Skip to main content

Treatment of Progressive Dedifferentiated and Medullary Thyroid Cancer with Radiolabeled Somatostatin Analogs

  • Chapter
  • First Online:
Therapeutic Nuclear Medicine

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 2637 Accesses

Abstract

Radiolabeled receptor-binding peptides have become an important class of radiopharmaceuticals in nuclear oncology. The most prominent examples of successful peptide-based radiotherapy are radiolabeled somatostatin analogs for imaging and treatment of patients with progressive neuroendocrine tumors. Immunohistological studies demonstrating somatostatin receptor expression in differentiated and medullary thyroid cancer have provided the rationale for the use of radiolabeled somatostatin analogs in diagnosis and treatment of thyroid cancers. Accordingly, 90Yttrium-, 177Lutetium-, and 111Indium-labeled somatostatin analogs have been evaluated for treatment of patients with iodine-refractory differentiated and medullary thyroid cancer. In differentiated thyroid cancer, the reported rates of disease control, defined as responses plus stable disease, vary between 20 and 56 %. Studies on the follow-up after treatment revealed a time to progression between 9 and 43 months. In medullary thyroid cancer, the reported rates of disease control vary between 42 and 67 %. In both entities, responders have prolonged survival compared with nonresponders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ain KB, Taylor KD et al (1997) Somatostatin receptor subtype expression in human thyroid and thyroid carcinoma cell lines. J Clin Endocrinol Metab 82(6):1857–1862

    CAS  PubMed  Google Scholar 

  • Ball DW, Baylin SB et al. (2000). Medullary thyroid carcinoma. In: Braverman LE, Utiger RE (eds.) Lippincott Williams & Wilkins, Philadelphia, pp 930–943

    Google Scholar 

  • Baudin E, Lumbroso J et al (1996a) Comparison of octreotide scintigraphy and conventional imaging in medullary thyroid carcinoma. J Nucl Med 37(6):912–916

    CAS  PubMed  Google Scholar 

  • Baudin E, Schlumberger M (2007) New therapeutic approaches for metastatic thyroid carcinoma. Lancet Oncol 8(2):148–156

    Article  CAS  PubMed  Google Scholar 

  • Baudin E, Schlumberger M et al (1996b) Octreotide scintigraphy in patients with differentiated thyroid carcinoma: contribution for patients with negative radioiodine scan. J Clin Endocrinol Metab 81(7):2541–2544

    CAS  PubMed  Google Scholar 

  • Behe M, Behr TM (2002) Cholecystokinin-B (CCK-B)/gastrin receptor targeting peptides for staging and therapy of medullary thyroid cancer and other CCK-B receptor expressing malignancies. Biopolymers 66(6):399–418

    Article  CAS  PubMed  Google Scholar 

  • Behr TM, Becker W (1999) Metabolic and receptor imaging of metastatic medullary thyroid cancer: does anti-CEA and somatostatin-receptor scintigraphy allow for prognostic predictions? Eur J Nucl Med 26(1):70–71

    CAS  PubMed  Google Scholar 

  • Behr TM, Gratz S et al (1997) Anti-carcinoembryonic antigen antibodies versus somatostatin analogs in the detection of metastatic medullary thyroid carcinoma: are carcinoembryonic antigen and somatostatin receptor expression prognostic factors? Cancer 80(12 Suppl):2436–2457

    Article  CAS  PubMed  Google Scholar 

  • Behr TM, Jenner N et al (1999) Radiolabeled peptides for targeting cholecystokinin-B/gastrin receptor-expressing tumors. J Nucl Med 40(6):1029–1044

    CAS  PubMed  Google Scholar 

  • Berna L, Chico A et al (1998) Use of somatostatin analogue scintigraphy in the localization of recurrent medullary thyroid carcinoma. Eur J Nucl Med 25(11):1482–1488

    Article  CAS  PubMed  Google Scholar 

  • Bodei L, Cremonesi M et al (2004a) Receptor radionuclide therapy with 90Y-[DOTA]0-Tyr3-octreotide (90Y-DOTATOC) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging 31(7):1038–1046

    CAS  PubMed  Google Scholar 

  • Bodei L, Handkiewicz-Junak D et al (2004b) Receptor radionuclide therapy with 90Y-DOTATOC in patients with medullary thyroid carcinomas. Cancer Biother Radiopharm 19(1):65–71

    Article  CAS  PubMed  Google Scholar 

  • Buscombe JR, Caplin ME et al (2003) Long-term efficacy of high-activity 111in-pentetreotide therapy in patients with disseminated neuroendocrine tumors. J Nucl Med 44(1):1–6

    CAS  PubMed  Google Scholar 

  • Busnardo B, Girelli ME et al (1984) Nonparallel patterns of calcitonin and carcinoembryonic antigen levels in the follow-up of medullary thyroid carcinoma. Cancer 53(2):278–285

    Article  CAS  PubMed  Google Scholar 

  • Caplan RH, Abellera RM et al (1994) Hurthle cell neoplasms of the thyroid gland: reassessment of functional capacity. Thyroid 4(3):243–248

    Article  CAS  PubMed  Google Scholar 

  • Chatal JF, Campion L et al (2006) Survival improvement in patients with medullary thyroid carcinoma who undergo pretargeted anti-carcinoembryonic-antigen radioimmunotherapy: a collaborative study with the French endocrine tumor group. J Clin Oncol 24(11):1705–1711

    Article  CAS  PubMed  Google Scholar 

  • Chinol M, Bodei L et al (2002) Receptor-mediated radiotherapy with Y-DOTA-DPhe-Tyr-octreotide: the experience of the European Institute of Oncology Group. Semin Nucl Med 32(2):141–147

    Article  PubMed  Google Scholar 

  • Christian JA, Cook GJ et al (2003) Indium-111-labelled octreotide scintigraphy in the diagnosis and management of non-iodine avid metastatic carcinoma of the thyroid. Br J Cancer 89(2):258–261

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cooper DS, Schneyer CR (1990) Follicular and Hurthle cell carcinoma of the thyroid. Endocrinol Metab Clin North Am 19(3):577–591

    CAS  PubMed  Google Scholar 

  • de Jong M, Breeman WA et al (2005) Combination radionuclide therapy using 177Lu- and 90Y-labeled somatostatin analogs. J Nucl Med 46(Suppl 1):13S–17S

    PubMed  Google Scholar 

  • Druckenthaner M, Schwarzer C et al (2007) Evidence for Somatostatin receptor 2 in thyroid tissue. Regul Pept 138(1):32–39

    Article  CAS  PubMed  Google Scholar 

  • Forssell-Aronsson EB, Nilsson O et al (2000) 111In-DTPA-D-Phe1-octreotide binding and somatostatin receptor subtypes in thyroid tumors. J Nucl Med 41(4):636–642

    CAS  PubMed  Google Scholar 

  • Frank-Raue K, Bihl H et al (1995) Somatostatin receptor imaging in persistent medullary thyroid carcinoma. Clin Endocrinol (Oxf) 42(1):31–37

    Article  CAS  Google Scholar 

  • Froberg AC, de Jong M et al (2009) Comparison of three radiolabelled peptide analogues for CCK-2 receptor scintigraphy in medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging 36(8):1265–1272

    PubMed Central  PubMed  Google Scholar 

  • Gabriel M, Froehlich F et al (2004) 99mTc-EDDA/HYNIC-TOC and (18)F-FDG in thyroid cancer patients with negative (131)I whole-body scans. Eur J Nucl Med Mol Imaging 31(3):330–341

    CAS  PubMed  Google Scholar 

  • Garin E, Devillers A et al (1998) Use of indium-111 pentetreotide somatostatin receptor scintigraphy to detect recurrent thyroid carcinoma in patients without detectable iodine uptake. Eur J Nucl Med 25(7):687–694

    Article  CAS  PubMed  Google Scholar 

  • Giammarile F, Houzard C et al (2004) Diagnostic management of suspected metastatic thyroid carcinoma: clinical value of octreotide scintigraphy in patients with negative high-dose radioiodine scans. Eur J Endocrinol 150(3):277–283

    Article  CAS  PubMed  Google Scholar 

  • Gorges R, Kahaly G et al (2001) Radionuclide-labeled somatostatin analogues for diagnostic and therapeutic purposes in nonmedullary thyroid cancer. Thyroid 11(7):647–659

    Article  CAS  PubMed  Google Scholar 

  • Gotthardt M, Behe MP et al (2006) Improved tumour detection by gastrin receptor scintigraphy in patients with metastasised medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging 33(11):1273–1279

    PubMed  Google Scholar 

  • Haslinghuis LM, Krenning EP et al (2001) Somatostatin receptor scintigraphy in the follow-up of patients with differentiated thyroid cancer. J Endocrinol Invest 24(6):415–422

    Article  CAS  PubMed  Google Scholar 

  • Hundahl SA, Fleming ID et al (1998) A National Cancer Data Base report on 53,856 cases of thyroid carcinoma treated in the U.S., 1985–1995 [see comments]. Cancer 83(12):2638–2648

    Article  CAS  PubMed  Google Scholar 

  • Imhof A, Brunner P et al (2011) Response, survival, and long-term toxicity after therapy with the radiolabeled somatostatin analogue [90Y-DOTA]-TOC in metastasized neuroendocrine cancers. J Clin Oncol 29(17):2416–2423

    Article  CAS  PubMed  Google Scholar 

  • Iten F, Muller B et al (2009) [(90)Yttrium-DOTA]-TOC response is associated with survival benefit in iodine-refractory thyroid cancer: long-term results of a phase 2 clinical trial. Cancer 115(10):2052–2062

    Article  CAS  PubMed  Google Scholar 

  • Iten F, Muller B et al (2007) Response to [90Yttrium-DOTA]-TOC treatment is associated with long-term survival benefit in metastasized medullary thyroid cancer: a phase II clinical trial. Clin Cancer Res 13(22 Pt 1):6696–6702

    Article  CAS  PubMed  Google Scholar 

  • John M, Meyerhof W et al (1996) Positive somatostatin receptor scintigraphy correlates with the presence of somatostatin receptor subtype 2. Gut 38(1):33–39

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaltsas G, Rockall A et al (2004) Recent advances in radiological and radionuclide imaging and therapy of neuroendocrine tumours. Eur J Endocrinol 151(1):15–27

    Article  CAS  PubMed  Google Scholar 

  • Kimura N, Pilichowska M et al (1999) Immunohistochemical expression of somatostatin type 2A receptor in neuroendocrine tumors. Clin Cancer Res 5(11):3483–3487

    CAS  PubMed  Google Scholar 

  • Krenning EP, Bakker WH et al (1989) Localisation of endocrine-related tumours with radioiodinated analogue of somatostatin. Lancet 1(8632):242–244

    Article  CAS  PubMed  Google Scholar 

  • Krenning EP, Bakker WH et al (1992a) Somatostatin receptor scintigraphy with indium-111-DTPA-D-Phe-1-octreotide in man: metabolism, dosimetry and comparison with iodine-123-Tyr-3-octreotide. J Nucl Med 33(5):652–658

    CAS  PubMed  Google Scholar 

  • Krenning EP, de Jong M et al (1999) Radiolabelled somatostatin analogue(s) for peptide receptor scintigraphy and radionuclide therapy. Ann Oncol 10(Suppl 2):S23–S29

    Article  PubMed  Google Scholar 

  • Krenning EP, Kwekkeboom DJ et al (1992b) 111In-octreotide scintigraphy in oncology. Metabolism 41(9 Suppl 2):83–86

    Article  CAS  PubMed  Google Scholar 

  • Kurtaran A, Leimer M et al (1996) Combined use of 111In-DTPA-D-Phe-1-octreotide (OCT) and 123I-vasoactive intestinal peptide (VIP) in the localization diagnosis of medullary thyroid carcinoma (MTC). Nucl Med Biol 23(4):503–507

    Article  CAS  PubMed  Google Scholar 

  • Kwekkeboom DJ, Bakker WH et al (2000) Cholecystokinin receptor imaging using an octapeptide DTPA-CCK analogue in patients with medullary thyroid carcinoma. Eur J Nucl Med 27(9):1312–1317

    Article  CAS  PubMed  Google Scholar 

  • Kwekkeboom DJ, de Herder WW et al (2008) Treatment with the radiolabeled somatostatin analog [177 Lu-DOTA 0, Tyr3]octreotate: toxicity, efficacy, and survival. J Clin Oncol 26(13):2124–2130

    Article  CAS  PubMed  Google Scholar 

  • Kwekkeboom DJ, Reubi JC et al (1993) In vivo somatostatin receptor imaging in medullary thyroid carcinoma. J Clin Endocrinol Metab 76(6):1413–1417

    CAS  PubMed  Google Scholar 

  • Kwekkeboom DJ, Teunissen JJ et al (2005) Radiolabeled somatostatin analog [177Lu-DOTA0, Tyr3]octreotate in patients with endocrine gastroenteropancreatic tumors. J Clin Oncol 23(12):2754–2762

    Article  CAS  PubMed  Google Scholar 

  • Leboulleux S, Baudin E et al (2004) Medullary thyroid carcinoma. Clin Endocrinol (Oxf) 61(3):299–310

    Article  Google Scholar 

  • Maxon HR 3rd, Smith HS (1990) Radioiodine-131 in the diagnosis and treatment of metastatic well differentiated thyroid cancer. Endocrinol Metab Clin North Am 19(3):685–718

    PubMed  Google Scholar 

  • Nock BA, Maina T et al (2005) CCK-2/gastrin receptor-targeted tumor imaging with (99m)Tc-labeled minigastrin analogs. J Nucl Med 46(10):1727–1736

    CAS  PubMed  Google Scholar 

  • O’Doherty MJ, Coakley AJ (1998) Drug therapy alternatives in the treatment of thyroid cancer. Drugs 55(6):801–812

    Article  PubMed  Google Scholar 

  • O’Donoghue JA, Bardies M et al (1995) Relationships between tumor size and curability for uniformly targeted therapy with beta-emitting radionuclides. J Nucl Med 36(10):1902–1909

    PubMed  Google Scholar 

  • Otte A, Mueller-Brand J et al (1998) Yttrium-90-labelled somatostatin-analogue for cancer treatment. Lancet 351(9100):417–418

    Article  CAS  PubMed  Google Scholar 

  • Papotti M, Kumar U et al (2001) Immunohistochemical detection of somatostatin receptor types 1–5 in medullary carcinoma of the thyroid. Clin Endocrinol (Oxf) 54(5):641–649

    Article  CAS  Google Scholar 

  • Postema PT, De Herder WW et al (1996) Somatostatin receptor scintigraphy in non-medullary thyroid cancer. Digestion 57(Suppl 1):36–37

    Article  PubMed  Google Scholar 

  • Reubi JC, Chayvialle JA et al (1991) Somatostatin receptors and somatostatin content in medullary thyroid carcinomas. Lab Invest 64(4):567–573

    CAS  PubMed  Google Scholar 

  • Reubi JC, Macke HR et al (2005) Candidates for peptide receptor radiotherapy today and in the future. J Nucl Med 46(Suppl 1):67S–75S

    CAS  PubMed  Google Scholar 

  • Reubi JC, Maurer R et al (1987) Somatostatin receptors in human endocrine tumors. Cancer Res 47(2):551–558

    CAS  PubMed  Google Scholar 

  • Reubi JC, Schaer JC et al (1997) Distribution of somatostatin receptors in normal and neoplastic human tissues: recent advances and potential relevance. Yale J Biol Med 70(5–6):471–479

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reubi JC, Schaer JC et al (1994) Expression and localization of somatostatin receptor SSTR1, SSTR2, and SSTR3 messenger RNAs in primary human tumors using in situ hybridization. Cancer Res 54(13):3455–3459

    CAS  PubMed  Google Scholar 

  • Reubi JC, Schar JC et al (2000) Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med 27(3):273–282

    Article  CAS  PubMed  Google Scholar 

  • Reubi JC, Waser B (1996) Unexpected high incidence of cholecystokinin-B/gastrin receptors in human medullary thyroid carcinomas. Int J Cancer 67(5):644–647

    Article  CAS  PubMed  Google Scholar 

  • Reubi JC, Waser B et al (1990) Somatostatin receptor incidence and distribution in breast cancer using receptor autoradiography: relationship to EGF receptors. Int J Cancer 46(3):416–420

    Article  CAS  PubMed  Google Scholar 

  • Reubi JC, Waser B et al (2001) Somatostatin receptor sst1-sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands. Eur J Nucl Med 28(7):836–846

    Article  CAS  PubMed  Google Scholar 

  • Santini F, Bottici V et al (2002) Cytotoxic effects of carboplatinum and epirubicin in the setting of an elevated serum thyrotropin for advanced poorly differentiated thyroid cancer. J Clin Endocrinol Metab 87(9):4160–4165

    Article  CAS  PubMed  Google Scholar 

  • Schlumberger M, Gardet P et al (1991) External radiotherapy and chemotherapy in MTC patients. In: Calmettes C, Guliana JM (eds.) Colloque INSERM/John Libbey, Eurotext Ltd, Paris, France pp. 211, 213–220

    Google Scholar 

  • Schlumberger MJ (1998) Papillary and follicular thyroid carcinoma. N Engl J Med 338(5):297–306

    Article  CAS  PubMed  Google Scholar 

  • Sherman SI (2003) Thyroid carcinoma. Lancet 361(9356):501–511

    Article  PubMed  Google Scholar 

  • Shimaoka K, Schoenfeld DA et al (1985) A randomized trial of doxorubicin versus doxorubicin plus cisplatin in patients with advanced thyroid carcinoma. Cancer 56(9):2155–2160

    Article  CAS  PubMed  Google Scholar 

  • Sisson JC, Giordano TJ et al (1996) 131-I treatment of micronodular pulmonary metastases from papillary thyroid carcinoma. Cancer 78(10):2184–2192

    Article  CAS  PubMed  Google Scholar 

  • Smith MC, Liu J et al (2000) OctreoTher: ongoing early clinical development of a somatostatin-receptor-targeted radionuclide antineoplastic therapy. Digestion 62(Suppl 1):69–72

    Article  CAS  PubMed  Google Scholar 

  • Stokkel MP, Verkooijen RB et al (2004a) Six month follow-up after 111In-DTPA-octreotide therapy in patients with progressive radioiodine non-responsive thyroid cancer: a pilot study. Nucl Med Commun 25(7):683–690

    Article  CAS  PubMed  Google Scholar 

  • Stokkel MP, Verkooijen RB et al (2004b) Indium-111 octreotide scintigraphy for the detection of non-functioning metastases from differentiated thyroid cancer: diagnostic and prognostic value. Eur J Nucl Med Mol Imaging 31(7):950–957

    PubMed  Google Scholar 

  • Tenenbaum F, Lumbroso J et al (1995) Radiolabeled somatostatin analog scintigraphy in differentiated thyroid carcinoma. J Nucl Med 36(5):807–810

    CAS  PubMed  Google Scholar 

  • Teunissen JJ, Krenning EP et al (2009) Effects of therapy with [177Lu-DOTA 0, Tyr 3]octreotate on endocrine function. Eur J Nucl Med Mol Imaging 36(11):1758–1766

    CAS  PubMed Central  PubMed  Google Scholar 

  • Teunissen JJ, Kwekkeboom DJ et al (2005) Peptide receptor radionuclide therapy for non-radioiodine-avid differentiated thyroid carcinoma. J Nucl Med 46(Suppl 1):107S–114S

    CAS  PubMed  Google Scholar 

  • Valkema R, De Jong M et al (2002) Phase I study of peptide receptor radionuclide therapy with [In-DTPA]octreotide: the Rotterdam experience. Semin Nucl Med 32(2):110–122

    Article  PubMed  Google Scholar 

  • Valli N, Catargi B et al (1999) Evaluation of indium-111 pentetreotide somatostatin receptor scintigraphy to detect recurrent thyroid carcinoma in patients with negative radioiodine scintigraphy. Thyroid 9(6):583–589

    Article  CAS  PubMed  Google Scholar 

  • Villard L, Romer A et al (2012) Cohort study of somatostatin-based radiopeptide therapy with [90Y-DOTA]-TOC versus [90Y-DOTA]-TOC plus [177Lu-DOTA]-TOC in neuroendocrine cancers. J Clin Oncol 30(10):1100–1106

    Google Scholar 

  • Vini L, Harmer C (2002) Management of thyroid cancer. Lancet Oncol 3(7):407–414

    Article  PubMed  Google Scholar 

  • Virgolini I, Britton K et al (2002) In- and Y-DOTA-lanreotide: results and implications of the MAURITIUS trial. Semin Nucl Med 32(2):148–155

    Article  PubMed  Google Scholar 

  • Vitale G, Caraglia M et al (2001) Current approaches and perspectives in the therapy of medullary thyroid carcinoma. Cancer 91(9):1797–1808

    Article  CAS  PubMed  Google Scholar 

  • Waldherr C, Pless M et al (2001a) The clinical value of [90Y-DOTA]-D-Phe1-Tyr3-octreotide (90Y-DOTATOC) in the treatment of neuroendocrine tumours: a clinical phase II study. Ann Oncol 12(7):941–945

    Article  CAS  PubMed  Google Scholar 

  • Waldherr C, Pless M et al (2002) Tumor response and clinical benefit in neuroendocrine tumors after 7.4 GBq (90)Y-DOTATOC. J Nucl Med 43(5):610–616

    CAS  PubMed  Google Scholar 

  • Waldherr C, Schumacher T et al (2001b) Radiopeptide transmitted internal irradiation of non-iodophil thyroid cancer and conventionally untreatable medullary thyroid cancer using. Nucl Med Commun 22(6):673–678

    Article  CAS  PubMed  Google Scholar 

  • Wild D, Schmitt JS et al (2003) DOTA-NOC, a high-affinity ligand of somatostatin receptor subtypes 2, 3 and 5 for labelling with various radiometals. Eur J Nucl Med Mol Imaging 30(10):1338–1347

    CAS  PubMed  Google Scholar 

  • Williams SD, Birch R et al (1986) Phase II evaluation of doxorubicin plus cisplatin in advanced thyroid cancer: a Southeastern Cancer Study Group Trial. Cancer Treat Rep 70(3):405–407

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Mueller-Brand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dumont, R.A., Mueller-Brand, J., Walter, M.A. (2012). Treatment of Progressive Dedifferentiated and Medullary Thyroid Cancer with Radiolabeled Somatostatin Analogs. In: Baum, R. (eds) Therapeutic Nuclear Medicine. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2012_672

Download citation

  • DOI: https://doi.org/10.1007/174_2012_672

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36718-5

  • Online ISBN: 978-3-540-36719-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics