Skip to main content

PET for Measuring Therapy Response After Radionuclide Therapy

  • Chapter
  • First Online:
Therapeutic Nuclear Medicine

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 2632 Accesses

Abstract

An important determinant for expanding the horizon of radionuclide therapy and maximizing its efficacy is the availability of a reliable yet simple method for assessing therapy response. A potential advantage of positron emission tomography (PET) over anatomy-based imaging modalities such as computed tomography and magnetic resonance imaging is its potential to provide an early accurate assessment of response to radionuclide therapy. Despite the development of novel PET radiotracers, 18F-fluoro-2-deoxy-d-glucose is likely to be the most successful in this area as it shows tumor glycolysis that is central to majority of malignant tumors and thus can serve as a sensitive marker of response assessment. Although the importance and number of potential applications of radionuclide therapy in clinical oncology is on the rise, evidence regarding the utility of PET for response assessment after radionuclide therapy is still limited, and mainly confined to non-Hodgkin lymphoma, followed by neuroendocrine tumors and high-grade glioma. This chapter summarizes the status of the use of PET for measuring therapy response after radionuclide therapy in the aforementioned cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

18F-FET:

O-(2-[18F]fluoroethyl)-l-tyrosine

18F-FDG:

18F-fluoro-2-deoxy-d-glucose

18F-FLT:

3′-deoxy-3′-18F-fluorothymidine

68Ga-DOTA-TOC:

68Ga-1,4,7,10-tetraazacyclododecane-N,N′,N″,N″′-tetraacetic acid-D-Phe1-Tyr3 octreotide

DOTA-TATE:

1,4,7,10-tetraazacyclododecane-N,N’,N’’,N’’’-tetraacetic acid-D-Phe1-Tyr3-Thr8octreotide

PET:

positron emission tomography

RECIST:

Response Evaluation Criteria in Solid Tumors

TLG:

product of the volume and the mean standardized uptake value

SUV:

standardized uptake value

SUVmax :

maximum standardized uptake value

SUVlean max:

maximum standardized uptake value normalized for lean body mass

References

  • Adams S, Baum R, Rink T et al (1998) Limited value of fluorine-18 fluorodeoxyglucose positron emission tomography for the imaging of neuroendocrine tumours. Eur J Nucl Med 25:79–83

    Article  CAS  PubMed  Google Scholar 

  • Baum RP, Kulkarni HR (2012) THERANOSTICS: from molecular imaging using Ga-68 labeled tracers and PET/CT to personalized radionuclide therapy—the Bad Berka experience. Theranostics 2(5):437–447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baum RP, Kluge A, Gildehaus FJ, Bronzel M, Schmidt K, Schuchardt C, Senftleben S, Samnick S (2011) Systemic Endoradiotherapy with Carrier-Added 4-[131I] Iodo-l-Phenylalanine: clinical proof-of-principle in refractory glioma. Nucl Med Mol Imaging 45:299–307

    Article  PubMed Central  PubMed  Google Scholar 

  • Baum RP, Kulkarni HR, Carreras C (2012) Peptides and receptors in image-guided therapy: theranostics for neuroendocrine neoplasms. Semin Nucl Med 42(3):190–207

    Article  PubMed  Google Scholar 

  • Behin A, Hoang-Xuan K, Carpentier AF, Delattre JY (2003) Primary brain tumours in adults. Lancet 361:323–331

    Article  PubMed  Google Scholar 

  • Bodet-Milin C, Kraeber-Bodéré F, Dupas B et al (2008) Evaluation of response to fractionated radioimmunotherapy with 90Y-epratuzumab in non-Hodgkin’s lymphoma by 18F-fluorodeoxyglucose positron emission tomography. Haematologica 93:390–397

    Article  PubMed  Google Scholar 

  • Buck AK, Kratochwil C, Glatting G et al (2007) Early assessment of therapy response in malignant lymphoma with the thymidine analogue [18F]FLT. Eur J Nucl Med Mol Imaging 34:1775–1782

    Article  CAS  PubMed  Google Scholar 

  • Cazaentre T, Morschhauser F, Vermandel M et al (2010) Pre-therapy 18F-FDG PET quantitative parameters help in predicting the response to radioimmunotherapy in non-Hodgkin lymphoma. Eur J Nucl Med Mol Imaging 37:494–504

    Article  CAS  PubMed  Google Scholar 

  • Cheson BD, Horning SJ, Coiffier B et al (1999) Report of an international workshop to standardize response criteria for non-Hodgkin’s lymphomas. NCI sponsored international working group. J Clin Oncol 17:1244

    CAS  PubMed  Google Scholar 

  • Cheson BD, Pfistner B, Juweid ME et al (2007) International harmonization project on lymphoma. Revised response criteria for malignant lymphoma. J Clin Oncol 25:579–586

    Article  PubMed  Google Scholar 

  • Dancey G, Begent RH, Meyer T (2009) Imaging in targeted delivery of therapy to cancer. Target Oncol 4:201–217

    Article  PubMed  Google Scholar 

  • Eisenhauer EA, Therasse P, Bogaerts J et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45:228–247

    Article  CAS  PubMed  Google Scholar 

  • Fellner M, Baum RP, Kubícek V, Hermann P, Lukes I, Prasad V, Rösch F (2010) PET/CT imaging of osteoblastic bone metastases with (68)Ga-bisphosphonates: first human study. Eur J Nucl Med Mol Imaging 37(4):834

    Article  PubMed  Google Scholar 

  • Gabriel M, Oberauer A, Dobrozemsky G et al (2009) 68 Ga-DOTA-Tyr3-octreotide PET for assessing response to somatostatin-receptor-mediated radionuclide therapy. J Nucl Med 50:1427–1434

    Article  CAS  PubMed  Google Scholar 

  • Garin E, Le Jeune F, Devillers A et al (2009) Predictive value of 18F-FDG PET and somatostatin receptor scintigraphy in patients with metastatic endocrine tumors. J Nucl Med 50:858–864

    Article  CAS  PubMed  Google Scholar 

  • Haug AR, Auernhammer CJ, Wängler B, Schmidt GP, Uebleis C, Göke B, Cumming P, Bartenstein P, Tiling R, Hacker M (2010) 68 Ga-DOTATATE PET/CT for the early prediction of response to somatostatin receptor-mediated radionuclide therapy in patients with well-differentiated neuroendocrine tumors. J Nucl Med 51(9):1349–1356

    Article  CAS  PubMed  Google Scholar 

  • Jacene HA, Filice R, Kasecamp W, Wahl RL (2009) 18F-FDG PET/CT for monitoring the response of lymphoma to radioimmunotherapy. J Nucl Med 50:8–17

    Article  CAS  PubMed  Google Scholar 

  • Jaffe CC (2006) Measures of response: RECIST, WHO, and new alternatives. J Clin Oncol 24:3245–3251

    Article  PubMed  Google Scholar 

  • Juweid ME, Stroobants S, Hoekstra OS et al (2007) Imaging subcommittee of international harmonization project in lymphoma. Use of positron emission tomography for response assessment of lymphoma: consensus of the imaging subcommittee of international harmonization project in Lymphoma. J Clin Oncol 25:571–578

    Article  PubMed  Google Scholar 

  • Kumar AJ, Leeds NE, Fuller GN et al (2000) Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology 217:377–384

    Article  CAS  PubMed  Google Scholar 

  • Kwekkeboom DJ, Krenning EP, Lebtahi R et al (2009) Mallorca Consensus Conference participants; European neuroendocrine tumor society. Neuroendocrinology 90:220–226

    Article  CAS  PubMed  Google Scholar 

  • Larson SM, Krenning EP (2005) A pragmatic perspective on molecular targeted radionuclide therapy. J Nucl Med 46(Suppl 1):1S–3S

    PubMed  Google Scholar 

  • Lopci E, Santi I, Derenzini E, Fonti C et al (2010a) FDG-PET in the assessment of patients with follicular lymphoma treated by ibritumomab tiuxetan Y 90: multicentric study. Ann Oncol. doi:10.1093/annonc/mdq024

    Google Scholar 

  • Lopci E, Santi I, Tani M et al (2010b) FDG PET and [90Y]ibritumomab tiuxetan in patients with follicular lymphoma. Q J Nucl Med Mol Imaging 54:1–6

    Google Scholar 

  • Oyen WJ, Bodei L, Giammarile F et al (2007) Targeted therapy in nuclear medicine–current status and future prospects. Ann Oncol 18:1782–1792

    Article  CAS  PubMed  Google Scholar 

  • Pöpperl G, Götz C, Rachinger W et al (2006) Serial O-(2-[(18)F]fluoroethyl)-L: -tyrosine PET for monitoring the effects of intracavitary radioimmunotherapy in patients with malignant glioma. Eur J Nucl Med Mol Imaging 33:792–800

    Article  PubMed Central  PubMed  Google Scholar 

  • Reardon DA, Rich JN, Friedman HS, Bigner DD (2006) Recent advances in the treatment of malignant astrocytoma. J Clin Oncol 24:1253–1265

    Article  CAS  PubMed  Google Scholar 

  • Reardon DA, Zalutsky MR, Bigner DD (2007) Antitenascin-C monoclonal antibody radioimmunotherapy for malignant glioma patients. Expert Rev Anticancer Ther 7:675–687

    Article  CAS  PubMed  Google Scholar 

  • Schmücking M, Baum RP, Griesinger F, Presselt N, Bonnet R, Przetak C, Niesen A, Leonhardi J, Lopatta EC, Herse B, Wendt TG (2003) Molecular whole-body cancer staging using positron emission tomography: consequences for therapeutic management and metabolic radiation treatment planning. Recent Results Cancer Res 162:195–202

    Article  PubMed  Google Scholar 

  • Soyka JD, Muster MA, Schmid DT, Seifert B, Schick U, Miralbell R, Jorcano S, Zaugg K, Seifert HH, Veit-Haibach P, Strobel K, Schaefer NG, Husarik DB, Hany TF (2012) Clinical impact of 18F-choline PET/CT in patients with recurrent prostate cancer. Eur J Nucl Med Mol Imaging 39(6):936–943

    Article  CAS  PubMed  Google Scholar 

  • Storto G, De Renzo A, Pellegrino T et al (2010) Assessment of metabolic response to radioimmunotherapy with 90Y-ibritumomab tiuxetan in patients with relapsed or refractory B-cell non-Hodgkin lymphoma. Radiology 254:245–252

    Article  PubMed  Google Scholar 

  • Torizuka T, Zasadny KR, Kison PV, Rommelfanger SG, Kaminski MS, Wahl RL (2000) Metabolic response of non-Hodgkin’s lymphoma to 131I-anti-B1 radioimmunotherapy: evaluation with FDG PET. J Nucl Med 41:999–1005

    CAS  PubMed  Google Scholar 

  • Ulaner GA, Colletti PM, Conti PS (2008) B-cell non-Hodgkin lymphoma: PET/CT evaluation after 90Y-ibritumomab tiuxetan radioimmunotherapy—initial experience. Radiology 246:895–902

    Article  PubMed  Google Scholar 

  • Van Essen M, Krenning EP, Kam BL, de Jong M, Valkema R, Kwekkeboom DJ (2009) Peptide-receptor radionuclide therapy for endocrine tumors. Nat Rev Endocrinol 5:382–393

    PubMed  Google Scholar 

  • Van Tassel P, Bruner JM, Maor MH et al (1995) MR of toxic effects of accelerated fractionation radiation therapy and carboplatin chemotherapy for malignant gliomas. AJNR Am J Neuroradiol 16:715–726

    PubMed  Google Scholar 

  • Wahl RL, Jacene H, Kasamon Y, Lodge MA (2009) From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med 50(Suppl 1):122S–150S

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weiler-Sagie M, Bushelev O, Epelbaum R et al (2010) (18)F-FDG avidity in lymphoma readdressed: a study of 766 patients. J Nucl Med 51:25–30

    Article  PubMed  Google Scholar 

  • Young H, Baum R, Cremerius U et al (1999) Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European organization for research and treatment of cancer (EORTC) PET study group. Eur J Cancer 35:1773–1782

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abass Alavi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kwee, T.C., Basu, S., Kulkarni, H.R., Baum, R.P., Alavi, A. (2012). PET for Measuring Therapy Response After Radionuclide Therapy. In: Baum, R. (eds) Therapeutic Nuclear Medicine. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2012_715

Download citation

  • DOI: https://doi.org/10.1007/174_2012_715

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36718-5

  • Online ISBN: 978-3-540-36719-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics