Skip to main content

Inorganic Radionuclides for Nuclear Medicine Therapy

  • Chapter
  • First Online:
Therapeutic Nuclear Medicine

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

The most commonly used radionuclides for therapy are beta emitters which have shorter penetration depth than gamma emitters. Alpha or Auger emitters also are studied for higher efficiency within shorter range. Most of these radionuclides for therapy are metals and these should be labeled to specific ligands such as peptides or proteins via bifunctional chelating agents conjugated to them. Selection of the bifunctional chelating agents generally based on the dissociation constants with target metallic radionuclides. For the improved efficiency of radionuclide therapy, intensive studies about development of new ligands and labeling methods are required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson CJ, Dehdashti F, Cutler PD, Schwarz SW, Laforest R, Bass LA et al (2001) Cu-64-TETA-Octreotide as a PET imaging agent for patients with neuroendocrine tumors. J Nucl Med 42(2):213–221

    CAS  PubMed  Google Scholar 

  • Areberg J, Norrgren K, Mattsson S (1999) Absorbed doses to patients from 191Pt-, 193mPt- and 195mPt-cisplatin. Appl Radiat Isot 51(5):581–586

    Article  CAS  PubMed  Google Scholar 

  • Bodei L, Handkiewicz-Junak D, Grana C, Mazzetta C, Rocca P, Bartolomei M et al (2004) Receptor radionuclide therapy with Y-90-DOTATOC in patients with medullary thyroid carcinomas. Cancer Biother Radiopharm 19(1):65–71

    Article  CAS  PubMed  Google Scholar 

  • Boswell CA, Sun XK, Niu WJ, Weisman GR, Wong EH, Rheingold AL et al (2004) Comparative in vivo stability of copper-64-labeled cross-bridged and conventional tetraazamacrocyclic complexes. J Med Chem 47(6):1465–1474

    Article  CAS  PubMed  Google Scholar 

  • Brechbiel MW (2008) Bifunctional chelates for metal nuclides. Q J Nucl Med Mol Imaging 52(2):166–173. Epub 2007/11/29

    Google Scholar 

  • Brechbiel MW, Gansow OA (1992) Synthesis of c-functionalized trans-cyclohexyldiethylenetriaminepenta-acetic acids for labeling of monoclonal-antibodies with the bismuth-212 alpha-particle emitter. J Chem Soc Perkin Trans 1 1992(9):1173–1178

    Google Scholar 

  • Brechbiel MW, Gansow OA, Atcher RW, Schlom J, Esteban J, Simpson DE et al (1986) Synthesis of 1-(para-isothiocyanatobenzyl) derivatives of dtpa and edta—antibody labeling and tumor-imaging studies. Inorg Chem 25(16):2772–2781

    Article  CAS  Google Scholar 

  • Buchegger F, Perillo-Adamer F, Dupertuis YM, Delaloye AB (2006) Auger radiation targeted into DNA: a therapy perspective. Eur J Nucl Med Mol Imaging 33(11):1352–1363. Epub 2006/08/10

    Google Scholar 

  • Cacheris WP, Nickle SK, Sherry AD (1987) Thermodynamic study of lanthanide complexes of 1,4,7-triazacyclononane-N, N′, N″-triacetic acid and 1,4,7,10-tetraazacyclododecane-N, N′, N″ N′′′-tetraacetic acid. Inorg Chem 26(6):958–960

    Article  CAS  Google Scholar 

  • Carrasquillo JA, White JD, Paik CH, Raubitschek A, Le N, Rotman M et al (1999) Similarities and differences in In-111- and Y-90-labeled 1B4 M-DTPA antiTac monoclonal antibody distribution. J Nucl Med 40(2):268–276

    CAS  PubMed  Google Scholar 

  • Chakraborty S, Das T, Sarma HD, Venkatesh M, Banerjee S (2008) Comparative studies of 177Lu-EDTMP and 177Lu-DOTMP as potential agents for palliative radiotherapy of bone metastasis. Appl Radiat Isot 66(9):1196–1205. Epub 2008/03/29

    Google Scholar 

  • Chakraborty S, Das T, Sarma HD, Venkatesh M, Banerjee S (2008b) Comparative studies of Lu-177-EDTMP and Lu-177-DOTMP as potential agents for palliative radiotherapy of bone metastasis. Appl Radiat Isot 66(9):1196–1205

    Article  CAS  PubMed  Google Scholar 

  • Chatal JF, Hoefnagel CA (1999) Radionuclide therapy. Lancet 354(9182):931–935. Epub 1999/09/18

    Google Scholar 

  • Chinol M, Vallabhajosula S, Goldsmith SJ, Klein MJ, Deutsch KF, Chinen LK et al (1993) Chemistry and biological behavior of sm-153 and rhenium-186-labeled hydroxyapatite particles—potential radiopharmaceuticals for radiation synovectomy. J Nucl Med 34(9):1536–1542

    CAS  PubMed  Google Scholar 

  • Clarke ET, Martell AE (1991) Stabilities of the Fe(Iii), Ga(Iii) and in(Iii) chelates of N, N′, N″-triazacyclononanetriacetic acid. Inorg Chim Acta 181(2):273–280

    Article  CAS  Google Scholar 

  • Cobb LM, Humm JL (1986) Radioimmunotherapy of malignancy using antibody targeted radionuclides. Br J Cancer 54(6):863–870

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cole WC, Denardo SJ, Meares CF, Mccall MJ, Denardo GL, Epstein AL et al (1986) Serum stability of Cu-67 chelates—comparison with In-111 and Co-57. Nucl Med Biol 13(4):363–368

    CAS  Google Scholar 

  • Cole WC, Denardo SJ, Meares CF, Mccall MJ, Denardo GL, Epstein AL et al (1987) Comparative serum stability of radiochelates for antibody radiopharmaceuticals. J Nucl Med 28(1):83–90

    CAS  PubMed  Google Scholar 

  • Cyr JE, Pearson DA, Wilson DM, Nelson CA, Guaraldi M, Azure MT et al (2007) Somatostatin receptor-binding peptides suitable for tumor radiotherapy with Re-188 or Re-186. Chemistry and initial biological studies. J Med Chem 50(6):1354–1364

    Article  CAS  PubMed  Google Scholar 

  • Dasgupta AK, Mausner LF, Srivastava SC (1991) A new separation procedure for Cu-67 from proton irradiated Zn. Appl Radiat Isot 42(4):371–376

    CAS  Google Scholar 

  • de Jong M, Breeman WAP, Bernard BF, Bakker WH, Schaar M, van Gameren A et al (2001) [Lu-177-DOTA(0), Tyr(3)]octreotate for somatostatin receptor-targeted radionuclide therapy. Int J Cancer 92(5):628–633

    Article  PubMed  Google Scholar 

  • Eisenwiener KP, Powell P, Macke HR (2000) A convenient synthesis of novel bifunctional prochelators for coupling to bioactive peptides for radiometal labelling. Bioorg Med Chem Lett 10(18):2133–2135

    Article  CAS  PubMed  Google Scholar 

  • Fichna J, Janecka A (2003) Synthesis of target-specific radiolabeled peptides for diagnostic Imaging. Bioconjug Chem 14(1):3–17

    Article  CAS  PubMed  Google Scholar 

  • Filossofov DV, Lebedev NA, Novgorodov AF, Bontchev GD, Starodub GY (2001) Production, concentration and deep purification of In-111 radiochemicals. Appl Radiat Isot 55(3):293–295

    Article  CAS  PubMed  Google Scholar 

  • Fjalling M, Andersson P, ForsselAronsson E, Gretarsdottir J, Johanson V, Tisell LE et al (1996) Systemic radionuclide therapy using indium-111-DTPA-D-Phe(1)-octreotide in midgut carcinoid syndrome. J Nucl Med 37(9):1519–1521

    CAS  PubMed  Google Scholar 

  • Fortin MA, Orlova A, Malmstrom PU, Tolmachev V (2007) Labelling chemistry and characterization of [(90)y/Lu-177]-DOTA-Z(HER2: 342)-3 affibody molecule, a candidate agent for locoregional treatment of urinary bladder carcinoma. Int J Mol Med 19(2):285–291

    CAS  PubMed  Google Scholar 

  • Gordon LI, Witzig TE, Wiseman GA, Flinn IW, Spies SS, Silverman DH et al (2002) Yttrium 90 ibritumomab tiuxetan radioimmunotherapy for relapsed or refractory low-grade non-Hodgkin’s lymphoma. Semin Oncol 29(1):87–92

    Article  CAS  PubMed  Google Scholar 

  • Hafeli UO, Casillas S, Dietz DW, Pauer GJ, Rybicki LA, Conzone SD et al. (1999) Hepatic tumor radioembolization in a rat model using radioactive rhenium (186Re/188Re) glass microspheres. Int J Radiat Oncol Biol Phys 44(1):189–199. Epub 1999/04/29

    Google Scholar 

  • Hassfjell SP, Bruland OS, Hoff P (1997) 212Bi-DOTMP: an alpha particle emitting bone-seeking agent for targeted radiotherapy. Nucl Med Biol 24(3):231–237. Epub 1997/04/01

    Google Scholar 

  • Hilgers K, Coenen HH, Qaim SM (2008) Production of the therapeutic radionuclides 193mPt and 195mPt with high specific activity via [alpha]-particle-induced reactions on 192Os. Appl Radiat Isot 66(4):545–551

    Article  CAS  PubMed  Google Scholar 

  • Hoefnagel CA, Clarke SE, Fischer M, Chatal JF, Lewington VJ, Nilsson S et al. (1999) Radionuclide therapy practice and facilities in Europe, EANM Radionuclide Therapy Committee. Eur J Nucl Med 26(3):277–282. Epub 1999/03/18

    Google Scholar 

  • Howell RW, Rao DV, Sastry KSR (1989) Macroscopic dosimetry for radioimmunotherapy—nonuniform activity distributions in solid tumors. Med Phys 16(1):66–74

    Article  CAS  PubMed  Google Scholar 

  • Hughes OD, Bishop MC, Perkins AC, Frier M, Price MR, Denton G et al. (1997) Preclinical evaluation of copper-67 labelled anti-MUC1 mucin antibody C595 for therapeutic use in bladder cancer. Eur J Nucl Med 24(4):439–443. Epub 1997/04/01

    Google Scholar 

  • Humm JL (1986) Dosimetric aspects of radiolabeled antibodies for tumor-therapy. J Nucl Med 27(9):1490–1497

    CAS  PubMed  Google Scholar 

  • Janson ET, Eriksson B, Oberg K, Skogseid B, Ohrvall U, Nilsson S et al (1999) Treatment with high dose [In-111-DTPA-D-PHE1]-octreotide in patients with neuroendocrine tumors–evaluation of therapeutic and toxic effects. Acta Oncol 38(3):373–377

    Article  Google Scholar 

  • Jeong JM, Chung JK (2003) Therapy with Re-188-labeled radiopharmaceuticals: An overview of promising results from initial clinical trials. Cancer Biother Radiopharm 18(5):707–717

    Article  CAS  PubMed  Google Scholar 

  • Jeong JM, Lee YJ, Kim YJ, Chang YS, Lee DS, Chung JK et al (2000) Preparation of rhenium-188-tin colloid as a radiation synovectomy agent and comparison with rhenium-188-sulfur colloid. Appl Radiat Isot 52(4):851–855

    Article  CAS  PubMed  Google Scholar 

  • Jeong JM, Kim YJ, Lee YS, Ko JI, Son M, Lee DS, et al. (2001) Lipiodol solution of a lipophilic agent, (188)Re-TDD, for the treatment of liver cancer. Nucl Med Biol 28(2):197–204. Epub 2001/04/11

    Google Scholar 

  • Jeong JM, Lee YJ, Kim EH, Chang YS, Kim YJ, Son M et al (2003) Preparation of Re-188-labeled paper for treating skin cancer. Appl Radiat Isot 58(5):551–555

    Article  CAS  PubMed  Google Scholar 

  • John E, Thakur ML, Defulvio J, Mcdevitt MR, Damjanov I (1993) Rhenium-186-labeled monoclonal-antibodies for radioimmunotherapy - preparation and evaluation. J Nucl Med 34(2):260–267

    CAS  PubMed  Google Scholar 

  • Jurisson S, Cutler C, Smith SV (2008) Radiometal complexes: characterization and relevant in vitro studies. Q J Nucl Med Mol Imaging 52(3):222–234

    CAS  PubMed  Google Scholar 

  • Karagiannis TC (2007) Comparison of different classes of radionuclides for potential use in radioimmunotherapy. Hell J Nucl Med 10(2):82-8. Epub 2007/08/09

    Google Scholar 

  • Kassis AI, Adelstein SJ (2005) Radiobiologic principles in radionuclide therapy. J Nucl Med 46:4S–12S

    PubMed  Google Scholar 

  • Ketring AR (1987) 153Sm-EDTMP and 186Re-HEDP as bone therapeutic radiopharmaceuticals. Int J Rad Appl Instrum B 14(3):223–232. Epub 1987/01/01

    Google Scholar 

  • Ketring AR (1987b) Sm-153 Edtmp and Re-186-Hedp as bone therapeutic radiopharmaceuticals. Nucl Med Biol 14(3):223–232

    CAS  Google Scholar 

  • Kline SJ, Betebenner DA, Johnson DK (1991) Carboxymethyl-substituted bifunctional chelators - preparation of aryl isothiocyanate derivatives of 3-(carboxymethyl)-3-azapentanedioic acid, 3,12-bis(carboxymethyl)-6,9-dioxa-3,12-diazatetradecanedioic acid, and 1,4,7,10-tetraazacyclododecane-N, N′, N″, N′′′-tetraacetic acid for use as protein labels. Bioconjug Chem. 2(1):26–31

    Article  CAS  PubMed  Google Scholar 

  • Knapp FF Jr (1998) Rhenium-188–a generator-derived radioisotope for cancer therapy. Cancer Biother Radiopharm 13(5):337–349. Epub 2000/06/14

    Google Scholar 

  • Lee J, Lee DS, Kim KM, Yeo JS, Cheon GJ, Kim SK et al (2000) Dosimetry of rhenium-188 diethylene triamine penta-acetic acid for endovascular intra-balloon brachytherapy after coronary angioplasty. Eur J Nucl Med 27(1):76–82

    Article  CAS  PubMed  Google Scholar 

  • Lee YS, Jeong JM, Kim YJ, Chung JW, Park JH, Suh YG, et al. (2002) Synthesis of 188 Re-labelled long chain alkyl diaminedithiol for therapy of liver cancer. Nucl Med Commun 23(3):237–242. Epub 2002/03/14

    Google Scholar 

  • Lee YS, Jeong JM, Kim YJ, Chang YS, Lee HJ, Son M et al. (2007) Development of acetylated HDD kit for preparation of 188Re-HDD/lipiodol. Appl Radiat Isot 65(1):64–69. Epub 2006/10/03

    Google Scholar 

  • Lewis JS, Lewis MR, Srinivasan A, Schmidt MA, Wang J, Anderson CJ (1999) Comparison of four Cu-64-labeled somatostatin analogues in vitro and in a tumor-bearing rat model: Evaluation of new derivatives for positron emission tomography imaging and targeted radiotherapy. J Med Chem 42(8):1341–1347

    Article  CAS  PubMed  Google Scholar 

  • Li S, Beheshti M (2005) The radionuclide molecular imaging and therapy of neuroendocrine tumors. Curr Cancer Drug Targets 5(2):139–148. Epub 2005/04/07

    Google Scholar 

  • Lin WY, Lin CP, Yeh SJ, Hsieh BT, Tsai ZT, Ting G, et al. (1997) Rhenium-188 hydroxyethylidene diphosphonate: a new generator-produced radiotherapeutic drug of potential value for the treatment of bone metastases. Eur J Nucl Med 24(6):590–595. Epub 1997/06/01

    Google Scholar 

  • Liu S (2004) The role of coordination chemistry in the development of target-specific radiopharmaceuticals. Chem Soc Rev 33(7):445–461

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Hnatowich DJ (2007) Labeling biomolecules with radiorhenium: a review of the bifunctional chelators. Anti-cancer Agents Med Chem 7(3):367–377. Epub 2007/05/17

    Google Scholar 

  • Mausner LF, Kolsky KL, Joshi V, Srivastava SC (1998) Radionuclide development at BNL for nuclear medicine therapy. Appl Radiat Isot 49(4):285–294

    Article  CAS  PubMed  Google Scholar 

  • McCarthy KE, Woltering EA, Espenan GD, Cronin M, Maloney TJ, Anthony LB (1998) In situ radiotherapy with In-111-pentetreotide: Initial observations and future directions. Cancer J 4(2):94–102

    CAS  Google Scholar 

  • Mcmurry TJ, Brechbiel M, Kumar K, Gansow OA (1992) Convenient synthesis of bifunctional tetraaza macrocycles. Bioconjug Chem 3(2):108–117

    Article  CAS  PubMed  Google Scholar 

  • Meares CF, Wensel TG (1984) Metal-chelates as probes of biological-systems. Acc Chem Res 17(6):202–209

    Article  CAS  Google Scholar 

  • Meares CF, Mccall MJ, Reardan DT, Goodwin DA, Diamanti CI, Mctigue M (1984) Conjugation of antibodies with bifunctional chelating-agents - isothiocyanate and bromoacetamide reagents, methods of analysis, and subsequent addition of metal-ions. Anal Biochem 142(1):68–78

    Article  CAS  PubMed  Google Scholar 

  • Michel RB, Andrews PM, Rosario AV, Goldenberg DM, Mattes MJ (2005a) Lu-177-antibody conjugates for single-cell kill of B-lymphoma cells in vitro and for therapy of micrometastases in vivo. Nucl Med Biol 32(3):269–278

    Article  CAS  PubMed  Google Scholar 

  • Michel RB, Andrews PM, Castillo ME, Mattes MJ (2005b) In vitro cytotoxicity of carcinoma cells with In-111-labeled antibodies to HER-2. Mol Cancer Ther 4(6):927–937

    Article  CAS  PubMed  Google Scholar 

  • Michel RB, Rosario AV, Andrews PM, Goldenberg DM, Mattes MJ (2005c) Therapy of small subcutaneous B-lymphoma xenografts with antibodies conjugated to radionuclides emitting low-energy electrons. Clin Cancer Res 11(2):777–786

    CAS  PubMed  Google Scholar 

  • Milenic DE, Brechbiel MW (2004) Targeting of radio-isotopes for cancer therapy. Cancer Biol Ther 3(4):361–370. Epub 2004/02/21

    Google Scholar 

  • Mirick GR, O’Donnell RT, DeNardo SJ, Shen S, Meares CF, DeNardo GL (1999) Transfer of copper from a chelated Cu-67-antibody conjugate to ceruloplasmin in lymphoma patients. Nucl Med Biol 26(7):841–845

    Article  CAS  PubMed  Google Scholar 

  • Moi MK, Meares CF, Mccall MJ, Cole WC, Denardo SJ (1985) Copper-chelates as probes of biological-systems—stable copper-complexes with a macrocyclic bifunctional chelating agent. Anal Biochem 148(1):249–253

    Article  CAS  PubMed  Google Scholar 

  • Moi MK, Yanuck M, Deshpande SV, Hope H, Denardo SJ, Meares CF (1987) X-ray crystal-structure of a macrocyclic copper chelate stable enough for use in living systems—copper(Ii) dihydrogen 6-(p-nitrobenzyl)-1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetate. Inorg Chem 26(21):3458–3463

    Article  CAS  Google Scholar 

  • Moi MK, Meares CF, Denardo SJ (1988) The peptide way to macrocyclic bifunctional chelating-agents - synthesis of 2-(p-nitrobenzyl)-1,4,7,10-tetraazacyclododecane-N, N′, N″, N′′′-tetraacetic acid and study of its yttrium(iii) complex. J Am Chem Soc 110(18):6266–6267

    Article  CAS  PubMed  Google Scholar 

  • Moreau J, Guillon E, Pierrard JC, Rimbault J, Port M, Aplincourt M (2004) Complexing mechanism of the lanthanide cations Eu3 + , Gd3 + , and Tb3 + with 1,4,7,10-tetrakis(carboxymethyl)-1,4,7,10-tetraazacyclododecane (dota)—Characterization of three successive complexing phases: Study of the thermodynamic and structural properties of the complexes by potentiometry, luminescence spectroscopy, and EXAFS. Chem Eur J 10(20):5218–5232

    Article  CAS  PubMed  Google Scholar 

  • Novak-Hofer I, Schubiger PA (2002) Copper-67 as a therapeutic nuclide for radioimmunotherapy. Eur J Nucl Med Mol Imaging 29(6):821–830

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell RT, DeNardo GL, Kukis DL, Lamborn KR, Shen S, Yuan A et al (1999) A clinical trial of radioimmunotherapy with 67Cu-2IT-BAT-Lym-1 for non-Hodgkin’s lymphoma. J Nucl Med 40(12):2014–2020. Epub 2000/01/05

    Google Scholar 

  • Packard AB, Kronauge JF, Brechbiel MW (1999) Metalloradiopharmaceuticals. In: Clarke MJ, Sadler PJ (eds) A metalloradiopharmaceuticals II, diagnosis and therapy. Springer, New York, pp 45–116

    Chapter  Google Scholar 

  • Postema EJ, Boerman OC, Oyen WJG, Raemaekers JMM, Corstens FHM (2001) Radioimmunotherapy of B-cell non-Hodgkin’s lymphoma. Eur J Nucl Med 28(11):1725–1735

    Article  CAS  PubMed  Google Scholar 

  • Prasanphanich AF, Nanda PK, Rold TL, Ma LX, Lewis MR, Garrison JC et al (2007) [Cu-64-NOTA-8-Aoc-BBN(7–14)NH2] targeting vector for positron-emission tomography imaging of gastrin-releasing peptide receptor-expressing tissues. Proc Natl Acad Sci USA 104(30):12462–12467

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reske SN, Bunjes D, Buchmann I, Seitz U, Glatting G, Neumaier B et al (2001) Targeted bone marrow irradiation in the conditioning of high-risk leukaemia prior to stem cell transplantation. Eur J Nucl Med 28(7):807–815

    Article  CAS  PubMed  Google Scholar 

  • Sangro B, Bilbao JI, Inarrairaegui M, Rodriguez M, Garrastachu P, Martinez-Cuesta A (2009) Treatment of hepatocellular carcinoma by radioembolization using Y-90 microspheres. Dig Dis 27(2):164–169

    Article  PubMed  Google Scholar 

  • Schubiger PA, Alberto R, Smith A (1996) Vehicles, chelators, and radionuclides: Choosing the ‘‘building blocks’’ of an effective therapeutic radioimmunoconjugate. Bioconjug Chem 7(2):165–179

    Article  CAS  PubMed  Google Scholar 

  • Schwarzbach R, Zimmermann K, Blauenstein P, Smith A, Schubiger PA (1995) Development of a simple and selective separation of cu-67 from irradiated zinc for use in antibody labeling—a comparison of methods. Appl Radiat Isot 46(5):329–336

    Article  CAS  PubMed  Google Scholar 

  • Shannon RD (1976) Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32(Sep1):751–767

    Google Scholar 

  • Smith A, Alberto R, Blaeuenstein P, Novakhofer I, Maecke HR, Schubiger PA (1993) Preclinical evaluation of Cu-67 labeled intact and fragmented anti-colon carcinoma monoclonal-antibody Mab35. Cancer Res 53(23):5727–5733

    CAS  PubMed  Google Scholar 

  • Thomas R, Chen J, Roudier MM, Vessella RL, Lantry LE, Nunn AD (2009) In vitro binding evaluation of 177Lu-AMBA, a novel 177Lu-labeled GRP-R agonist for systemic radiotherapy in human tissues. Clin Exp Metastasis 26(2):105–119. Epub 2008/11/01

    Google Scholar 

  • Vallabhajosula S, Goldsmith SJ, Kostakoglu L, Milowsky MI, Nanus DM, Bander NH (2005) Radioimmunotherapy of prostate cancer using 90Y- and 177Lu-labeled J591 monoclonal antibodies: effect of multiple treatments on myelotoxicity. Clin Cancer Res 11(19 Pt 2):7195s–200s. Epub 2005/10/06

    Google Scholar 

  • Volkert WA, Hoffman TJ (1999) Therapeutic radiopharmaceuticals. Chem Rev 99(9):2269–2292

    Article  CAS  PubMed  Google Scholar 

  • Volkert WA, Goeckeler WF, Ehrhardt GJ, Ketring AR (1991) Therapeutic radionuclides: production and decay property considerations. J Nucl Med 32(1):174–185. Epub 1991/01/01

    Google Scholar 

  • Wang SJ, Lin WY, Hsieh BT, Shen LH, Tsai ZT, Ting G et al (1995) Re-188 sulfur colloid as a radiation synovectomy agent. Eur J Nucl Med 22(6):505–507

    Article  CAS  PubMed  Google Scholar 

  • Welch MJ, Redvanly CS (2003) Handbook of radiopharmaceuticals radiochemistry and applications. Wiley, Chichester

    Google Scholar 

  • Wilder RB, DeNardo GL, DeNardo SJ (1996) Radioimmunotherapy: recent results and future directions. J Clin Oncol 14(4):1383–1400

    CAS  PubMed  Google Scholar 

  • Wu C, Kobayashi H, Sun B, Yoo TM, Paik CH, Gansow OA et al (1997) Stereochemical influence on the stability of radio-metal complexes in vivo. Synthesis and evaluation of the four stereoisomers of 2-(p-nitrobenzyl)-trans-CyDTPA. Bioorg Med Chem 5(10):1925–1934

    Article  CAS  PubMed  Google Scholar 

  • Yoshimoto M, Ogawa K, Washiyama K, Shikan N, Mori H, Amano R et al (2008) Alpha(v)beta(3) integrin-targeting radionuclide therapy and imaging with monomeric RGD peptide. Int J Cancer 123(3):709–715

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Min Jeong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lee, YS., Jeong, J.M. (2012). Inorganic Radionuclides for Nuclear Medicine Therapy. In: Baum, R. (eds) Therapeutic Nuclear Medicine. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2012_704

Download citation

  • DOI: https://doi.org/10.1007/174_2012_704

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36718-5

  • Online ISBN: 978-3-540-36719-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics