anti-androgenic therapy. Eur J Nucl Med Mol Imaging 35(6):1065–1073

    CAS  PubMed  Google Scholar 

  • Giovacchini G et al (2010) PSA doubling time for prediction of [(11)C]choline PET/CT findings in prostate cancer patients with biochemical failure after radical prostatectomy. Eur J Nucl Med Mol Imaging 37(6):1106–1116

    CAS  PubMed  Google Scholar 

  • Giovacchini G et al (2012) Prostate-specific antigen velocity versus prostate-specific antigen doubling time for prediction of 11C choline PET/CT in prostate cancer patients with biochemical failure after radical prostatectomy. Clin Nucl Med 37(4):325–331

    PubMed  Google Scholar 

  • Grosu AL, Nestle U, Weber WA (2009) How to use functional imaging information for radiotherapy planning. Eur J Cancer 45(1):461–463

    PubMed  Google Scholar 

  • Grosu AL, Wiedenmann N, Molls M (2005a) Biological imaging in radiation oncology. Z Med Phys 15(3):141–145

    PubMed  Google Scholar 

  • Grosu AL et al (2005b) L-(methyl-11C) methionine positron emission tomography for target delineation in resected high-grade gliomas before radiotherapy. Int J Radiat Oncol Biol Phys 63(1):64–74

    CAS  PubMed  Google Scholar 

  • Grosu AL et al (2006) 11C-methionine PET improves the target volume delineation of meningiomas treated with stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys 66(2):339–344

    CAS  PubMed  Google Scholar 

  • Grosu AL et al (2011) An interindividual comparison of O-(2-[18F]fluoroethyl)-L-tyrosine (FET)- and L-[methyl-11C]methionine (MET)-PET in patients with brain gliomas and metastases. Int J Radiat Oncol Biol Phys 81(4):1049–1058

    CAS  PubMed  Google Scholar 

  • Han M et al (2003) Biochemical (prostate specific antigen) recurrence probability following radical prostatectomy for clinically localized prostate cancer. J Urol 169(2):517–523

    PubMed  Google Scholar 

  • Heidenreich A et al (2008) EAU guidelines on prostate cancer. Eur Urol 53(1):68–80

    PubMed  Google Scholar 

  • Heidenreich A et al (2011) EAU guidelines on prostate cancer. Part I: screening, diagnosis, and treatment of clinically localised disease. Actas Urol Esp 35(9):501–514

    CAS  PubMed  Google Scholar 

  • Hoetjes NJ et al (2010) Partial volume correction strategies for quantitative FDG PET in oncology. Eur J Nucl Med Mol Imaging 37(9):1679–1687

    PubMed Central  PubMed  Google Scholar 

  • Husarik DB et al (2008) Evaluation of [(18)F]-choline PET/CT for staging and restaging of prostate cancer. Eur J Nucl Med Mol Imaging 35(2):253–263

    PubMed  Google Scholar 

  • Iorio E et al (2010) Activation of phosphatidylcholine cycle enzymes in human epithelial ovarian cancer cells. Cancer Res 70(5):2126–2135

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jadvar H (2011) Prostate cancer: PET with 18F-FDG, 18F- or 11C-acetate, and 18F- or 11C-choline. J Nucl Med 52(1):81–89

    PubMed Central  PubMed  Google Scholar 

  • Jadvar H et al (2012) Prospective evaluation of 18F-NaF and 18F-FDG PET/CT in detection of occult metastatic disease in biochemical recurrence of prostate cancer. Clin Nucl Med 37(7):637–643

    PubMed Central  PubMed  Google Scholar 

  • Jana S, Blaufox MD (2006) Nuclear medicine studies of the prostate, testes, and bladder. Semin Nucl Med 36(1):51–72

    PubMed  Google Scholar 

  • Jilg CA et al (2012) Salvage lymph node dissection with adjuvant radiotherapy for nodal recurrence of prostate cancer. J Urol 188(6):2190–2197

    CAS  PubMed  Google Scholar 

  • Jilg CA et al (2014) Detection of lymph node metastasis in patients with nodal prostate cancer relapse using 18F/11C-choline positron emission tomography/computerized tomography: influence of size of nodal tumor infiltration and accuracy related to lymph node regions. J Urol 192

    Google Scholar 

  • Kao PF, Chou YH, Lai CW (2008) Diffuse FDG uptake in acute prostatitis. Clin Nucl Med 33(4):308–310

    PubMed  Google Scholar 

  • Karavitakis M et al (2011) Tumor focality in prostate cancer: implications for focal therapy. Nat Rev Clin Oncol 8(1):48–55

    PubMed  Google Scholar 

  • Kato T et al (2002) Accumulation of [11C]acetate in normal prostate and benign prostatic hyperplasia: comparison with prostate cancer. Eur J Nucl Med Mol Imaging 29(11):1492–1495

    CAS  PubMed  Google Scholar 

  • Kelloff GJ, Choyke P, Coffey DS (2009) Challenges in clinical prostate cancer: role of imaging. AJR Am J Roentgenol 192(6):1455–1470

    PubMed Central  PubMed  Google Scholar 

  • Kirste S, Volegova-Neher N, Henne K, Knippen S, Rischke HC, Schäfer AO (2011) Dose escalated radiotherapy of macroscopic local recurrence after radiacal prostatectomy. Strahlenther Onkol 187(1):112

    Google Scholar 

  • Kotzerke J et al (2000) Experience with carbon-11 choline positron emission tomography in prostate carcinoma. Eur J Nucl Med 27(9):1415–1419

    CAS  PubMed  Google Scholar 

  • Kotzerke J et al (2002) Carbon-11 acetate positron emission tomography can detect local recurrence of prostate cancer. Eur J Nucl Med Mol Imaging 29(10):1380–1384

    CAS  PubMed  Google Scholar 

  • Kotzerke J et al (2003) Intraindividual comparison of [11C]acetate and [11C]choline PET for detection of metastases of prostate cancer. Nuklearmedizin 42(1):25–30

    CAS  PubMed  Google Scholar 

  • Krause BJ, Souvatzoglou M, Treiber U (2013) Imaging of prostate cancer with PET/CT and radioactively labeled choline derivates. Urol Oncol 31(4):427–435

    Google Scholar 

  • Krause BJ et al (2008) The detection rate of [11C]choline-PET/CT depends on the serum PSA-value in patients with biochemical recurrence of prostate cancer. Eur J Nucl Med Mol Imaging 35(1):18–23

    CAS  PubMed  Google Scholar 

  • Kwee SA et al (2006) Localization of primary prostate cancer with dual-phase 18F-fluorocholine PET. J Nucl Med 47(2):262–269

    PubMed  Google Scholar 

  • Kwee SA et al (2008) Use of step-section histopathology to evaluate 18F-fluorocholine PET sextant localization of prostate cancer. Mol Imaging 7(1):12–20

    PubMed  Google Scholar 

  • Langsteger W et al (2011) Fluorocholine (18F) and sodium fluoride (18F) PET/CT in the detection of prostate cancer: prospective comparison of diagnostic performance determined by masked reading. Q J Nucl Med Mol Imaging 55(4):448–457

    CAS  PubMed  Google Scholar 

  • Larson SM et al (2004) Tumor localization of 16beta-18F-fluoro-5alpha-dihydrotestosterone versus 18F-FDG in patients with progressive, metastatic prostate cancer. J Nucl Med 45(3):366–373

    CAS  PubMed  Google Scholar 

  • Lawrentschuk N et al (2006) Positron emission tomography and molecular imaging of the prostate: an update. BJU Int 97(5):923–931

    CAS  PubMed  Google Scholar 

  • Lindhe O et al (2009) [(18)F]Fluoroacetate is not a functional analogue of [(11)C]acetate in normal physiology. Eur J Nucl Med Mol Imaging 36(9):1453–1459

    CAS  PubMed  Google Scholar 

  • Liu Y (2006) Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer. Prostate Cancer Prostatic Dis 9(3):230–234

    CAS  PubMed  Google Scholar 

  • Liu A et al (1992) Fluorine-18-labeled androgens: radiochemical synthesis and tissue distribution studies on six fluorine-substituted androgens, potential imaging agents for prostatic cancer. J Nucl Med 33(5):724–734

    CAS  PubMed  Google Scholar 

  • Liu IJ et al (2001) Fluorodeoxyglucose positron emission tomography studies in diagnosis and staging of clinically organ-confined prostate cancer. Urology 57(1):108–111

    CAS  PubMed  Google Scholar 

  • Lonsdale MN, Beyer T (2010) Dual-modality PET/CT instrumentation-today and tomorrow. Eur J Radiol 73(3):452–460

    PubMed  Google Scholar 

  • Lu-Yao GL, Yao SL (1997) Population-based study of long-term survival in patients with clinically localised prostate cancer. Lancet 349(9056):906–910

    CAS  PubMed  Google Scholar 

  • MacDonald OK et al (2004) Salvage radiotherapy for men with isolated rising PSA or locally palpable recurrence after radical prostatectomy: do outcomes differ? Urology 64(4):760–764

    PubMed  Google Scholar 

  • Macheda ML, Rogers S, Best JD (2005) Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol 202(3):654–662

    CAS  PubMed  Google Scholar 

  • Martorana G et al (2006) 11C-choline positron emission tomography/computerized tomography for tumor localization of primary prostate cancer in comparison with 12-core biopsy. J Urol 176(3):954–960 (discussion)

    Google Scholar 

  • Meirelles GS et al (2010) Prognostic value of baseline [18F] fluorodeoxyglucose positron emission tomography and 99mTc-MDP bone scan in progressing metastatic prostate cancer. Clin Cancer Res 16(24):6093–6099

    CAS  PubMed Central  PubMed  Google Scholar 

  • Minamimoto R et al (2011) The potential of FDG-PET/CT for detecting prostate cancer in patients with an elevated serum PSA level. Ann Nucl Med 25(1):21–27

    CAS  PubMed  Google Scholar 

  • Morris AD et al (2001) The value of external beam radiation of nodal positive prostate cancer: a multivariate analysis. Urol Oncol 6(6):255–260

    Google Scholar 

  • Morris MJ et al (2002) Fluorinated deoxyglucose positron emission tomography imaging in progressive metastatic prostate cancer. Urology 59(6):913–918

    PubMed  Google Scholar 

  • Mottet N et al (2011) EAU guidelines on prostate cancer. Part II: treatment of advanced, relapsing, and castration-resistant prostate cancer. Actas Urol Esp 35(10):565–579

    CAS  PubMed  Google Scholar 

  • Naya Y et al (2005) Efficacy of prostatic fossa biopsy in detecting local recurrence after radical prostatectomy. Urology 66(2):350–355

    PubMed  Google Scholar 

  • Nestle U et al (2009) Biological imaging in radiation therapy: role of positron emission tomography. Phys Med Biol 54(1):R1–R25

    PubMed  Google Scholar 

  • Niyazi M et al (2010) Choline PET based dose-painting in prostate cancer–modelling of dose effects. Radiat Oncol 5:23

    PubMed Central  PubMed  Google Scholar 

  • Nunez R et al (2002) Combined 18F-FDG and 11C-methionine PET scans in patients with newly progressive metastatic prostate cancer. J Nucl Med 43(1):46–55

    PubMed  Google Scholar 

  • Ohri N et al (2012) Can early implementation of salvage radiotherapy for prostate cancer improve the therapeutic ratio? A systematic review and regression meta-analysis with radiobiological modelling. Eur J Cancer 48(6):837–844

    Google Scholar 

  • Oyama N et al (2002) Prognostic value of 2-deoxy-2-[F-18]fluoro-D-glucose positron emission tomography imaging for patients with prostate cancer. Mol Imaging Biol 4(1):99–104

    PubMed  Google Scholar 

  • Pandit-Taskar N et al (2008) Antibody mass escalation study in patients with castration-resistant prostate cancer using 111In-J591: lesion detectability and dosimetric projections for 90Y radioimmunotherapy. J Nucl Med 49(7):1066–1074

    PubMed Central  PubMed  Google Scholar 

  • Pelosi E et al (2008) Role of whole-body 18F-choline PET/CT in disease detection in patients with biochemical relapse after radical treatment for prostate cancer. Radiol Med 113(6):895–904

    CAS  PubMed  Google Scholar 

  • Pflug BR et al (2003) Increased fatty acid synthase expression and activity during progression of prostate cancer in the TRAMP model. Prostate 57(3):245–254

    CAS  PubMed  Google Scholar 

  • Picchio M, Giovannini E, Messa C (2011a) The role of PET/computed tomography scan in the management of prostate cancer. Curr Opin Urol 21(3):230–236

    PubMed  Google Scholar 

  • Picchio M et al (2003) Value of [11C]choline-positron emission tomography for re-staging prostate cancer: a comparison with [18F]fluorodeoxyglucose-positron emission tomography. J Urol 169(4):1337–1340

    CAS  PubMed  Google Scholar 

  • Picchio M et al (2011b) The role of choline positron emission tomography/computed tomography in the management of patients with prostate-specific antigen progression after radical treatment of prostate cancer. Eur Urol 59(1):51–60

    PubMed  Google Scholar 

  • Pieterman RM et al (2002) Comparison of (11)C-choline and (18)F-FDG PET in primary diagnosis and staging of patients with thoracic cancer. J Nucl Med 43(2):167–172

    PubMed  Google Scholar 

  • Pinkawa M et al (2012) Dose-escalation using intensity-modulated radiotherapy for prostate cancer—evaluation of quality of life with and without (18)F-choline PET-CT detected simultaneous integrated boost. Radiat Oncol 7:14

    CAS  PubMed Central  PubMed  Google Scholar 

  • Polascik TJ, Oesterling JE, Partin AW (1999) Prostate specific antigen: a decade of discovery–what we have learned and where we are going. J Urol 162(2):293–306

    CAS  PubMed  Google Scholar 

  • Ponde DE et al (2007) 18F-fluoroacetate: a potential acetate analog for prostate tumor imaging–in vivo evaluation of 18F-fluoroacetate versus 11C-acetate. J Nucl Med 48(3):420–428

    CAS  PubMed  Google Scholar 

  • Poulsen MH et al (2012) [18F]fluoromethylcholine (FCH) positron emission tomography/computed tomography (PET/CT) for lymph node staging of prostate cancer: a prospective study of 210 patients. BJU Int 110(11):1666–1671

    Google Scholar 

  • Rapisarda E et al (2010) Image-based point spread function implementation in a fully 3D OSEM reconstruction algorithm for PET. Phys Med Biol 55(14):4131–4151

    CAS  PubMed  Google Scholar 

  • Reske SN, Blumstein NM, Glatting G (2008) [11C]choline PET/CT imaging in occult local relapse of prostate cancer after radical prostatectomy. Eur J Nucl Med Mol Imaging 35(1):9–17

    PubMed  Google Scholar 

  • Reske SN et al (2006) Imaging prostate cancer with 11C-choline PET/CT. J Nucl Med 47(8):1249–1254

    CAS  PubMed  Google Scholar 

  • Rigatti P et al (2011) Pelvic/retroperitoneal salvage lymph node dissection for patients treated with radical prostatectomy with biochemical recurrence and nodal recurrence detected by [11C]choline positron emission tomography/computed tomography. Eur Urol 60(5):935–943

    PubMed  Google Scholar 

  • Rinnab L et al (2007) Evaluation of [11C]-choline positron-emission/computed tomography in patients with increasing prostate-specific antigen levels after primary treatment for prostate cancer. BJU Int 100(4):786–793

    CAS  PubMed  Google Scholar 

  • Rischke HC et al (2012a) Correlation of the genotype of paragangliomas and pheochromocytomas with their metabolic phenotype on 3,4-dihydroxy-6-18F-fluoro-L-phenylalanin PET. J Nucl Med 53(9):1352–1358

    CAS  PubMed  Google Scholar 

  • Rischke HC et al (2012b) Treatment of recurrent prostate cancer following radical prostatectomy: the radiation-oncologists point of view. Q J Nucl Med Mol Imaging 56(5):409–420

    CAS  PubMed  Google Scholar 

  • Rischke HC et al (2012c) Detection of local recurrent prostate cancer after radical prostatectomy in terms of salvage radiotherapy using dynamic contrast enhanced-MRI without Endorectal coil. Radiat Oncol 7(1):185

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saleem MD et al (1998) Factors predicting cancer detection in biopsy of the prostatic fossa after radical prostatectomy. Urology 51(2):283–286

    CAS  PubMed  Google Scholar 

  • Salminen E et al (2002) Investigations with FDG-PET scanning in prostate cancer show limited value for clinical practice. Acta Oncol 41(5):425–429

    PubMed  Google Scholar 

  • Scattoni V et al (2004) Diagnosis of local recurrence after radical prostatectomy. BJU Int 93(5):680–688

    CAS  PubMed  Google Scholar 

  • Scattoni V et al (2007) Detection of lymph-node metastases with integrated [11C]choline PET/CT in patients with PSA failure after radical retropubic prostatectomy: results confirmed by open pelvic-retroperitoneal lymphadenectomy. Eur Urol 52(2):423–429

    PubMed  Google Scholar 

  • Scher HI, Heller G (2000) Clinical states in prostate cancer: toward a dynamic model of disease progression. Urology 55(3):323–327

    CAS  PubMed  Google Scholar 

  • Scher B et al (2007) Value of 11C-choline PET and PET/CT in patients with suspected prostate cancer. Eur J Nucl Med Mol Imaging 34(1):45–53

    PubMed  Google Scholar 

  • Schiavina R et al (2008) 11C-choline positron emission tomography/computerized tomography for preoperative lymph-node staging in intermediate-risk and high-risk prostate cancer: comparison with clinical staging nomograms. Eur Urol 54(2):392–401

    PubMed  Google Scholar 

  • Sciarra A et al (2008) Role of dynamic contrast-enhanced magnetic resonance (MR) imaging and proton MR spectroscopic imaging in the detection of local recurrence after radical prostatectomy for prostate cancer. Eur Urol 54(3):589–600

    PubMed  Google Scholar 

  • Sella T et al (2004) Suspected local recurrence after radical prostatectomy: endorectal coil MR imaging. Radiology 231(2):379–385

    PubMed  Google Scholar 

  • Seltzer MA et al (2004) Radiation dose estimates in humans for (11)C-acetate whole-body PET. J Nucl Med 45(7):1233–1236

    CAS  PubMed  Google Scholar 

  • Shekarriz B et al (1999) Vesicourethral anastomosis biopsy after radical prostatectomy: predictive value of prostate-specific antigen and pathologic stage. Urology 54(6):1044–1048

    CAS  PubMed  Google Scholar 

  • Shreve PD et al (1996) Metastatic prostate cancer: initial findings of PET with 2-deoxy-2-[F-18]fluoro-D-glucose. Radiology 199(3):751–756

    CAS  PubMed  Google Scholar 

  • Smith TA (2000) Mammalian hexokinases and their abnormal expression in cancer. Br J Biomed Sci 57(2):170–178

    CAS  PubMed  Google Scholar 

  • Souvatzoglou M et al (2011) The sensitivity of [11C]choline PET/CT to localize prostate cancer depends on the tumor configuration. Clin Cancer Res 17(11):3751–3759

    PubMed  Google Scholar 

  • Strope SA, Andriole GL (2010) Prostate cancer screening: current status and future perspectives. Nat Rev Urol 7(9):487–493

    PubMed  Google Scholar 

  • Sutinen E et al (2004) Kinetics of [(11)C]choline uptake in prostate cancer: a PET study. Eur J Nucl Med Mol Imaging 31(3):317–324

    CAS  PubMed  Google Scholar 

  • Symon Z et al (2006) Radiation rescue for biochemical failure after surgery for prostate cancer: predictive parameters and an assessment of contemporary predictive models. Am J Clin Oncol 29(5):446–450

    PubMed  Google Scholar 

  • Testa C et al (2007) Prostate cancer: sextant localization with MR imaging, MR spectroscopy, and 11C-choline PET/CT. Radiology 244(3):797–806

    PubMed  Google Scholar 

  • Thorwarth D et al (2012) Integration of FDG-PET/CT into external beam radiation therapy planning: technical aspects and recommendations on methodological approaches. Nuklearmedizin 51(4):140–153

    CAS  PubMed  Google Scholar 

  • Tilki D et al (2013) 18F-Fluoroethylcholine PET/CT identifies lymph node metastasis in patients with prostate-specific antigen failure after radical prostatectomy, but underestimates its extent. Eur Urol 63:792–796

    Google Scholar 

  • Toth G et al (2005) Detection of prostate cancer with 11C-methionine positron emission tomography. J Urol 173(1):66–69 (discussion)

    Google Scholar 

  • Townsend DW (2008) Multimodality imaging of structure and function. Phys Med Biol 53(4):R1–R39

    CAS  PubMed  Google Scholar 

  • Tuncel M et al (2008) [(11)C]Choline positron emission tomography/computed tomography for staging and restaging of patients with advanced prostate cancer. Nucl Med Biol 35(6):689–695

    CAS  PubMed  Google Scholar 

  • Turkbey B et al (2009) Imaging localized prostate cancer: current approaches and new developments. AJR Am J Roentgenol 192(6):1471–1480

    PubMed Central  PubMed  Google Scholar 

  • van Lin EN et al (2006) IMRT boost dose planning on dominant intraprostatic lesions: gold marker-based three-dimensional fusion of CT with dynamic contrast-enhanced and 1H-spectroscopic MRI. Int J Radiat Oncol Biol Phys 65(1):291–303

    PubMed  Google Scholar 

  • Vavere AL et al (2008) 1-11C-acetate as a PET radiopharmaceutical for imaging fatty acid synthase expression in prostate cancer. J Nucl Med 49(2):327–334

    CAS  PubMed  Google Scholar 

  • Vees H et al (2007) 18F-choline and/or 11C-acetate positron emission tomography: detection of residual or progressive subclinical disease at very low prostate-specific antigen values (<1 ng/ml) after radical prostatectomy. BJU Int 99(6):1415–1420

    CAS  PubMed  Google Scholar 

  • Viani GA, Stefano EJ, Afonso SL (2009) Higher-than-conventional radiation doses in localized prostate cancer treatment: a meta-analysis of randomized, controlled trials. Int J Radiat Oncol Biol Phys 74(5):1405–1418

    PubMed  Google Scholar 

  • Wurschmidt F et al (2011) [18F]fluoroethylcholine-PET/CT imaging for radiation treatment planning of recurrent and primary prostate cancer with dose escalation to PET/CT-positive lymph nodes. Radiat Oncol 6:44

    PubMed Central  PubMed  Google Scholar 

  • Yakar D et al (2012) Predictive value of MRI in the localization, staging, volume estimation, assessment of aggressiveness, and guidance of radiotherapy and biopsies in prostate cancer. J Magn Reson Imaging 35(1):20–31

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. C. Rischke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rischke, H.C., Grosu, A.L. (2014). PET/CT Imaging in Prostate Cancer: Indications and Perspectives for Radiation Therapy. In: Geinitz, H., Roach III, M., van As, N. (eds) Radiotherapy in Prostate Cancer. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2014_1007

Download citation

  • DOI: https://doi.org/10.1007/174_2014_1007

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37098-4

  • Online ISBN: 978-3-642-37099-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics