Skip to main content

Peptides for Nuclear Medicine Therapy: Chemical Properties and Production

  • Chapter
  • First Online:
Therapeutic Nuclear Medicine

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

Tumor receptor targeting with radiolabeled peptides is gaining wide acceptance in nuclear medicine and nuclear oncology. This emerging strategy offer powerful treatments targeted against tumors that cannot be treated by other conventional methods. The overexpression of many peptide receptors in a variety of tumors, compared to their relatively low density in normal organs, represents the molecular basis for in vivo imaging and targeted radionuclide therapy with radiolabeled peptides. Radiopeptides that bind with high affinity and specificity to the receptors on tumor cells hold great potential for both diagnostic imaging and targeted radionuclide therapy. The advantage of solid-phase peptide synthesis, the availability of different bifunctional chelating agents, and bioconjugation techniques permit the facile preparation of a wide variety of peptide-based targeting molecules with diverse biological and tumor targeting properties. Some of these peptide families, including somatostatin, bombesin, vasoactive intestinal peptide, gastrin, neurotensin, exendin, and RGD have been explored during the past years and quite a number of radiolabeled peptides with clinical potential have been derived from them. On the other hand, a number of strategies and optimized protocols for efficient radiolabeling of peptides with clinically relevant radiometals, such as 111In, 86/90Y, 177Lu, 67/68Ga, and 64/67Cu have been developed. The choice of the labeling approach is driven by the nature and the chemical properties of the radiometals. Medically useful radiometals are of increased current interest because of the growing use of targeted radiotherapy of tumors. The most commonly used radionuclides for therapy are β-emitters, which have shorter penetration range than γ-emitters. Alpha or Auger emitters are also studied for higher therapeutic efficiency within shorter range. This chapter presents some characteristics of small peptides and their development as tumor targeting agents. Also different bifunctional chelators for peptide labeling, properties of therapeutic radionuclides and their applications in treatment of cancer are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ambrosini V, Fani M, Fanti S et al (2011) Radiopeptide imaging and therapy in Europe. J Nucl Med 52:42S–55S

    Article  CAS  PubMed  Google Scholar 

  • André JP, Maecke HR, Zehnder M et al (1998) 1,4,7-Triazacyclononane-1-succinic acid-4,7-diacetic acid (NODASA): a new bifunctional chelator for radiogallium-labelling of biomolecules. Chem Commun 12:1301–1302

    Article  Google Scholar 

  • Antunes P, Ginj M, Walter MA et al (2007) Influence of different spacers on the biological profile of a DOTA-somatostatin analogue. Bioconjug Chem 18:84–92

    Article  CAS  PubMed  Google Scholar 

  • Baum RP, Kulkarni HR, Carreras C (2012) Peptides and receptors in image-guided therapy: theranostics for neuroendocrine neoplasms. Semin Nucl Med 42:190–207

    Article  PubMed  Google Scholar 

  • Behr TM, Gotthardt M, Barth A et al (2001) Imaging tumors with peptide-based radioligands. Q J Nucl Med 45:189–200

    CAS  PubMed  Google Scholar 

  • Bodei L, Paganelli G, Mariani G (2006) Receptor radionuclide therapy of tumors: a road from basic research to clinical applications. J Nucl Med 47:375–377

    CAS  PubMed  Google Scholar 

  • Brechbiel MW, Gansow OA, Atcher RW et al (1986) Synthesis of 1-(Para-Isothiocyanatobenzyl) derivatives of DTPA and EDTA-antibody labeling and tumor-imaging studies. Inorg Chem 25:2772–2781

    Article  CAS  Google Scholar 

  • Brom M, Oyen WJ, Joosten L et al (2010) 68Ga-labelled exendin-3, a new agent for the detection of insulinomas with PET. Eur J Nucl Med Mol Imaging 37:1345–1355

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Buchegger F, Bonvin F, Kosinski M et al (2003) Radiolabeled neurotensin analog, 99mTc-NT-XI, evaluated in ductal pancreatic adenocarcinoma patients. J Nucl Med 44:1649–1654

    CAS  PubMed  Google Scholar 

  • Cacheris WP, Nickle SK, Sherry AD (1987) Thermodynamic study of lanthanide complexes of 1, 4, 7-Triazacyclononane-N, N′, N′′-triacetic acid and 1, 4, 7, 10-Tetraazacyclododecane-N, N′, N′′, N′′′-tetraacetic acid. Inorg Chem 26:958–960

    Article  CAS  Google Scholar 

  • Carrasquillo JA, White JD, Paik CH et al (1999) Similarities and differences in In-111- and Y-90-labeled 1B4 M-DTPA antiTac monoclonal antibody distribution. J Nucl Med 40:268–276

    CAS  PubMed  Google Scholar 

  • Chinn P, Braslawsky G, White C et al (2003) Antibody therapy of non-Hodgkin’s B-cell lymphoma. Cancer Immunol Immunother 52:257–280

    CAS  PubMed  Google Scholar 

  • Clifford T, Boswell CA, Biddlecombe GB et al (2006) Validation of a novel CHX-A“ derivative suitable for peptide conjugation: small animal PET/CT imaging using yttrium-86-CHX-A”-octreotide. J Med Chem 49:4297–4304

    Article  CAS  PubMed  Google Scholar 

  • Cordier D, Forrer F, Kneifel S et al (2010a) Neoadjuvant targeting of glioblastoma multiforme with radiolabeled DOTAGA-substance P: results from a phase I study. J Neurooncol 100:129–136

    Article  CAS  PubMed  Google Scholar 

  • Cordier D, Forrer F, Bruchertseifer F et al (2010b) Targeted alpha-radionuclide therapy of functionally critically located gliomas with 213Bi-DOTA-[Thi8, Met(O2)11]-substance P: a pilot trial. Eur J Nucl Med Mol Imaging 37:1335–1344

    Article  CAS  PubMed  Google Scholar 

  • de Visser M, Janssen PJ, Srinivasan A et al (2003) Stabilised 111In-labelled DTPA- and DOTA-conjugated neurotensin analogues for imaging and therapy of exocrine pancreatic cancer. Eur J Nucl Med Mol Imaging 30:1134–1139

    Article  PubMed  Google Scholar 

  • Decristoforo C, Hernandez Gonzalez I, Carlsen J et al (2008) 68Ga- and 111In-labelled DOTA-RGD peptides for imaging of αvβ3 integrin expression. Eur J Nucl Med Mol Imaging 35:1507–1515

    Article  PubMed  Google Scholar 

  • Dumont RA, Deininger F, Haubner R et al (2011) Novel 64Cu- and 68Ga-labeled RGD conjugates show improved PET imaging of αvβ3 integrin expression and facile radiosynthesis. J Nucl Med 52:1276–1284

    Article  CAS  PubMed  Google Scholar 

  • De Leon-Rodriguez LM, Kovacs Z (2008) The synthesis and chelation chemistry of DOTA-peptide conjugates. Bioconjug Chem 19:391–400

    Article  PubMed  Google Scholar 

  • DeNardo GL, DeNardo SJ (2012) Concepts, consequences, and implications of theranosis. Semin Nucl Med 42:147–150

    Article  PubMed  Google Scholar 

  • Eisenwiener KP, Powell P, Macke HR (2000) A convenient synthesis of novel bifunctional prochelators for coupling to bioactive peptides for radiometal labelling. Bioorg Med Chem Lett 10:2133–2135

    Article  CAS  PubMed  Google Scholar 

  • Fani M, Maecke HR, Okarvi SM (2012a) Radiolabeled peptides: valuable tools for the detection and treatment of cancer. Theranostics 2:481–501

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fani M, Maecke HR (2012b) Radiopharmaceutical development of radiolabelled peptides. Eur J Nucl Med Mol Imaging 39:S11–S30

    Article  PubMed  Google Scholar 

  • Fani M, Good S, Maecke HR (2011) Radiometals (non-Tc, non Re) and bifunctional labeling chemistry. In: Vertes A, Nagy S, Klencsar Z, Lovas RG, Rosch F (eds) Handbook of nuclear chemistry. Springer, Heidelberg, pp 2143–2178

    Chapter  Google Scholar 

  • Forrer F, Waldherr C, Maecke HR et al (2006) Targeted radionuclide therapy with 90Y DOTATOC in patients with neuroendocrine tumors. Anticancer Res 26:703–707

    CAS  PubMed  Google Scholar 

  • Fichna J, Janecka A (2003) Synthesis of target-specific radiolabeled peptides for diagnostic imaging. Bioconjug Chem 14:3–17

    Article  CAS  PubMed  Google Scholar 

  • Froberg AC, de Jong M, Nock BA et al (2009) Comparison of three radiolabelled peptide analogues for CCK-2 receptor scintigraphy in medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging 36:1265–1272

    Article  PubMed Central  PubMed  Google Scholar 

  • Froidevaux S, Calame-Christe M, Tanner H et al (2005) Melanoma targeting with DOTA-α-melanocyte-stimulating hormone analogs: structural parameters affecting tumor uptake and kidney uptake. J Nucl Med 46:887–895

    CAS  PubMed  Google Scholar 

  • Garcia GE, Schweinsberg C, Maes V et al (2008) Influence of the molecular charge on the biodistribution of bombesin analogues labeled with the [99mTc(CO)3]-core. Bioconjug Chem 19:2409–2416

    Article  Google Scholar 

  • Ginj M, Chen J, Walter MA et al (2005) Preclinical evaluation of new and highly potent analogues of octreotide for predictive imaging and targeted radiotherapy. Clin Cancer Res 11:1136–1145

    CAS  PubMed  Google Scholar 

  • Ginj M, Zhang H, Waser B et al (2006) Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. Proc Natl Acad Sci USA 103:16436–16441

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gonzalez N, Moody TW, Igarashi H et al (2008) Bombesin-related peptides and their receptors: recent advances in their role in physiology and disease states. Curr Opin Endocrinol Diabetes Obes 15:58–64

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hancock RD (1989) Molecular mechanics calculations as a tool in coordination chemistry. Prog Inorg Chem 37:187–291

    Article  CAS  Google Scholar 

  • Harrison A, Walker C, Parker D (1991) The in vivo release of 90Y from cyclic and acyclic ligand–antibody conjugates. Nucl Med Biol 18:469–476

    CAS  Google Scholar 

  • Haubner R, Weber WA, Beer AJ et al (2005) Noninvasive visualization of the activated αvβ3 integrin in cancer patients by positron emission tomography and [18F]Galacto-RGD. PLoS Med 2:e70

    Article  PubMed Central  PubMed  Google Scholar 

  • Heppeler A, Jermann E, Gyr T (1999) Technetium, rhenium and other metals in chemistry and nuclear medicine. In: Nicolini M, Mazzi U (eds), vol 5. SGE Editioriali, Padua, pp 65–69 s

    Google Scholar 

  • Heppeler A, André JP, Buschmann I et al (2008) Metal-ion-dependent biological properties of a chelator-derived somatostatin analogue for tumour targeting. Chemistry 14:3026–3034

    Article  CAS  PubMed  Google Scholar 

  • Hessenius C, Bader M, Meinhold H et al (2000) Vasoactive intestinal peptide receptor scintigraphy in patients with pancreatic adenocarcinomas or neuroendocrine tumours. Eur J Nucl Med 27:1684–1693

    Article  CAS  PubMed  Google Scholar 

  • Honer M, Mu L, Stellfeld T et al (2011) 18F-labeled bombesin analog for specific and effective targeting of prostate tumors expressing gastrin-releasing peptide receptors. J Nucl Med 52:270–278

    Article  CAS  PubMed  Google Scholar 

  • Imhof A, Brunner P, Marincek N et al (2011) Response, survival, and long-term toxicity after therapy with the radiolabeled somatostatin analogue [90Y-DOTA]-TOC in metastasized neuroendocrine cancers. J Clin Oncol 29:2416–2423

    Article  CAS  PubMed  Google Scholar 

  • Kaltsas GA, Papadogias D, Makras P et al (2005) Treatment of advanced neuroendocrine tumours with radiolabelled somatostatin analogues. Endocr Relat Cancer 12:683–699

    Article  CAS  PubMed  Google Scholar 

  • Kolenc-Peitl P, Mansi R, Tamma M et al (2011) Highly improved metabolic stability and pharmacokinetics of indium-111-DOTA-gastrin conjugates for targeting of the gastrin receptor. J Med Chem 54:2602–2609

    Article  CAS  PubMed  Google Scholar 

  • Krenning EP, Bakker WH, Breeman WA et al (1989) Localisation of endocrine-related tumours with radioiodinated analogue of somatostatin. Lancet 1:242–244

    Article  CAS  PubMed  Google Scholar 

  • Kunikowska J, Krolicki L, Hubalewska-Dydejczyk A et al (2011) Clinical results of radionuclide therapy of neuroendocrine tumours with 90Y-DOTATATE and tandem 90Y/177Lu-DOTATATE: which is a better therapy option? Eur J Nucl Med Mol Imaging 38:1788–1797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kwekkeboom DJ, Bakker WH, Kooij PPM et al (2001) [177Lu-DOTA0, Tyr3]octreotate: comparison with [111In-DTPA0]octreotide in patients. Eur J Nucl Med 28:1319–1325

    Article  CAS  PubMed  Google Scholar 

  • Kwekkeboom DJ, de Herder WW, Kam BL et al (2008) Treatment with the radiolabeled somatostatin analog [177Lu-DOTA0, Tyr3]octreotate: toxicity, efficacy, and survival. J Clin Oncol 26:2124–2130

    Article  CAS  PubMed  Google Scholar 

  • Langer M, Beck-Sickinger AG (2001) Peptides as carrier for tumor diagnosis and treatment. Curr Med Chem Anticancer Agents 1:71–93

    Article  CAS  PubMed  Google Scholar 

  • Lee Y-S, Joeng JM (2012) Inorganic radionuclides for nuclear medicine therapy. Medical radiology, radiation oncology, doi: 10.1007/174_2012_704. Springer

  • Lewis MR, Shively JE (1998) Maleimidocysteineamido-DOTA derivatives: new reagents for radiometal chelate conjugation to antibody sulfhydryl groups undergo pH-dependent cleavage reactions. Bioconjug Chem 9:72–86

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Edwards DS (2001) Bifunctional chelators for therapeutic lanthanide radiopharmaceuticals. Bioconjug Chem 12:7–34

    Article  PubMed  Google Scholar 

  • Maecke HR, Riesen A, Ritter W (1989) The molecular structure of indium-DTPA. J Nucl Med 30:1235–1239

    CAS  PubMed  Google Scholar 

  • Mankoff DA, Link JM, Linden HM et al (2008) Tumor receptor imaging. J Nucl Med 49:149S–163S

    Article  CAS  PubMed  Google Scholar 

  • Mansi R, Fleischmann A, Mäcke HR et al (2013) Targeting GRPR in urological cancers —from basic research to clinical application. Nat Rev Urol 10:235–244

    Article  CAS  PubMed  Google Scholar 

  • Mansi R, Wang X, Forrer F et al (2009) Evaluation of a 1,4,7,10-Tetraazacyclododecane-1,4,7,10-Tetraacetic acid–conjugated bombesin-based radioantagonist for the labeling with single-photon emission computed tomography, positron emission tomography, and therapeutic radionuclides. Clin Cancer Res 15:5240–5249

    Article  CAS  PubMed  Google Scholar 

  • Mariani G, Erba PA, Signore A (2006) Receptor-mediated tumor targeting with radiolabeled peptides: there is more to it than somatostatin analogs. J Nucl Med 47:1904–1907

    CAS  PubMed  Google Scholar 

  • McDevitt MR, Sgouros G, Finn RD et al (1998) Radioimmunotherapy with alpha-emitting nuclides. Eur J Nucl Med 25:1341–1351

    Article  CAS  PubMed  Google Scholar 

  • Minn H, Kähkönen E, Jambor I et al (2012) Detection of prostate cancer using 68Ga-labelled bombesin analogue BAY 86–7548 in patients undergoing radical prostatectomy. Eur J Nucl Med Mol Imaging 39:S155–S303

    Article  Google Scholar 

  • McMurry TJ, Pippin CG, Wu C et al (1998) Physical parameters and biological stability of yttrium(III) diethylenetriaminepentaacetic acid derivative conjugates. J Med Chem 41:3546–3549

    Article  CAS  PubMed  Google Scholar 

  • Modlin IM, Latich I, Kidd M et al (2006) Therapeutic options for gastrointestinal carcinoids. Clin Gastroenterol Hepatol 4:526–547

    Article  CAS  PubMed  Google Scholar 

  • Ohki-Hamazaki H, Iwabuchi M, Maekawa F (2005) Development and function of bombesin-like peptides and their receptors. Int J Dev Biol 49:293–300

    CAS  PubMed  Google Scholar 

  • Okarvi SM (2004) Peptide-based radiopharmaceuticals: future tools for diagnostic imaging of cancers and other diseases. Med Res Rev 24:357–397

    Article  CAS  PubMed  Google Scholar 

  • Okarvi SM (2008) Peptide-based radiopharmaceuticals and cytotoxic conjugates: Potential tools against cancer. Cancer Treat Rev 34:13–26

    Article  CAS  PubMed  Google Scholar 

  • Otte A, Mueller-Brand J, Dellas S et al (1998) Yttrium-90-labelled somatostatin-analogue for cancer treatment. Lancet 351:417–418

    Article  CAS  PubMed  Google Scholar 

  • Raderer M, Kurtaran A, Leimer M et al (2000) Value of peptide receptor scintigraphy using 123I-vasoactive intestinal peptide and 111In-DTPA-D-Phe1-octreotide in 194 carcinoid patients: Vienna University Experience, 1993 to 1998. J Clin Oncol 18:1331–1336

    CAS  PubMed  Google Scholar 

  • Reubi JC, Macke HR, Krenning EP (2005) Candidates for peptide receptor radiotherapy today and in the future. J Nucl Med 46:67S–75S

    CAS  PubMed  Google Scholar 

  • Reubi JC (2003) Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr Rev 24:389–427

    Article  CAS  PubMed  Google Scholar 

  • Reubi JC (1995) Neuropeptide receptors in health and disease: the molecular basis for in vivo imaging. J Nucl Med 36:1825–1835

    CAS  PubMed  Google Scholar 

  • Rolleman EJ, Forrer F, Bernard B et al (2007a) Amifostine protects rat kidneys during peptide receptor radionuclide therapy with [177Lu-DOTA0, Tyr3]octreotate. Eur J Nucl Med Mol Imaging 34:763–771

    Article  CAS  PubMed  Google Scholar 

  • Rolleman EJ, Krenning EP, Bernard BF et al (2007b) Long-term toxicity of [177Lu-DOTA0, Tyr3]octreotate in rats. Eur J Nucl Med Mol Imaging 34:219–227

    Article  CAS  PubMed  Google Scholar 

  • Rolleman EJ, Valkema R, de Jong M et al (2003) Safe and effective inhibition of renal uptake of radiolabelled octreotide by a combination of lysine and arginine. Eur J Nucl Med Mol Imaging 30:9–15

    Article  CAS  PubMed  Google Scholar 

  • Rufini V, Calcagni ML, Baum RP (2006) Imaging of neuroendocrine tumors. Semin Nucl Med 36:228–247

    Article  PubMed  Google Scholar 

  • Sherry AD, Brown RD, Geraldes CF et al (1989) Synthesis and characterization of the gadolinium (3 +) complex of DOTA-propylamide: a model DOTA-protein conjugate. Inorg Chem 28:620–622

    Article  CAS  Google Scholar 

  • Sieving PF, Watson AD, Rocklage SM (1990) Preparation and characterization of paramagnetic polychelates and their protein conjugates. Bioconjug Chem 1:65–71

    Article  CAS  PubMed  Google Scholar 

  • Sosabowsky J, Melendez-Alafort L, Mather S (2003) Radiolabelling of peptides for diagnosis and therapy of non-oncological diseases. Q J Nucl Med 47:223–237

    CAS  PubMed  Google Scholar 

  • Stolz B, Smith-Jones P, Albert R et al (1996) Somatostatin analogues for somatostatin-receptor-mediated radiotherapy of cancer. Digestion 57:17–21

    Article  CAS  PubMed  Google Scholar 

  • Teunissen JJ, Kwekkeboom DJ, de Jong M et al (2005) Endocrine tumours of the gastrointestinal tract. Peptide receptor radionuclide therapy. Best Pract Res Clin Gastroenterol 19:595–616

    Article  CAS  PubMed  Google Scholar 

  • Valkema R, Pauwels S, Kvols LK et al (2006) Survival and response after receptor radionuclide therapy with [90Y-DOTA0, Tyr3]-octreotide in patients with advanced gastroenteropancreatic neuroendocrine tumors. Semin Nucl Med 36:147–156

    Article  PubMed  Google Scholar 

  • Valkema R, Pauwels SA, Kvols LK et al (2005) Long-term follow-up of renal function after peptide receptor radiation therapy with 90Y-DOTA0, Tyr3-octreotide and 177Lu-DOTA0, Tyr3-octreotate. J Nucl Med 46:83S–91S

    CAS  PubMed  Google Scholar 

  • van Eerd JE, Vegt E, Wetzels JF et al (2006) Gelatin-based plasma expander effectively reduces renal uptake of 111In-octreotide in mice and rats. J Nucl Med 47:528–533

    PubMed  Google Scholar 

  • van Essen M, Krenning EP, Kam BL et al (2008) Report on short-term side effects of treatments with 177Lu-octreotate in combination with capecitabine in seven patients with gastroenteropancreatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging 35:743–748

    Article  PubMed Central  PubMed  Google Scholar 

  • van Putten JW, Price A, van der Leest AH et al (2003) A Phase I study of gemcitabine with concurrent radiotherapy in stage III, locally advanced non-small cell lung cancer. Clin Cancer Res 9:2472–2477

    PubMed  Google Scholar 

  • Vegt E, Wetzels JF, Russel FG et al (2006) Renal uptake of radiolabeled octreotide in human subjects is efficiently inhibited by succinylated gelatin. J Nucl Med 47:432–436

    CAS  PubMed  Google Scholar 

  • Virgolini I, Traub T, Novotny C et al (2001) New trends in peptide receptor radioligands. Q J Nucl Med 45:153–159

    CAS  PubMed  Google Scholar 

  • Volkert WA, Goeckeler WF, Ehrhardt GJ et al (1991) Therapeutic radionuclides: production and decay property considerations. J Nucl Med 32:174–185

    CAS  PubMed  Google Scholar 

  • Wadas TJ, Wong EH, Weisman GR et al (2007) Copper chelation chemistry and its role in copper radiopharmaceuticals. Curr Pharm Des 13:3–16

    Article  CAS  PubMed  Google Scholar 

  • Wadas TJ, Eiblmaier M, Zheleznyak A et al (2008) Preparation and biological evaluation of 64Cu-CB-TE2A-sst2-ANT, a somatostatin antagonist for PET imaging of somatostatin receptor-positive tumors. J Nucl Med 49:1819–1827

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Waldherr C, Pless M, Maecke HR et al (2002) Tumor response and clinical benefit in neuroendocrine tumors after 7.4 GBq 90Y-DOTATOC. J Nucl Med 43:610–616

    CAS  PubMed  Google Scholar 

  • Wild D, Behe M, Wicki A et al (2006) [Lys40(Ahx-DTPA-111In)NH2]exendin-4, a very promising ligand for glucagon-like peptide-1 (GLP-1) receptor targeting. J Nucl Med 47:2025–2033

    CAS  PubMed  Google Scholar 

  • Wild D, Fani M, Behe M et al (2011a) First clinical evidence that imaging with somatostatin receptor antagonists is feasible. J Nucl Med 52:1412–1417

    Article  CAS  PubMed  Google Scholar 

  • Wild D, Wicki A, Mansi R et al (2010a) Exendin-4-based radiopharmaceuticals for glucagon like peptide-1 receptor PET/CT and SPECT/CT. J Nucl Med 51:1059–1067

    Article  CAS  PubMed  Google Scholar 

  • Wild D, Fani M, Behe M et al (2010b) First clinical evaluation of a somatostatin receptor antagonist for imaging of neuroendocrine tumors (NETs). Nuklearmedizin 49:A16

    Google Scholar 

  • Wild D, Wild D, Frischknecht M et al (2011b) Alpha-versus beta-particle radiopeptide therapy in a human prostate cancer model (213Bi-DOTA-PESIN and 213Bi-AMBA versus 177Lu-DOTA-PESIN). Cancer Res 71:1009–1018

    Article  CAS  PubMed  Google Scholar 

  • Wilder RB, DeNardo GL, DeNardo SJ (1996) Radioimmunotherapy: recent results and future directions. J Clin Oncol 14:1383–1400

    CAS  PubMed  Google Scholar 

  • Wu C, Kobayashi H, Sun B et al (1997) Stereochemical influence on the stability of radio-metal complexes in vivo. Synthesis and evaluation of the four stereoisomers of 2-(p-nitrobenzyl)-trans-CyDTPA. Bioorgan Med Chem 5:1925–1934

    Article  CAS  Google Scholar 

  • Xu H, Baidoo KE, Wong KJ et al (2008) A novel bifunctional maleimido CHX-A’’ chelator for conjugation to thiol-containing biomolecules. Bioorg Med Chem Lett 18:2679–2683

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Okarvi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Okarvi, S.M., Maecke, H.R. (2013). Peptides for Nuclear Medicine Therapy: Chemical Properties and Production. In: Baum, R. (eds) Therapeutic Nuclear Medicine. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2013_921

Download citation

  • DOI: https://doi.org/10.1007/174_2013_921

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36718-5

  • Online ISBN: 978-3-540-36719-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics