Skip to main content

Radiological Detection and Assessment of Tumor Response

  • Chapter
  • First Online:
  • 939 Accesses

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

The liver is the most common site of metastatic spread in malignancies. In autopsy studies, the incidence of hepatic metastases is up to 100 % dependent on the primary tumor. Even if this fact represents the final status of a malignancy, about half of all patients dying from a malignant disease will have apparent hepatic metastases. The risk of developing hepatic metastases varies widely among different types of primary malignancy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Antoch G et al (2003) Whole-body dual-modality PET/CT and whole-body MRI for tumor staging in oncology. JAMA 290(24):3199–3206

    Article  CAS  PubMed  Google Scholar 

  • Arulampalam TH et al (2004) FDG-PET for the pre-operative evaluation of colorectal liver metastases. Eur J Surg Oncol 30(3):286–291

    Article  CAS  PubMed  Google Scholar 

  • Barker DW et al (2005) Evaluation of liver metastases after radiofrequency ablation: utility of 18F-FDG PET and PET/CT. AJR Am J Roentgenol 184(4):1096–1102

    Article  PubMed  Google Scholar 

  • Barkhausen J et al (2001) Whole-body MR imaging in 30 seconds with real-time true FISP and a continuously rolling table platform: feasibility study. Radiology 220(1):252–256

    Article  CAS  PubMed  Google Scholar 

  • Belton AL et al (2003) Tumour size measurement in an oncology clinical trial: comparison between off-site and on-site measurements. Clin Radiol 58(4):311–314

    Article  CAS  PubMed  Google Scholar 

  • Beyer T et al (2000) A combined PET/CT scanner for clinical oncology. J Nucl Med 41(8):1369–1379

    CAS  PubMed  Google Scholar 

  • Bohm B et al (2004) Impact of positron emission tomography on strategy in liver resection for primary and secondary liver tumors. J Cancer Res Clin Oncol 130(5):266–272

    Article  CAS  PubMed  Google Scholar 

  • Bruix J et al (2001) Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. European association for the study of the liver. J Hepatol 35(3):421–430

    Article  CAS  PubMed  Google Scholar 

  • Cohade C et al (2003) Direct comparison of (18) F-FDG PET and PET/CT in patients with colorectal carcinoma. J Nucl Med 44(11):1797–1803

    PubMed  Google Scholar 

  • Delbeke D, Martin WH (2004) PET and PET-CT for evaluation of colorectal carcinoma. Semin Nucl Med 34(3):209–223

    Article  PubMed  Google Scholar 

  • Delbeke D et al (1997) Staging recurrent metastatic colorectal carcinoma with PET. J Nucl Med 38(8):1196–1201

    CAS  PubMed  Google Scholar 

  • Deng J et al (2006a) Diffusion-weighted MR imaging for determination of hepatocellular carcinoma response to yttrium-90 radioembolization. J Vasc Interv Radiol 17(7):1195–1200

    Article  PubMed  Google Scholar 

  • Deng J et al (2006b) In vivo diffusion-weighted imaging of liver tumor necrosis in the VX2 rabbit model at 1.5 Tesla. Invest Radiol 41(4):410–414

    Article  PubMed  Google Scholar 

  • Duke E et al (2010) Agreement between competing imaging measures of response of hepatocellular carcinoma to yttrium-90 radioembolization. J Vasc Interv Radiol 21(4):515–521

    Article  PubMed Central  PubMed  Google Scholar 

  • Eisenhauer EA et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247

    Article  CAS  PubMed  Google Scholar 

  • Eustace S et al (1997) A comparison of whole-body turboSTIR MR imaging and planar 99mTc-methylene diphosphonate scintigraphy in the examination of patients with suspected skeletal metastases. AJR Am J Roentgenol 169(6):1655–1661

    Article  CAS  PubMed  Google Scholar 

  • Fernandez FG et al (2004) Five-year survival after resection of hepatic metastases from colorectal cancer in patients screened by positron emission tomography with F-18 fluorodeoxyglucose (FDG-PET). Ann Surg 240(3):438–447

    Article  PubMed Central  PubMed  Google Scholar 

  • Forner A et al (2009) Evaluation of tumor response after locoregional therapies in hepatocellular carcinoma: are response evaluation criteria in solid tumors reliable? Cancer 115(3):616–623

    Article  PubMed  Google Scholar 

  • Griswold MA et al (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47(6):1202–1210

    Article  PubMed  Google Scholar 

  • James K et al (1999) Measuring response in solid tumors: unidimensional versus bidimensional measurement. J Natl Cancer Inst 91(6):523–528

    Article  CAS  PubMed  Google Scholar 

  • Kamel IR, Bluemke DA (2002) Magnetic resonance imaging of the liver: assessing response to treatment. Top Magn Reson Imaging 13(3):191–200

    Article  PubMed  Google Scholar 

  • Kapoor V, McCook BM, Torok FS (2004) An introduction to PET-CT imaging. Radiographics 24(2):523–543

    Article  PubMed  Google Scholar 

  • Kinkel K et al (2002) Detection of hepatic metastases from cancers of the gastrointestinal tract by using noninvasive imaging methods (US, CT, MR imaging, PET): a meta-analysis. Radiology 224(3):748–756

    Article  PubMed  Google Scholar 

  • Kramer H et al (2005) Cardiovascular screening with parallel imaging techniques and a whole-body MR imager. Radiology 236(1):300–310

    Article  PubMed  Google Scholar 

  • Langenhoff BS et al (2002) Efficacy of fluorine-18-deoxyglucose positron emission tomography in detecting tumor recurrence after local ablative therapy for liver metastases: a prospective study. J Clin Oncol 20(22):4453–4458

    Article  CAS  PubMed  Google Scholar 

  • Lardinois D et al (2003) Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography. N Engl J Med 348(25):2500–2507

    Article  PubMed  Google Scholar 

  • Lauenstein TC et al (2002) Three-dimensional volumetric interpolated breath-hold MR imaging for whole-body tumor staging in less than 15 minutes: a feasibility study. AJR Am J Roentgenol 179(2):445–449

    Article  PubMed  Google Scholar 

  • Lauenstein TC et al (2004) Whole-body MR imaging: evaluation of patients for metastases. Radiology 233(1):139–148

    Article  PubMed  Google Scholar 

  • Lee VS et al (2000) Hepatic MR imaging with a dynamic contrast-enhanced isotropic volumetric interpolated breath-hold examination: feasibility, reproducibility, and technical quality. Radiology 215(2):365–372

    Article  CAS  PubMed  Google Scholar 

  • Lencioni R, Llovet JM (2010) Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin Liver Dis 30(1):52–60

    Article  CAS  PubMed  Google Scholar 

  • Llovet JM et al (2008) Design and endpoints of clinical trials in hepatocellular carcinoma. J Natl Cancer Inst 100(10):698–711

    Article  PubMed  Google Scholar 

  • Low RN et al (2000) Extrahepatic abdominal imaging in patients with malignancy: comparison of MR imaging and helical CT in 164 patients. J Magn Reson Imaging 12(2):269–277

    Article  CAS  PubMed  Google Scholar 

  • Mazumdar M, Smith A, Schwartz LH (2004) A statistical simulation study finds discordance between WHO criteria and RECIST guideline. J Clin Epidemiol 57(4):358–365

    Article  PubMed  Google Scholar 

  • Meta J et al (2001) Impact of 18F-FDG PET on managing patients with colorectal cancer: the referring physician’s perspective. J Nucl Med 42(4):586–590

    CAS  PubMed  Google Scholar 

  • Miller AB et al (1981) Reporting results of cancer treatment. Cancer 47(1):207–214

    Article  CAS  PubMed  Google Scholar 

  • Nelson RC et al (1989) Hepatic tumors: comparison of CT during arterial portography, delayed CT, and MR imaging for preoperative evaluation. Radiology 172(1):27–34

    CAS  PubMed  Google Scholar 

  • Ogunbiyi OA et al (1997) Detection of recurrent and metastatic colorectal cancer: comparison of positron emission tomography and computed tomography. Ann Surg Oncol 4(8):613–620

    Article  CAS  PubMed  Google Scholar 

  • Park JO et al (2003) Measuring response in solid tumors: comparison of RECIST and WHO response criteria. Jpn J Clin Oncol 33(10):533–537

    Article  PubMed  Google Scholar 

  • Pelosi E et al (2004) Value of integrated PET/CT for lesion localisation in cancer patients: a comparative study. Eur J Nucl Med Mol Imaging 31(7):932–939

    Article  PubMed  Google Scholar 

  • Pfannenberg C et al (2007) Prospective comparison of (18)F-fluorodeoxyglucose positron emission tomography/computed tomography and whole-body magnetic resonance imaging in staging of advanced malignant melanoma. Eur J Cancer 43(3):557–564

    Article  PubMed  Google Scholar 

  • Pruessmann KP et al (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42(5):952–962

    Article  CAS  PubMed  Google Scholar 

  • Rhee TK et al (2008) Tumor response after yttrium-90 radioembolization for hepatocellular carcinoma: comparison of diffusion-weighted functional MR imaging with anatomic MR imaging. J Vasc Interv Radiol 19(8):1180–1186

    Article  PubMed  Google Scholar 

  • Rofsky NM et al (1999) Abdominal MR imaging with a volumetric interpolated breath-hold examination. Radiology 212(3):876–884

    Article  CAS  PubMed  Google Scholar 

  • Rohren EM et al (2002) The role of F-18 FDG positron emission tomography in preoperative assessment of the liver in patients being considered for curative resection of hepatic metastases from colorectal cancer. Clin Nucl Med 27(8):550–555

    Article  PubMed  Google Scholar 

  • Ruers TJ et al (2002) Value of positron emission tomography with [F-18] fluorodeoxyglucose in patients with colorectal liver metastases: a prospective study. J Clin Oncol 20(2):388–395

    Article  CAS  PubMed  Google Scholar 

  • Sahani DV et al (2005) Detection of liver metastases from adenocarcinoma of the colon and pancreas: comparison of mangafodipir trisodium-enhanced liver MRI and whole-body FDG PET. AJR Am J Roentgenol 185(1):239–246

    Article  PubMed  Google Scholar 

  • Schlemmer HP et al (2005) Fast whole-body assessment of metastatic disease using a novel magnetic resonance imaging system: initial experiences. Invest Radiol 40(2):64–71

    Article  PubMed  Google Scholar 

  • Schmidt GP et al (2005) High-resolution whole-body magnetic resonance image tumor staging with the use of parallel imaging versus dual-modality positron emission tomography-computed tomography: experience on a 32-channel system. Invest Radiol 40(12):743–753

    Article  PubMed  Google Scholar 

  • Selzner M et al (2004) Does the novel PET/CT imaging modality impact on the treatment of patients with metastatic colorectal cancer of the liver? Ann Surg 240(6):1027–1034

    Article  PubMed Central  PubMed  Google Scholar 

  • Semelka RC et al (2001) Focal liver lesions: comparison of dual-phase CT and multisequence multiplanar MR imaging including dynamic gadolinium enhancement. J Magn Reson Imaging 13(3):397–401

    Article  CAS  PubMed  Google Scholar 

  • Shim JH et al (2012) Which response criteria best help predict survival of patients with hepatocellular carcinoma following chemoembolization? A validation study of old and new models. Radiology 262(2):708–718

    Article  PubMed  Google Scholar 

  • Soyer P et al (1992) Detection of liver metastases from colorectal cancer: comparison of intraoperative US and CT during arterial portography. Radiology 183(2):541–544

    CAS  PubMed  Google Scholar 

  • Steinborn MM et al (1999) Whole-body bone marrow MRI in patients with metastatic disease to the skeletal system. J Comput Assist Tomogr 23(1):123–129

    Article  CAS  PubMed  Google Scholar 

  • Takahara T et al (2004) Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med 22(4):275–282

    PubMed  Google Scholar 

  • Therasse P et al (2000) New guidelines to evaluate the response to treatment in solid tumors. European organization for research and treatment of cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92(3):205–216

    Article  CAS  PubMed  Google Scholar 

  • Topal B et al (2001) Clinical value of whole-body emission tomography in potentially curable colorectal liver metastases. Eur J Surg Oncol 27(2):175–179

    Article  CAS  PubMed  Google Scholar 

  • Torizuka T et al (1994) Value of fluorine-18-FDG-PET to monitor hepatocellular carcinoma after interventional therapy. J Nucl Med 35(12):1965–1969

    CAS  PubMed  Google Scholar 

  • Tran LN et al (2004) Comparison of treatment response classifications between unidimensional, bidimensional, and volumetric measurements of metastatic lung lesions on chest computed tomography. Acad Radiol 11(12):1355–1360

    Article  PubMed  Google Scholar 

  • Truant S et al (2005) Prospective evaluation of the impact of [18F] fluoro-2-deoxy-D-glucose positron emission tomography of resectable colorectal liver metastases. Br J Surg 92(3):362–369

    Article  CAS  PubMed  Google Scholar 

  • Tutt AN et al (2004) The role of positron emission tomography in the management of colorectal cancer. Colorectal Dis 6(1):2–9

    Article  CAS  PubMed  Google Scholar 

  • Valk PE et al (1999) Whole-body PET imaging with [18F] fluorodeoxyglucose in management of recurrent colorectal cancer. Arch Surg 134(5):503–511

    Article  CAS  PubMed  Google Scholar 

  • Vitola JV et al (1996) Positron emission tomography with F-18-fluorodeoxyglucose to evaluate the results of hepatic chemoembolization. Cancer 78(10):2216–2222

    Article  CAS  PubMed  Google Scholar 

  • Vogt FM et al (2004) HASTE MRI versus chest radiography in the detection of pulmonary nodules: comparison with MDCT. AJR Am J Roentgenol 183(1):71–78

    Article  PubMed  Google Scholar 

  • Wong CY et al (2002) Evaluating 90Y-glass microsphere treatment response of unresectable colorectal liver metastases by [18F] FDG PET: a comparison with CT or MRI. Eur J Nucl Med Mol Imaging 29(6):815–820

    Article  CAS  PubMed  Google Scholar 

  • Wong CY et al (2004) Metabolic response after intraarterial 90Y-glass microsphere treatment for colorectal liver metastases: comparison of quantitative and visual analyses by 18F-FDG PET. J Nucl Med 45(11):1892–1897

    CAS  PubMed  Google Scholar 

  • Wong CY et al (2005) Reduction of metastatic load to liver after intraarterial hepatic yttrium-90 radioembolization as evaluated by [18F] fluorodeoxyglucose positron emission tomographic imaging. J Vasc Interv Radiol 16(8):1101–1106

    Article  PubMed  Google Scholar 

  • Yang M et al (2003) Comparison of MR and PET imaging for the evaluation of liver metastases. J Magn Reson Imaging 17(3):343–349

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias F. Jakobs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jakobs, T.F. (2013). Radiological Detection and Assessment of Tumor Response. In: Bilbao, J., Reiser, M. (eds) Liver Radioembolization with 90Y Microspheres. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2013_816

Download citation

  • DOI: https://doi.org/10.1007/174_2013_816

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36472-3

  • Online ISBN: 978-3-642-36473-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics