Skip to main content

High-Resolution Imaging

  • Chapter
  • 2132 Accesses

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

In the last two decades, high-resolution imaging of the skeleton has emerged as a growing field of research. Techniques such as high-resolution peripheral quantitative computed tomography (HR-pQCT) and high-resolution magnetic resonance imaging (HR-MRI) provide noninvasive access to bone microarchitecture, an important determinant of bone quality. High-resolution images can be processed by a multitude of techniques such as compartment-specific morphometric analyses including the quantification of cortical porosity, finite element analyses (FEA), decomposition techniques, and texture analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alonso CG, Curiel MD et al (2000) Femoral bone mineral density, neck-shaft angle and mean femoral neck width as predictors of hip fracture in men and women. Multicenter Project for Research in Osteoporosis. Osteoporos Int J Established Result Cooper Eur Found Osteoporos Natl Osteoporos Found USA 11(8):714–720

    Article  CAS  Google Scholar 

  • Ammann P, Rizzoli R (2003) Bone strength and its determinants. Osteoporos Int J Established Result Cooper Eur Found Osteoporos Natl Osteoporos Found USA 14(Suppl 3):13–18

    Google Scholar 

  • Anonymous (2001) Osteoporosis prevention, diagnosis, and therapy. JAMA 285(6):785–795

    Google Scholar 

  • Anumula S, Wehrli SL et al (2010) Ultra-short echo-time MRI detects changes in bone mineralization and water content in OVX rat bone in response to alendronate treatment. Bone 46(5):1391–1399

    Article  PubMed  CAS  Google Scholar 

  • Bae WC, Chen PC et al (2012) Quantitative ultrashort echo time (UTE) MRI of human cortical bone: correlation with porosity and biomechanical properties. J Bone Miner Res Off J Am Soc Bone Miner Res 27(4):848–857

    Article  Google Scholar 

  • Bauer JS, Link TM (2009) Advances in osteoporosis imaging. Eur J Radiol 71(3):440–449

    Article  PubMed  Google Scholar 

  • Bauer JS, Link TM et al (2007) Analysis of trabecular bone structure with multidetector spiral computed tomography in a simulated soft-tissue environment. Calcif Tissue Int 80(6):366–373

    Article  PubMed  CAS  Google Scholar 

  • Bauer JS, Monetti R et al (2009) Advances of 3T MR imaging in visualizing trabecular bone structure of the calcaneus are partially SNR-independent: analysis using simulated noise in relation to micro-CT, 1.5T MRI, and biomechanical strength. J Magn Reson Imaging 29(1):132–140

    Article  PubMed  Google Scholar 

  • Baum T, Dütsch Y et al (2012) Reproducibility of trabecular bone structure measurements of the distal radius at 1.5 and 3.0 T magnetic resonance imaging. J Comput Assist Tomogr 36(5):623–626

    Google Scholar 

  • Beck TJ, Ruff CB et al (1990) Predicting femoral neck strength from bone mineral data. A structural approach. Invest Radiol 25(1):6–18

    Article  PubMed  CAS  Google Scholar 

  • Benazzi S, Douka K et al (2011) Early dispersal of modern humans in Europe and implications for Neanderthal behaviour. Nature 479(7374):525–528

    Article  PubMed  CAS  Google Scholar 

  • Benito M, Gomberg B et al (2003) Deterioration of trabecular architecture in hypogonadal men. J Clin Endocrinol Metab 88(4):1497–1502

    Article  PubMed  CAS  Google Scholar 

  • Benito M, Vasilic B et al (2005) Effect of testosterone replacement on trabecular architecture in hypogonadal men. J Bone Miner Res Off J Am Soc Bone Miner Res 20(10):1785–1791

    Article  CAS  Google Scholar 

  • Biswas R, Bae W et al (2012) Ultrashort echo time (UTE) imaging with bi-component analysis: bound and free water evaluation of bovine cortical bone subject to sequential drying. Bone 50(3):749–755

    Article  PubMed  Google Scholar 

  • Boivin GY, Chavassieux PM et al (2000) Alendronate increases bone strength by increasing the mean degree of mineralization of bone tissue in osteoporotic women. Bone 27(5):687–694

    Article  PubMed  CAS  Google Scholar 

  • Boutroy S, Bouxsein ML et al (2005) In vivo assessment of trabecular bone micro architecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinolo Metab 90(12):6508–6515

    Article  CAS  Google Scholar 

  • Boutroy S, Van Rietbergen B et al (2008) Finite element analysis based on in vivo HR-pQCT images of the distal radius is associated with wrist fracture in postmenopausal women. J Bone Miner Res Off J Am Soc Bone Miner Res 23(3):392–399

    Article  Google Scholar 

  • Boutry N, Cortet B et al (2003) Trabecular bone structure of the calcaneus: preliminary in vivo MR imaging assessment in men with osteoporosis. Radiology 227(3):708–717

    Article  PubMed  Google Scholar 

  • Bouxsein ML, Boyd SK et al (2010) Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res Off J Am Soc Bone Miner Res 25(7):1468–1486

    Article  Google Scholar 

  • Burghardt AJ, Buie HR et al (2010a) Reproducibility of direct quantitative measures of cortical bone microarchitecture of the distal radius and tibia by HR-pQCT. Bone 47(3):519–528

    Article  Google Scholar 

  • Burghardt AJ, Issever AS et al (2010b) High-resolution peripheral quantitative computed tomographic imaging of cortical and trabecular bone microarchitecture in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 95(11):5045–5055

    Article  CAS  Google Scholar 

  • Burghardt AJ, Kazakia GJ et al (2010c) Age- and gender-related differences in the geometric properties and biomechanical significance of intracortical porosity in the distal radius and tibia. J Bone Miner Res 25(5):983–993

    Google Scholar 

  • Burghardt AJ, Kazakia GJ et al (2010d) A longitudinal HR-pQCT study of alendronate treatment in postmenopausal women with low bone density: relations among density, cortical and trabecular microarchitecture, biomechanics, and bone turnover. J Bone Miner Res 25(12):2282–2295

    Article  CAS  Google Scholar 

  • Burghardt AJ, Pialat JB, Kazakia GJ, Boutroy S, Engelke K, Patsch JM, Valentinitsch A, Liu D, Szabo E, Bogado CE, Zanchetta MB, McKay HA, Shane E, Boyd SK, Bouxsein ML, Chapurlat R, Khosla S, Majumdar S. (2012) Multi-center precision of cortical and trabecular bone quality measures assessed by HR-PQCT. J Bone Miner Res. doi:10.1002/jbmr.1795. [Epub ahead of print]

  • Chesnut CH 3rd, Majumdar S et al (2005) Effects of salmon calcitonin on trabecular microarchitecture as determined by magnetic resonance imaging: results from the QUEST study. J Bone Miner Res Off J Am Soc Bone Miner Res 20(9):1548–1561

    Article  CAS  Google Scholar 

  • Chevalier Y, Quek E et al (2010) Biomechanical effects of teriparatide in women with osteoporosis treated previously with alendronate and risedronate: results from quantitative computed tomography-based finite element analysis of the vertebral body. Bone 46(1):41–48

    Article  PubMed  CAS  Google Scholar 

  • Cohen A, Dempster DW et al (2010) Assessment of trabecular and cortical architecture and mechanical competence of bone by high-resolution peripheral computed tomography: comparison with transiliac bone biopsy. Osteoporos Int J Established Result Cooper Eur Found Osteoporos Natl Osteoporos Found USA 21(2):263–273

    Article  CAS  Google Scholar 

  • Cortet B, Boutry N et al (2000) In vivo comparison between computed tomography and magnetic resonance image analysis of the distal radius in the assessment of osteoporosis. J Clin Densitom Off J Int Soc Clin Densitom 3(1):15–26

    Article  CAS  Google Scholar 

  • Damilakis J, Adams JE et al (2010) Radiation exposure in X-ray-based imaging techniques used in osteoporosis. Eur Radiol 20(11):2707–2714

    Article  PubMed  Google Scholar 

  • Du J, Bydder M et al (2011) Short T2 contrast with three-dimensional ultrashort echo time imaging. Magn Reson Imaging 29(4):470–482

    Article  PubMed  Google Scholar 

  • Eswaran SK, Fields AJ et al (2009) Multi-scale modeling of the human vertebral body: comparison of micro-CT based high-resolution and continuum-level models. In: Pacific symposium on biocomputing, pp 293–303

    Google Scholar 

  • Folkesson J, Goldenstein J et al (2011) Longitudinal evaluation of the effects of alendronate on MRI bone microarchitecture in postmenopausal osteopenic women. Bone 48(3):611–621

    Article  PubMed  CAS  Google Scholar 

  • Genant HK, Engelke K et al (2010) Denosumab improves density and strength parameters as measured by QCT of the radius in postmenopausal women with low bone mineral density. Bone 47(1):131–139

    Article  PubMed  CAS  Google Scholar 

  • Gnudi S, Malavolta N et al (2004) Differences in proximal femur geometry distinguish vertebral from femoral neck fractures in osteoporotic women. Br J Radiol 77(915):219–223

    Article  PubMed  CAS  Google Scholar 

  • Gomberg BR, Wehrli FW et al (2004) Reproducibility and error sources of micro-MRI-based trabecular bone structural parameters of the distal radius and tibia. Bone 35(1):266–276

    Article  PubMed  CAS  Google Scholar 

  • Gomberg BR, Saha PK et al (2005) Method for cortical bone structural analysis from magnetic resonance images. Acad Radiol 12(10):1320–1332

    Article  Google Scholar 

  • Graeff C, Timm W et al (2007) Monitoring teriparatide-associated changes in vertebral microstructure by high-resolution CT in vivo: results from the EUROFORS study. J Bone Miner Res Off J Am Soc Bone Miner Res 22(9):1426–1433

    Article  CAS  Google Scholar 

  • Griffith JF, Yeung DK et al (2005) Vertebral bone mineral density, marrow perfusion, and fat content in healthy men and men with osteoporosis: dynamic contrast-enhanced MR imaging and MR spectroscopy. Radiology 236(3):945–951

    Article  PubMed  Google Scholar 

  • Griffith JF, Yeung DK et al (2006) Vertebral marrow fat content and diffusion and perfusion indexes in women with varying bone density: MR evaluation. Radiology 241(3):831–838

    Article  PubMed  Google Scholar 

  • Griffith JF, Yeung DK et al (2008) Compromised bone marrow perfusion in osteoporosis. J Bone Miner Res Off J Am Soc Bone Miner Res 23(7):1068–1075

    Article  Google Scholar 

  • Hildebrand T, Ruegsegger P (1997) A new method for the model-independent assessment of thickness in three-dimensional images. J Microsc (Oxford) 185:67–75

    Article  Google Scholar 

  • Hildebrand T, Laib A et al (1999) Direct three-dimensional morphometric analysis of human cancellous bone: Microstructural data from spine, femur, iliac crest, and calcaneus. J Bone Miner Res 14(7):1167–1174

    Article  PubMed  CAS  Google Scholar 

  • Holzer G, von Skrbensky G et al (2009) Hip fractures and the contribution of cortical versus trabecular bone to femoral neck strength. J Bone Miner Res Off J Am Soc Bone Miner Res 24(3):468–474

    Article  Google Scholar 

  • Hwang SN, Wehrli FW et al (1997) Probability-based structural parameters from three-dimensional nuclear magnetic resonance images as predictors of trabecular bone strength. Med Phys 24(8):1255–1261

    Article  PubMed  CAS  Google Scholar 

  • Ito M (2011) Recent progress in bone imaging for osteoporosis research. J Bone Miner Metab 29(2):131–140

    Article  PubMed  Google Scholar 

  • Ito M, Ikeda K et al (2005) Multi-detector row CT imaging of vertebral microstructure for evaluation of fracture risk. J Bone Miner Res Off J Am Soc Bone Miner Res 20(10):1828–1836

    Article  Google Scholar 

  • Jayakar RY, Cabal A et al (2012) Evaluation of high-resolution peripheral quantitative computed tomography, finite element analysis and biomechanical testing in a pre-clinical model of osteoporosis: a study with odanacatib treatment in the ovariectomized adult rhesus monkey. Bone 50(6):1379–1388

    Article  PubMed  CAS  Google Scholar 

  • Kazakia GJ, Hyun B et al (2008) In vivo determination of bone structure in postmenopausal women: a comparison of HR-pQCT and high-field MR imaging. J Bone Miner Res 23(4):463–474

    Article  PubMed  Google Scholar 

  • Keaveny TM, McClung MR et al (2012) Femoral strength in osteoporotic women treated with teriparatide or alendronate. Bone 50(1):165–170

    Article  PubMed  CAS  Google Scholar 

  • Keyak JH, Sigurdsson S et al (2011) Male-female differences in the association between incident hip fracture and proximal femoral strength: a finite element analysis study. Bone 48(6):1239–1245

    Article  PubMed  CAS  Google Scholar 

  • Khosla S, Riggs BL et al (2006) Effects of sex and age on bone microstructure at the ultradistal radius: a population-based noninvasive in vivo assessment. J Bone Miner Res Off J Am Soc Bone Miner Res 21(1):124–131

    Article  Google Scholar 

  • Krug R, Banerjee S et al (2005) Feasibility of in vivo structural analysis of high-resolution magnetic resonance images of the proximal femur. Osteoporos Int J Established Result Cooper Eur Found Osteoporos Natl Osteoporos Found USA 16(11):1307–1314

    Article  Google Scholar 

  • Krug R, Han ET et al (2006) Fully balanced steady-state 3D-spin-echo (bSSSE) imaging at 3 Tesla. Magn Reson Med Off J Soc Magn Reson Med/Soc Magn Reso Med 56(5):1033–1040

    CAS  Google Scholar 

  • Krug R, Larson PE et al (2011) Ultrashort echo time MRI of cortical bone at 7 tesla field strength: a feasibility study. J Magn Reson Imaging 34(3):691–695

    Article  PubMed  Google Scholar 

  • Ladinsky GA, Vasilic B et al (2008) Trabecular structure quantified with the MRI-based virtual bone biopsy in postmenopausal women contributes to vertebral deformity burden independent of areal vertebral BMD. J Bone Miner Res Off J Am Soc Bone Miner Res 23(1):64–74

    Article  Google Scholar 

  • Laib A, Hauselmann HJ et al (1998) In vivo high resolution 3D-QCT of the human forearm. Technol Health Care Off J Eur Soc Eng Med 6(5–6):329–337

    CAS  Google Scholar 

  • Laib A, Newitt DC et al (2002) New model-independent measures of trabecular bone structure applied to in vivo high-resolution MR images. Osteoporos Int J Established Result Cooper Eur Found Osteoporos Natl Osteoporos Found USA 13(2):130–136

    Article  CAS  Google Scholar 

  • Li EK, Zhu TY et al (2010) Ibandronate increases cortical bone density in patients with systemic lupus erythematosus on long-term glucocorticoid. Arthritis Res Ther 12(5):R198

    Article  PubMed  CAS  Google Scholar 

  • Link TM (2002) High-resolution magnetic resonance imaging to assess trabecular bone structure in patients after transplantation: a review. Top Magn Reson Imaging 13(5):365–375

    Article  PubMed  Google Scholar 

  • Link TM, Majumdar S et al (1998) In vivo high resolution MRI of the calcaneus: differences in trabecular structure in osteoporosis patients. J Bone Miner Res Off J Am Soc Bone Miner Res 13(7):1175–1182

    Article  CAS  Google Scholar 

  • Link TM, Lotter A et al (2000) Changes in calcaneal trabecular bone structure after heart transplantation: an MR imaging study. Radiology 217(3):855–862

    PubMed  CAS  Google Scholar 

  • Link TM, Saborowski K   et al (2002) Changes in calcaneal trabecular bone structure assessed with high-resolution MR imaging in patients with kidney transplantation. Osteoporos Int J Established Result Cooper Eur Found Osteoporos Natl Osteoporos Found USA 13(2):119–129

    Google Scholar 

  • Link TM, Bauer J et al (2004) Trabecular bone structure of the distal radius, the calcaneus, and the spine: which site predicts fracture status of the spine best? Invest Radiol 39(8):487–497

    Article  PubMed  Google Scholar 

  • Liu XS, Cohen A et al (2010a) Individual trabeculae segmentation (ITS)-based morphological analysis of high-resolution peripheral quantitative computed tomography images detects abnormal trabecular plate and rod microarchitecture in premenopausal women with idiopathic osteoporosis. J Bone Miner Res 25(7):1496–1505

    Article  Google Scholar 

  • Liu XS, Cohen A et al (2010b) Bone density, geometry, microstructure, and stiffness: Relationships between peripheral and central skeletal sites assessed by DXA, HR-pQCT, and cQCT in premenopausal women. J Bone Miner Res Off J Am Soc Bone Miner Res 25(10):2229–2238

    Article  Google Scholar 

  • Liu XS, Zhang XH et al (2010c) High-resolution peripheral quantitative computed tomography can assess microstructural and mechanical properties of human distal tibial bone. J Bone Miner Res Off J Am Soc Bone Miner Res 25(4):746–756

    CAS  Google Scholar 

  • Liu XS, Walker MD et al (2011) Better skeletal microstructure confers greater mechanical advantages in Chinese-American women versus white women. Osteoporos Int J Established Result Cooper Eur Found Osteoporos Natl Osteoporos Found USA 26(8):1783–1792

    Google Scholar 

  • Louis O, Cattrysse E et al (2010) Accuracy of peripheral quantitative computed tomography and magnetic resonance imaging in assessing cortical bone cross-sectional area: a cadaver study. J Comput Assist Tomogr 34(3):469–472

    Article  PubMed  Google Scholar 

  • Macdonald HM, Nishiyama KK et al (2011a) Changes in trabecular and cortical bone microarchitecture at peripheral sites associated with 18 months of teriparatide therapy in postmenopausal women with osteoporosis. Osteoporos Int 22(1):357–362

    Article  CAS  Google Scholar 

  • Macdonald HM, Nishiyama KK et al (2011b) Age-related patterns of trabecular and cortical bone loss differ between sexes and skeletal sites: a population-based HR-pQCT study. J Bone Miner Res Off J Am Soc Bone Miner Res 26(1):50–62

    Article  Google Scholar 

  • MacNeil JA, Boyd SK (2007) Accuracy of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med Eng Phys 29(10):1096–1105

    Article  PubMed  Google Scholar 

  • Majumdar S, Newitt D et al (1995) Evaluation of technical factors affecting the quantification of trabecular bone structure using magnetic resonance imaging. Bone 17(4):417–430

    Article  PubMed  CAS  Google Scholar 

  • Majumdar S, Newitt D et al (1996) Magnetic resonance imaging of trabecular bone structure in the distal radius: relationship with X-ray tomographic microscopy and biomechanics. Osteoporos Int J Established Result Cooper Eur Found Osteoporos Natl Osteoporos Found USA 6(5):376–385

    Article  CAS  Google Scholar 

  • Majumdar S, Link TM et al (1999) Trabecular bone architecture in the distal radius using magnetic resonance imaging in subjects with fractures of the proximal femur. Magnetic Resonance Science Center and Osteoporosis and Arthritis Research Group. Osteoporos Int J Established Result Cooper Eur Found Osteoporos Natl Osteoporos Found USA 10(3):231–239

    Article  CAS  Google Scholar 

  • Monetti RA, Boehm H et al (2005) Structural analysis of human proximal femur for the prediction of biomechanical strength in vitro: the locally adapted scaling vector method. In: Fitzpatrick JM, Reinhardt JM (eds) Proceedings of the SPIE medical imaging 2005: Image processing, vol 5747, pp 231–239

    Google Scholar 

  • Monetti R, Bauer J et al (2011) The locally adapted scaling vector method: a new tool for quantifying anisotropic structures in bone images. In: Saba L (ed) Computed tomography—special applications. InTech. http://www.intechopen.com/articles/show/title/the-locally-adapted-scaling-vector-method-a-new-tool-for-quantifying-anisotropic-structures-in-bone-

  • Mueller D, Link TM et al (2006) The 3D-based scaling index algorithm: a new structure measure to analyze trabecular bone architecture in high-resolution MR images in vivo. Osteoporos Int J Established Result Cooper Eur Found Osteoporos Natl Osteoporos Found USA 17(10):1483–1493

    Article  CAS  Google Scholar 

  • Mulder L, van Rietbergen B et al (2012) Determination of vertebral and femoral trabecular morphology and stiffness using a flat-panel C-arm-based CT approach. Bone 50(1):200–208

    Article  PubMed  Google Scholar 

  • Muller R (2002) The Zurich experience: one decade of three-dimensional high-resolution computed tomography. Top Magn Reson Imaging 13(5):307–322

    Article  PubMed  Google Scholar 

  • Newitt DC, Majumdar S et al (2002a) In vivo assessment of architecture and micro-finite element analysis derived indices of mechanical properties of trabecular bone in the radius. Osteoporos Int J established Result Cooper Eur Found Osteoporos Natl Osteoporos Found USA 13(1):6–17

    Article  CAS  Google Scholar 

  • Newitt DC, van Rietbergen B et al (2002b) Processing and analysis of in vivo high-resolution MR images of trabecular bone for longitudinal studies: reproducibility of structural measures and micro-finite element analysis derived mechanical properties. Osteoporos Int J Established Result Cooper Eur Found Osteoporos Natl Osteoporos Found USA 13(4):278–287

    Article  CAS  Google Scholar 

  • Nishiyama KK, Macdonald HM et al (2010) Postmenopausal women with osteopenia have higher cortical porosity and thinner cortices at the distal radius and tibia than women with normal aBMD: an in vivo HR-pQCT study. J Bone Miner Res Off J Am Soc Bone Miner Res 25(4):882–890

    Google Scholar 

  • Ouyang X, Selby K et al (1997) High resolution magnetic resonance imaging of the calcaneus: age-related changes in trabecular structure and comparison with dual X-ray absorptiometry measurements. Calcif Tissue Int 60(2):139–147

    Article  PubMed  CAS  Google Scholar 

  • Pahr DH, Zysset PK (2009) A comparison of enhanced continuum FE with micro FE models of human vertebral bodies. J Biomech 42(4):455–462

    Article  PubMed  Google Scholar 

  • Parfitt AM, Drezner MK et al (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res Off J Am Soc Bone Miner Res 2(6):595–610

    Article  CAS  Google Scholar 

  • Patsch JM (2012) Increased cortical porosity in type-2 diabetic postmenopausal women with fragility fractures. J Bone Miner Res. doi:10.1002/jbmr.1763. [Epub ahead of print]

  • Peyrin F (2011) Evaluation of bone scaffolds by micro-CT. Osteoporos Int J Established Result Cooper Eur Found Osteoporos Natl Osteoporos Found USA 22(6):2043–2048

    Article  CAS  Google Scholar 

  • Phan CM, Matsuura M et al (2006) Trabecular bone structure of the calcaneus: comparison of MR imaging at 3.0 and 1.5 T with micro-CT as the standard of reference. Radiology 239(2):488–496

    Article  PubMed  Google Scholar 

  • Pialat JB, Burghardt AJ, Sode M, Link TM, Majumdar S (2012) Visual grading of motion induced image degradation in high resolution peripheral computed tomography: impact of image quality on measures of bone density and micro-architecture. Bone 50(1):111–118

    Google Scholar 

  • Pialat JB, Vilayphiou N et al (2012) Local topological analysis at the distal radius by HR-pQCT: application to in vivo bone microarchitecture and fracture assessment in the OFELY study. Bone 51(3):362–368

    Article  PubMed  CAS  Google Scholar 

  • Pothuaud L, Laib A et al (2002) Three-dimensional-line skeleton graph analysis of high-resolution magnetic resonance images: a validation study from 34-microm-resolution microcomputed tomography. J Bone Miner Res Off J Am Soc Bone Miner Res 17(10):1883–1895

    Article  Google Scholar 

  • Pothuaud L, Newitt DC et al (2004) In vivo application of 3D-line skeleton graph analysis (LSGA) technique with high-resolution magnetic resonance imaging of trabecular bone structure. Osteoporos Int J Established Result Cooper Eur Found Osteoporos Natl Osteoporos Found USA 15(5):411–419

    Article  Google Scholar 

  • Rad HS, Lam SC et al (2011) Quantifying cortical bone water in vivo by three-dimensional ultra-short echo-time MRI. NMR Biomed 24(7):855–864

    Article  PubMed  Google Scholar 

  • Rajapakse CS, Leonard MB et al (2012) Micro-MR imaging-based computational biomechanics demonstrates reduction in cortical and trabecular bone strength after renal transplantation. Radiology 262(3):912–920

    Article  PubMed  Google Scholar 

  • Räth C, Monetti R et al (2008) Strength through structure: visualization and local assessment of the trabecular bone structure. New J Phys 10(12): 125010 (122008)

    Google Scholar 

  • Reichert IL, Robson MD et al (2005) Magnetic resonance imaging of cortical bone with ultrashort TE pulse sequences. Magn Reson Imaging 23(5):611–618

    Article  PubMed  Google Scholar 

  • Rizzoli R, Chapurlat RD, Laroche JM, Krieg MA, Thomas T, Frieling I, Boutroy S, Laib A, Bock O (2012) Effects of strontium ranelate and alendronate on bone microstructure in women with osteoporosis: results of a 2-year study. Osteoporos Int 23(1):305–315

    Google Scholar 

  • Roschger P, Manjubala I et al (2010) Bone material quality in transiliac bone biopsies of postmenopausal osteoporotic women after 3 years of strontium ranelate treatment. J Bone Miner Res Off J Am Soc Bone Miner Res 25(4):891–900

    Google Scholar 

  • Rosen CJ, Bouxsein ML (2006) Mechanisms of disease: is osteoporosis the obesity of bone? Nat Clin Pract Rheumatol 2(1):35–43

    Article  PubMed  CAS  Google Scholar 

  • Schellinger D, Lin CS et al (2004) Bone marrow fat and bone mineral density on proton MR spectroscopy and dual-energy X-ray absorptiometry: their ratio as a new indicator of bone weakening. Am J Roentgenol 183(6):1761–1765

    Article  CAS  Google Scholar 

  • Seeman E (2010) Bone morphology in response to alendronate as seen by high-resolution computed tomography: through a glass darkly. J Bone Miner Res 25(12):2277–2281

    Article  CAS  Google Scholar 

  • Seeman E, Delmas PD et al (2010) Microarchitectural deterioration of cortical and trabecular bone: differing effects of denosumab and alendronate. J Bone Miner Res 25(8):1886–1894

    Article  PubMed  Google Scholar 

  • Shen W, Chen J et al (2007) MRI-measured bone marrow adipose tissue is inversely related to DXA-measured bone mineral in Caucasian women. Osteoporos Int J Established Result Cooper Eur Found Osteoporos Natl Osteoporos Found USA 18(5):641–647

    Article  CAS  Google Scholar 

  • Sidorenko I, Monetti R et al (2011) Assessing methods for characterising local and global structural and biomechanical properties of the trabecular bone network. Curr Med Chem 18(22):3402–3409

    Article  PubMed  CAS  Google Scholar 

  • Sievanen H, Karstila T et al (2007) Magnetic resonance imaging of the femoral neck cortex. Acta Radiol 48(3):308–314

    Article  PubMed  CAS  Google Scholar 

  • Sornay-Rendu E, Boutroy S et al (2007) Alterations of cortical and trabecular architecture are associated with fractures in postmenopausal women, partially independent of decreased BMD measured by DXA: the OFELY study. J Bone Miner Res 22(3):425–433

    Article  PubMed  Google Scholar 

  • Sornay-Rendu E, Cabrera-Bravo JL et al (2009) Severity of vertebral fractures is associated with alterations of cortical architecture in postmenopausal women. J Bone Miner Res 24(4):737–743

    Article  PubMed  Google Scholar 

  • Stauber M, Muller R (2006) Volumetric spatial decomposition of trabecular bone into rods and plates–a new method for local bone morphometry. Bone 38(4):475–484

    Article  PubMed  Google Scholar 

  • Stein EM, Liu XS et al (2010) Abnormal microarchitecture and reduced stiffness at the radius and tibia in postmenopausal women with fractures. J Bone Miner Res Off J Am Soc Bone Miner Res 25(12):2572–2581

    Article  Google Scholar 

  • Stein EM, Liu XS et al (2011) Abnormal microarchitecture and stiffness in postmenopausal women with ankle fractures. J Clin Endocrinol Metab 96(7):2041–2048

    Article  PubMed  CAS  Google Scholar 

  • Techawiboonwong A, Song HK et al (2005) Implications of pulse sequence in structural imaging of trabecular bone. J Magn Reson Imaging 22(5):647–655

    Article  PubMed  Google Scholar 

  • Trabelsi N, Yosibash Z et al (2011) Patient-specific finite element analysis of the human femur–a double-blinded biomechanical validation. J Biomech 44(9):1666–1672

    Article  PubMed  Google Scholar 

  • Valentinitsch A, Patsch JM et al (2012) Automated threshold-independent cortex segmentation by 3D-texture analysis of HR-pQCT scans. Bone

    Google Scholar 

  • van Rietbergen B, Majumdar S et al (2002) High-resolution MRI and micro-FE for the evaluation of changes in bone mechanical properties during longitudinal clinical trials: application to calcaneal bone in postmenopausal women after one year of idoxifene treatment. Clin Biomech 17(2):81–88

    Article  Google Scholar 

  • Vico L, Zouch M et al (2008) High-resolution pQCT analysis at the distal radius and tibia discriminates patients with recent wrist and femoral neck fractures. J Bone Miner Res 23(11):1741–1750

    Article  PubMed  Google Scholar 

  • Vilayphiou N, Boutroy S et al (2010) Finite element analysis performed on radius and tibia HR-pQCT images and fragility fractures at all sites in postmenopausal women. Bone 46(4):1030–1037

    Article  PubMed  Google Scholar 

  • Vilayphiou N, Boutroy S et al (2011) Finite element analysis performed on radius and tibia HR-pQCT images and fragility fractures at all sites in men. J Bone Miner Res 26(5):965–973

    Article  PubMed  Google Scholar 

  • Walsh CJ, Phan CM et al (2010) Women with anorexia nervosa: finite element and trabecular structure analysis by using flat-panel volume CT. Radiology 257(1):167–174

    Article  PubMed  Google Scholar 

  • Wang XF, Wang Q et al (2009) Differences in macro- and microarchitecture of the appendicular skeleton in young Chinese and white women. J Bone Miner Res Off J Am Soc Bone Miner Res 24(12):1946–1952

    Article  Google Scholar 

  • Wehrli FW (2007) Structural and functional assessment of trabecular and cortical bone by micro magnetic resonance imaging. J Magn Reson Imaging 25(2):390–409

    Article  PubMed  Google Scholar 

  • Wehrli FW, Gomberg BR et al (2001) Digital topological analysis of in vivo magnetic resonance microimages of trabecular bone reveals structural implications of osteoporosis. J Bone Miner Res Off J Am Soc Bone Miner Res 16(8):1520–1531

    Article  CAS  Google Scholar 

  • Wehrli FW, Leonard MB et al (2004) Quantitative high-resolution magnetic resonance imaging reveals structural implications of renal osteodystrophy on trabecular and cortical bone. J Magn Reson Imaging 20(1):83–89

    Article  PubMed  Google Scholar 

  • Wehrli FW, Ladinsky GA et al (2008) In vivo magnetic resonance detects rapid remodeling changes in the topology of the trabecular bone network after menopause and the protective effect of estradiol. J Bone Miner Res Off J Am Soc Bone Miner Res 23(5):730–740

    Article  Google Scholar 

  • Whitehouse WJ (1974) The quantitative morphology of anisotropic trabecular bone. J Microsc 101(Part 2):153–168

    Article  PubMed  CAS  Google Scholar 

  • Woodhead HJ, Kemp AF et al (2001) Measurement of midfemoral shaft geometry: repeatability and accuracy using magnetic resonance imaging and dual-energy X-ray absorptiometry. J Bone Miner Res Off J Am Soc Bone Miner Res 16(12):2251–2259

    Article  CAS  Google Scholar 

  • Zebaze RM, Ghasem-Zadeh A et al (2010) Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet 375(9727):1729–1736

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janina M. Patsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Patsch, J.M., Bauer, J.S. (2013). High-Resolution Imaging. In: Guglielmi, G. (eds) Osteoporosis and Bone Densitometry Measurements. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2012_755

Download citation

  • DOI: https://doi.org/10.1007/174_2012_755

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27883-9

  • Online ISBN: 978-3-642-27884-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics