Skip to main content

Rhenium-188 Generator-Based Radiopharmaceuticals for Therapy

  • Chapter
  • First Online:

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

Because of its on-demand availability from the 188W/188Re generator, broad interest has developed in the therapeutic use of 188Re for a wide variety of applications in nuclear medicine, oncology and interventional specialties. Rhenium-188 decays with emission of high energy β-particles (2.12 MeV, 71.1% and 1.965 MeV, 25.6%) and a gamma photon for imaging (155 keV, 15.1%). The 188W/188Re generator has an extended useful shelf-life of several months, which insures the continuous on demand radiopharmacy availability of 188Re. In addition to the ongoing development and evaluation of various 188Re-labeled agents, promising results using a variety of 188Re radiopharmaceuticals have been reported. The use of 188Re-HEDP has been evaluated in multiple trials as an effective agent for the treatment of metastatic bone pain. In addition, promising clinical data have been reported using trans arterial delivery of a variety of 188Re-labeled agents, including microspheres and Lipiodol analogues, for therapy of liver metastases and primary liver cancer. Use of 188Re-microspheres have also provided promising data for treatment of arthritis. Angioplasty balloons filled with liquids containing various 188Re-labeled agents for intravascular radiation therapy (IVRT) have been shown to effectively inhibit coronary and peripheral arterial restenosis. For this application, a variety of 188Re agents been evaluated, including perrhenate, DTPA and MAG3. These IVRT coronary studies have in particular demonstrated that event-free survival in patients is significantly longer compared to the placebo patients. Successful clinical applications have also been reported using 188Re-labeled patches for treatment of basal and squamous cell skin cancer, as an alternative to surgical removal. The expected further development, regulatory approval and commercialization of 188Re-labeled agents will add new capabilities for radionuclide therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anderson P (2006) Samarium for osteoblastic bone metastases and osteosarcoma. Expert Opin Pharmacother 7:1–7

    CAS  Google Scholar 

  • Andreef M, Wunderlich G, Behage K, Schoenmuth Th, Kotzerke J (2005) β-radiation exposure with 188Re-labelled pharmaceuticals. Nuklearmedizin 44:94–98

    Google Scholar 

  • Andrews JC, Walker SC et al (1994) Hepatic radioembolization with yttrium-90 containing glass microspheres: preliminary results and clinical follow-up. J Nucl Med 35:1637–1644

    CAS  PubMed  Google Scholar 

  • Arteaga de Murphy C, Ferro-Flores G et al (2001) Labelling of Re-ABP with 188Re for bone pain palliation. Appl Radiat Isot 54:435–442

    CAS  PubMed  Google Scholar 

  • Atkins HL, Mausner LF et al (1995) Tin-117 m(4 +)-DTPA for palliation of pain from osseous metastases: a pilot study. J Nucl Med 36:725–729

    CAS  PubMed  Google Scholar 

  • Bacher K, Thierens H, Van de Putte S, Brans B, Monsieurs M, Dierckx RA (2001) 188Re-lipiodol: prediction of the patient dose based on 131I-lipiodol bi-planar scanning and monte carlo simulation. Eur J Nucl Med 28:1196

    Google Scholar 

  • Barth I, Rimpler A, Nikula T, Schlip M, Buck O, Wengenmair H, Leissner G, Koop J, Scluk J (2009) Radiation exposue of staff during endovascular brachytherapy with Re-188 after PTA in the peripheral blood stream. Z Med Phys 19:193–199 (in German)

    PubMed  Google Scholar 

  • Bastian P, Bartkowski R et al (1998) Chemo-embolization of experimental liver metastases. Part I: distribution of biodegradable microspheres of different sizes in an animal model for the locoregional therapy. Eur J Pharm Biopharm 46:243–254

    CAS  PubMed  Google Scholar 

  • Ben-Josef E, Lucas DR et al (1995) Selective accumulation of strontium-89 in metastatic deposits in bone: radio-histological correlation. Nucl Med Commun 16:457–463

    CAS  PubMed  Google Scholar 

  • Bernal P, Raoul JL, Sereegotov E, Sundram FX, Kumar A, Jeong JM, Pusuwan P, Divgi C, Zanzonica P, Stare J, Buscombe J, Thi Minh CT, Chen S, Ogbac R, Pady AK (2007) Intra-arterial Rehnium-188 lipiodol in the treatment of inoperable hepatocellular carcinoma: results of an IAEA-sponsored multination study. Int J Radiat Oncol Biol Phys 69:1448–1455

    CAS  PubMed  Google Scholar 

  • Bernal P, Raoul JL et al (2008) International atomic energy agency-sponsored multination study of intra-arterial rhenium-188-labeled lipiodol in the treatment of inoperable hepatocellular carcinoma: results with special emphasis on prognostic value of dosimetric study. Semin Nucl Med 38:S40–S45

    PubMed  Google Scholar 

  • Biersack HJ (2010) Guest Editorial. Sem Nucl Med 40:77

    Google Scholar 

  • Bismuth H, Adam R, et al. (1996) Resection of nonresectable liver metastases from colorectal cancer after neoadjuvant chemotherapy. Ann Surg 224:509–520 (discussion 520–532)

    Google Scholar 

  • Blower PJ, Kettle AG, O’Doherty MJO, Coakley AJ, Knapp FF Jr (2000) 99mTc(V)DMSA quantitatively predicts 188Re(V)DMSA distribution in patients with prostate cancer metastatic to bone. Eur J Nucl Med 27:1405–1409

    CAS  Google Scholar 

  • Blower PJ, Lam ASK, O’Doherty MJ, Kettle AG, Coakley AJ, Knapp FF Jr (1998) Biodistribution and dosimetry of pentavlaent Rhenium-188-dimercaptosuccinic acid in patients with disseminated bone metastasis. Eur J Nucl Med 25:613–621

    CAS  PubMed  Google Scholar 

  • Bonvini R, Baumgartner I, Do DD, Alerci M, Segatto JM, Tutta P, Jaeger K (2003) Markus Aschwanden M, Schneider E, Amann-Vesti B, Greiner R, Mahler F, Gallino A, Late Acute Thrombotic Occlusion After Endovascular Brachytherapy and Stenting of Femoropopliteal Arteries. J Am Coll Cardiol 41:409–412

    PubMed  Google Scholar 

  • Boschi A, Bolzati C, Uccelli L, Duatti A (2003) High-yield synthesis of the terminal 188Re-nitrile multiple bond from generator-produced [188Re04]-. Nucl Med Biol 4:381–387

    Google Scholar 

  • Boschi A, Uccelli L, Duatti A, Colamussi P, Cittanti C, Filice A, Rose AH, Martindale AA, Lanringbold PG, Kearney D, Galeotti R, Turner JH, Giganti M (2004) A kit formulation of the preparation of Re-188-Lipiodol: preclinical studies and preliminary therapeutic evaluation in patients with unresectable hepatocellular carcinoma. Nucl Med Commun 25:691–699

    CAS  PubMed  Google Scholar 

  • Breen SL, Battista JJ (2000) Cavity theory applied to the dosimetry of systemic radiotherapy of bone metastases. Phys Med Biol 45:879–896

    CAS  PubMed  Google Scholar 

  • Buchmann I, Bunjes D, Kotzerke J, Martin H, Glatting G, Seitz U, Rattat D, Buck A, Doehner H, Reske SN (2002) Myeloablative radioimmunotherapy with Re-188-anti-CD66-antibody for conditioning of high-risk leukemia patients prior to stem cell transplantation: biodistribution, biokinetics and immediate toxicities. Can Biother Radiopharm 17:151–164

    CAS  Google Scholar 

  • Bult W, Vente MAD, Zonnenberg BA, Van Het Schip AD, Nijsen JFW (2009) Microsphere radioimbolizatiom of liver malignancies: current developments. Q J Nucl Med Imaging 53:325–335

    CAS  Google Scholar 

  • Bunjes D, Buchmann I, Duncker C, Seitz U, Kotzerke J, Wiesenth M, Dohr D, Stafnic M, Buck A, Harsdorf SV, Glatting G, Grimminger W, Karakas T, Munzert G, Dohner H, Bergmann L, Reske SN (2001) Rhenium-188-labeled anti-CD-66 (a, b, c, e) monoclonal antibody to intensify the conditioning regimen prior to stem cell transplantation for patients with high-risk acute myeloid leukemia or myelodyspalstic syndrome: results of phase I-II study. Blood 98:564–572

    Google Scholar 

  • Callahan AP, Rice DE, Knapp FF Jr (1989) Re-188 for therapeutic applications from an alumina based W-188/Re-188 radionuclide generator system. NucCompact 20:3–6

    CAS  Google Scholar 

  • Chakravarty R, Dash A, Kothari K, Pillai MRA, Venkatesh M (2009) A novel 188W/188Re electrochemical generator with potential for medical applications. Radiochim Acta 97:309–317

    CAS  Google Scholar 

  • Cheneau E, Wu Z, Leborgne L, Ajani AE, Weissman N, Pichard AD, Satler LF, Kent KM, Mintz G, Waksman R (2003) Additional stenting promotes intimal proliferation and compromises the results of intravascular radiation therapy: an intravascular ultrasound study. Am Heart J 146(1):142–145

    PubMed  Google Scholar 

  • Chinnaiyan P, Huang S et al (2003) Radiosensitization following EGFR signaling inhibition by erlotinib (Tarceva). Int J Radiat Oncol Biol Phys 57(2 Suppl):S294

    Google Scholar 

  • Cho YS, Kim MA, Hwang KK, Koo BK, Oh S, Chae IH, Kim HS, Lee DS, Oh BH, Lee MM, Park YB, Choi YS (2004) Two-year clinical follow-up results of intracoronary radiation therapy with rhenium-188-diethylenetriaminepentaacetic acid-filled balloon. Catheter Cardiovasc Interv 63:274–281

    PubMed  Google Scholar 

  • Conzone SD, Hafeli UO, Day DE, Ehrhardt GJ (1998) Preparation and properties of radioactive rhenium glass microspheres intended for in vivo radioembolization therapy. J Biomed Mater Res 42:617–625

    CAS  PubMed  Google Scholar 

  • Cunningham D, Humblet Y et al (2004) Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 351:337–345

    CAS  PubMed  Google Scholar 

  • Cyr JE, Pearson DA, Wilson DM, Nelson C, Guaraldi M, Azure MT, Lister-James J, Dinkelborg LM, Dean RT (2007) Somatostatin receptor binding peptides suitable for tumor radiotherapy with Re-188 or Re-186. chemistry and initial biologcial studies. J Med Chem 50:1354–1364

    CAS  PubMed  Google Scholar 

  • Dadachova E, Bouzahzah B, Zuckier LS, Pestell RG (2002) Rhenium-188 as an alternative to iodine-131 for treatment of breast tumors expressing the sodium/iodide symporter (NIS). Nucl Med Biol 29:13–18

    CAS  PubMed  Google Scholar 

  • Dadachova E, Howell RW, Bryan RA, Frankel BA, Nosanchuk JD, Casadevall A (2004a) Susceptibility of human pathogenic fungi Cryptococcus neoformans and Histoplasma capsulatum to γ-radiation versus radioimmunotherapy with α- and β-emitting radioisotopes. J Nucl Med 45:313–320

    CAS  PubMed  Google Scholar 

  • Dadachova E, Nosanchuk JD, Shi L, Schweitzer AD, Frenkel A, Nosanchuk JS, Casadevall A (2004b) Dead cells in melanoma tumors provide abundant antigen for targeted delivery of ionizing radiation by a mAb to melanin. Proc Nat Acad Sci 101:14865–14870

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dadachova E, Revskaya E, Sesay MA, Damania H, Boucher R, Sellers RS, Howell RC, Burns L, Thornton GB, Natarajan A, Mirick GR, Denardo SJ, Denardo GL, Casadevall A (2008) Pre-clinical evaluation and efficacy studies of a melanin-binding IgM antibody labeled with 188Re against experimental human metastatic melanoma in nude mice. Can Biol Ther 7:1116–1127

    CAS  Google Scholar 

  • Dafermo AF, Colamussi PF et al (2001) A multicentre observational study of radionuclide therapy in patients with painful bone metastases of prostate cancer. Eur J Nucl Med 7:788–798

    Google Scholar 

  • de Klerk JM, Zonnenberg BA et al (1994) Dose escalation study of rhenium-186 hydroxyethylidene diphosphonate in patients with metastatic prostate cancer. Eur J Nucl Med 21:1114–1120

    PubMed  Google Scholar 

  • De Ruyck K, Lambert B, Bacher K, Gemmel F, De Vos F, Vral A, de Ridder L, Dierckx RA, Thierens H (2004) Biologic dosimetry of 188Re-HDD/lipiodol versus 131I-lipiodol therapy in patients with hepatcellular carcinoma. J Nucl Med 45:612–618

    PubMed  Google Scholar 

  • DeBecker M, Backer K, Thierens H, Slegers G, Dierckx RA, De Vos F (2008) In vitro and in vivo evaluation of direct rhenium-188-labeled anti-CD52 monoclonal antibody alemtuzumab for radioimmunotherapy of B-cell chronic lymphocytic leukemia. Nucl Med Biol 35:599–604

    Google Scholar 

  • Debes JD, Tindall DJ (2002) The role of androgens and the androgen receptor in prostate cancer. Cancer Lett 187:1–7

    CAS  PubMed  Google Scholar 

  • Deutsch EJ, Brodack W et al (1993) Radiation synovectomy revisited. Eur J Nucl Med 20:1113–1127

    CAS  PubMed  Google Scholar 

  • Dinkelborg LM, Tepe G, Noll B, Muschik P, Duda SH (2000) 186Re-labeled stents for prophylaxis of restenosis: first animal results. J Nucl Med 41(Suppl):7P

    Google Scholar 

  • Duatti A, Martindale AA, Tuner JA, Boschi A, Giganti M, Bolzati C, Uccelli L (2002) Rhenium-188 lipidol kit formulation for therapy of hepatocellular carcinoma (HCC). World J Nucl Med 1(Suppl 2):S180

    Google Scholar 

  • Duatti A, Pasquali M, Uccelli L, Boschi A, Giganti M (2007) Radiopharmaceuticals for treatment of HCC. Quar J Nucl Med 51:380

    Google Scholar 

  • Eary JF, Collins C et al (1993) Samarium-153-EDTMP biodistribution and dosimetry estimation. J Nucl Med 34:1031–1036

    CAS  PubMed  Google Scholar 

  • Edelman M, Clamon G, Kahn D, Magram M, Lisetr-James J, Line BR (2009) Targeted radiopharmaceutical therapy for advanced lung cancer—phase I trial of rhenium-188 Re188-P2045, a somatostatin analog. J Thor Oncol 4:1550–1554

    Google Scholar 

  • Ehrhardt GJ, Ketering AR, Liang Q (1992) Improved W-188/Re-188 zirconium tungstate gel radioisotope generator chemistry. Radioact Radiochem 3:38–41

    CAS  Google Scholar 

  • Eigler N, Whiting J, Chernomorsky A, Jackson J, Knapp FF Jr, Litvack F (1998) RADIANTTM liquid isotope intravascular radiation therapy system. In: “Proceedings, second annual symposium on radiotherapy to reduce restenosis,” Sponsored by scripps clinic and research foundation, La Jolla, 16–17 Jan 1998

    Google Scholar 

  • Eigler N, Whiting J, Makkar R, Honda H, Knapp FF Jr, Litvack F, Li A (1999) The 188Re generator approach. In: Syllabus, cardiovascular radiation III conference, Washington, 17–19 Feb 1999, pp 391–397

    Google Scholar 

  • Eisenhut M, Berberich R et al (1986) Iodine-131-labeled diphosphonates for palliative treatment of bone metastases: II. Preliminary clinical results with iodine-131 BDP3. J Nucl Med 27:1255–1261

    CAS  PubMed  Google Scholar 

  • Ellis LM, Curley SA et al (2004) Radiofrequency ablation for cancer: current indications, techniques and outcomes. Springer, New York

    Google Scholar 

  • El-Mabhouh A, Mercer JR (2005) 188Re-labeled bisphosphonates as potential bifunctional agents for therapy in patients with bone metastases. Appl Radiat Isot 62:541–549

    CAS  PubMed  Google Scholar 

  • Emami B, Lyman J et al (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21:109–122

    CAS  PubMed  Google Scholar 

  • Enrique O, Zhonyun P et al (2002) Efficacy and toxicity of Sm-153 EDTMP in the palliative treatment of painful bone metastases. World J Nucl Med 1:21–27

    Google Scholar 

  • Fellinger K, Schmid J (1952) Die lokale Behandlung der rheumatischen Erkrankung. Wien Z Inn Med 33:351–363

    CAS  PubMed  Google Scholar 

  • Ferro-Flores G, Arteaga de Murphy C (2008) Pharmacokinetics and domsietry of 188Re-pharmaceuticals. Adv Drug Rev 60:1398–1401

    Google Scholar 

  • Fettich J, Padhy AK et al (2003) Comparative clinical efficacy and safety of phosphorus and strontium-89 in the palliative treatment of metastatic bone apin: results of an IAEA coordination research project. W J Nucl Med 2:226–231

    Google Scholar 

  • Fizazi K, Yang J et al (2003) Prostate cancer cells-osteoblast interaction shifts expression of growth/survival-related genes in prostate cancer and reduces expression of osteoprotegerin in osteoblasts. Clin Cancer Res 9:2587–2597

    CAS  PubMed  Google Scholar 

  • Fox RA, Henson PW (2000) The dosimetry for a coronary artery stent coated with radioactive 188Re and 32P. Phys Med Biol 45:3643–3655

    CAS  PubMed  Google Scholar 

  • Friedell HL, Storaasli JP (1950) The use of radioactive phosphorus in treatment of carcinoma of the breast with widespread metastasis in bone. Am J Radiol 64:559–575

    CAS  Google Scholar 

  • Garin E, Denizot B, Noiret N, Lepareur N, Roux JC, Moreau M, Herry JY, Bourguet P, Benoit JP, Lejeune JJ (2004a) 188Re-SSS lipioldol: radiolabeling and biodistribution following injection into the hepatic artery of rats bearing hepatoma. Nucl Med Commun 25:1007–1014

    CAS  PubMed  Google Scholar 

  • Garin E, Denizot B, Roux J, Noiret N, Lepareur N, Moreau M, Mesba H, Laurent JF, Herry JY, Bourguet P, Benoit JP, Lejeune JJ (2005) Description and technical pitfalls of a hepatoma model and of intra-arterial injection of radiolabelled lipiodol in the rat. Lab Anim 39:314–320

    CAS  PubMed  Google Scholar 

  • Garin E, Noire N, Malbert C, Lepareur N, Roucoux A, Caulet-Maugendre S, Moisan A, Lecloirec J, Henry JY, Bourgeut P (2004b) Development and biodistribution of 188Re-SSS lipiodol following injection into the hepatic artery of healthy pigs. Eur J Nucl Med 31:542–546

    CAS  Google Scholar 

  • Garin E, Rakotonirina H, Lejeune F, Denizot B, Roux J, Noiret N, Mesbah H, Herry JY, Bourguet P, Lejeune JJ (2006) Effect of 188Re-SSS lipiodol/131I-lipiodol mixture, 188Re-SSS lipiodol alone or 131I-lipiodol alone on the survival of rats with hepatocellular carcinoma. Nucl Med Commun 27:363–370

    CAS  PubMed  Google Scholar 

  • Gilber JM, Jeffrey I et al (1984) Sites of recurrent tumour after ‘curative’ colorectal surgery: implications for adjuvant therapy. Br J Surg 71:203–205

    Google Scholar 

  • Gilligan T, Kantoff PW (2002) Chemotherapy for prostate cancer. Urology 60(Suppl 1):94–100; discussion 100

    Google Scholar 

  • Goin J, Dancey JE et al (2003) Treatment of unresectable metastatic colorectal carcinoma to the liver with intrahepatic Y-90 microspheres: dose-ranging study. World J Nucl Med 2:216–225

    Google Scholar 

  • Graham C, Bond SS et al (1980) Use of the McGill pain questionnaire in the assessment of cancer pain: replicability and consistency. Pain 8:377–387

    CAS  PubMed  Google Scholar 

  • Grise MA, Massullo V, Jani S, Popma JJ, Russo RJ, Schatz RA, Guarneri EM, Steuterman S, Cloutier DA, Leon MB, Tripuraneni P, Teirstein PS (2002) Five-year clinical follow-up after intracoronary radiation. Circulation 105:2737–2740

    PubMed  Google Scholar 

  • Guhlke S, Schaffland A, Zamora PO, Sartor J, Diekmann D, Bender H, Knapp FF Jr, Biersack HJ (1998) Rhenium-188 and Technetium-99 m labeling of peptides via Mercaptoacetyltriglycyl (MAG3) conjugates and applications for labeling the RC-160 somatostatin analogue. Nucl Med Biol 25:621–632

    CAS  PubMed  Google Scholar 

  • Hafeli U, Pauer G, Failing S, Tapolsky G (2001a) “Radiolabeling of magnetic particles with Rhenium-188 for cancer therapy”. J. Magnetism Magnetic Mat 225:73–78

    CAS  Google Scholar 

  • Hafeli UO, Casillas S, Dietz DW, Pauer GJ, Rybicki LA, Conzone SD, Day DE (1999) Hepatic tumor radioembolization in a rat model using radioactive Rhenium (186Re/188Re) glass microspheres. Int J Radiat Oncol Biol Phys 44:189–199

    CAS  PubMed  Google Scholar 

  • Hafeli UO, Roberts WK et al (2001b) Stability of biodegradable radioactive rhenium (Re-186 and Re-188) microspheres after neutron-activation. Appl Radiat Isot 54:869–879

    CAS  PubMed  Google Scholar 

  • Hambye AS, Dobbelier A, Vervaet AM, Knapp FF Jr (2002) Image quality with Rhenium-188 and Technetium-99 m: comparative planar and SPECT evaluation in a phantom study and implications for dosimetry. World J Nucl Med 1:12–20

    Google Scholar 

  • Hang CL, Fu M, Hsieh BT, Leung SW, Wu CJ, Ting G (2003a) Intracoronary beta-irradiation with liquid Rhenium-188 to prevent restenosis following pure balloon angioplasty: results from the TRIPPER-1 study. Chang Gung Med J 26:98–106

    Google Scholar 

  • Hang CL, Fu M, Hsieh BT, Leung SW, Wu CJ, Yip HK, Ting G (2003b) Intracoronary beta-irradiation with liquid Rhenium-188: results of the Taiwan radiation in prevention of post-pure balloon angiolplasty restnosis study. Chest 124:1284–1293

    Google Scholar 

  • Harari PM, Huang SM (2002) Epidermal growth factor receptor modulation of radiation response: preclinical and clinical development. Semin Radiat Oncol 12(Suppl 2):21–26

    PubMed  Google Scholar 

  • Hausleiter J, Li A, Makkar R, Berman D, Robinson A, Litvack F, Eigler N, Whiting J (2001) Leakage of a liquid 188Re-filled balloon system during intracorornary brachytherapy. A case report. Cardiovasc Radiat Med 2:7–10

    PubMed  Google Scholar 

  • Henning E, Dittmann H, Wiskirchen J, Bantleon R, Kehlbach R, Claussen CD, Duda SH (2004) Dose dependent effects of the combined beta-gamma-emitter 188Rhenium on the growth of human vessel wall cells fortschr roentgenstr 176:404–408

    Google Scholar 

  • Hind RE, Loizidou M et al (1992) Biodistribution of lipiodol following hepatic arterial injection. Br J Surg 79:952–954

    CAS  PubMed  Google Scholar 

  • Ho S, Lau WY et al (1997) Clinical evaluation of the partition model for estimating radiation doses from yttrium-90 microspheres in the treatment of hepatic cancer. Eur J Nucl Med 24:293–298

    CAS  PubMed  Google Scholar 

  • Hosono MN, Hosono m et al (1998) Localization of colorectal carcinoma by rhenium-188-labeled B72.3 antibody in xenografted mice. Ann Nucl Med 12:83–88

    CAS  PubMed  Google Scholar 

  • Hsieh BT, Hsieh JF, Tsai SC, Lin WY, Huang HT, Ting G, Wang SJ (1999) Rhenium-188-labeled DTPA: a new radiopharmaceutical for intravascular radiation therapy. Nucl Med Biol 26:967–972

    CAS  PubMed  Google Scholar 

  • International commission on radiological protection (1995) Basis anatomical and physiological data for use in radiobiological protection. Part 1. Skeleton. IRCP Publication 70. Ann IRCP 25:1–80

    Google Scholar 

  • Jaeckel B, Cripps R, Guentay S, Bruchertseifer H (2005) Development of semi-automated system for preparation of 188Re aqueous solutions of high and reproducible activity concentrations. Appl Radiat Isot 63:299–304

    CAS  Google Scholar 

  • Jeong JM, Chung JK (2003) Therapy with 188Re-labeled radiopharmaceuticals: an overview of promising results from initial clinical trials. Can Biother Radiopharm 18:707–717

    CAS  Google Scholar 

  • Jeong JM, Kim YJ, lee YS, Lee DS, Chung JK, Cho JH, Suh YG, Lee MC (2001a) Introduction of long alkyl group helps uptake and retention of lipiodol solution of 188Re-N2S2 derivatives in the tissues. J Lab Cmpds Radiopharm 44(Suppl. 1):S532–S533

    Google Scholar 

  • Jeong JM, Kim YK, Lee YS, Ko JI, Son M, Lee DS, Chung JK, Park JH, Lee MC (2001b) Lipiodol solution of a lipophilic agent, 188Re-TDD, for the treatment of liver cancer. Nucl Med Biol 28:197–204

    CAS  PubMed  Google Scholar 

  • Jeong JM, Knapp FF Jr (2008) Use of the oak ridge national laboratory Tungsten-188/Rhenium-188 generator for preparation of the Rhenium-188 HDD/lipiodol complex for trans-arterial liver cancer therapy. Semin Nucl Med 38:S19–S29

    PubMed  Google Scholar 

  • Jeong JM, Lee YJ, Kim EH, Chang YS, Kim YJ, Son M, Lee DS, Chung JK, Lee MC (2003) Preparation of 188Re-labeled paper for treating skin cancer. Appl Radiat Isot 58:551–555

    CAS  PubMed  Google Scholar 

  • Junfeng Y, Duanzhi Y et al (1999) [188Re]Rhenium sulfide suspension: a potential radiopharmaceutical for tumor treatment following intra-tumor injection. Nucl Med Biol 26:573–579

    CAS  PubMed  Google Scholar 

  • Juweid M, Sharkey RM et al (1998) Pharmacokinetics, dosimetry and toxicity of rhenium-188-labeled anti-carcinoembryonic antigen monoclonal antibody, MN-14, in gastrointestinal cancer. J Nucl Med 39:34–42

    CAS  PubMed  Google Scholar 

  • Kakonen SM, Selander KS et al (2002) Transforming growth factor-beta stimulates parathyroid hormone-related protein and osteolytic metastases via Smad and mitogen-activated protein kinase signaling pathways. J Biol Chem 277:24571–24578

    CAS  PubMed  Google Scholar 

  • Kamioki H, Mirzadeh S, Lambrecht RM, Knapp FF Jr, Dadachova E (1994) Tungsten-188/Rhenium-188 generator for biomedical applications. Radiochim Acta 65:39–46

    CAS  Google Scholar 

  • Kennedy AS, Coldwell D et al (2006) Resin 90Y-microsphere brachytherapy for unresectable colorectal liver metastases: modern USA experience. Int J Radiat Oncol Biol Phys 65:412–425

    CAS  PubMed  Google Scholar 

  • Kim JH, Shin JH, Song H-Y, Shim TS, Oh Y-M, Oh SJ, Moon DH (2008) Liquid 188Re-filled balloon dilation for the treatment of refractory benign airway strictures: preliminary experience. J Vasc Radiol 19:406–411

    CAS  Google Scholar 

  • Klein M, Shibli N, Friedman N, Thornton GB, Lotem CR (2008) Imaging of metastatic melanoma (MM) with a 188Re-labeled melanin binding antibody. J Nucl Med 49:52P

    Google Scholar 

  • Knapp FF, Mirzadeh S (1994) The continuing important role of radionuclide generator systems for nuclear medicine. J Nucl Med 21:1151–1165

    Google Scholar 

  • Knapp FF Jr (1998) Rhenium-188—a generator-derived radioisotope for cancer therapy. Can Biother Radiopharm 13:337–349

    CAS  Google Scholar 

  • Knapp FF Jr, Beets AL, Mirzadeh S, Guhlke S (1998a) Use of a new tandem cation/anion exchange system with clinical-scale generators provides high specific volume solutions of Technetium-99 m and Rhenium-188. In: Proceedings, international trends in radiopharmaceuticals for diagnosis and therapy, Lisbon, Portugal, Mar 30-Apr 3 1998

    Google Scholar 

  • Knapp FF Jr, Beets AL, Guhlke S, Biersack H-J, Giedd KN, Marboe C, Amols H, Weinberger J (1998b) Rhenium-188 liquid-filled balloons effectively inhibit restenosis in a swine coronary overstretch model—a simple new method bridging nuclear medicine and interventional cardiology. J Nucl Med 39:48P

    Google Scholar 

  • Knapp FF Jr, Beets AL, Guhlke S, Zamora PO, Bender H, Palmedo H, Biersack HJ (1997a) Development of the alumina-based Tungsten-188/Rhenium-188 generator and use of Rhenium-188-labeled radiopharmaceuticals for cancer treatment. Antican Res 17:1783–1796

    CAS  Google Scholar 

  • Knapp FF Jr, Guhlke S, Beets AL, Amols H, Weinberger J (1997b) Rhenium-188—attractive properties for introvascular brachytherapy for inhibition of coronary restenosis after PTCA. J Nucl Cardiol 4:S-118

    Google Scholar 

  • Knapp FF Jr, Guhlke S, Beets AL, Amols H, Weinberger J (1997c) Intraarterial irradiation with Rhenium-188 for inhibition of restenosis after PTCA—strategy and evaluation of species for rapid urinary excretion. J Nucl Med 38:124P

    Google Scholar 

  • Knapp FF Jr, Guhlke S, Beets AL, Lin WY, Stabin M, Amols H, Weinberger J (1999a) Endovascular beta irradiation for prevention of restenosis using solution radioisotopes: pharmacologic and dosimetric properties of Rhenium-188 compounds. Cardiovasc Rad Med 1:86–97

    Google Scholar 

  • Knapp FF Jr, Spencer R, Kropp J (2001) Intravascular radiation therapy with radioactive liquid-filled balloons for inhibition of restenosis after angioplasty—a new opportunity for nuclear medicine. J Nucl Med 42:1384–1387

    CAS  PubMed  Google Scholar 

  • Knapp FF Jr, Spencer RH, Stabin M (1999b) Use of Rhenium-188 liquid-filled balloons for inhibition of corornary restenosis after PTCA—a new opportunity for nuclear medicine. “In: radionuclides for myocardium—current status and future aspects, Mediterra-Publishers, Athens, Greece, pp 61–72 (ISBN 960-85227-9-X)

    Google Scholar 

  • Knapp FF Jr, Turner JH, Padhy AK (2004) Issues associated with the use of the Tungsten-188/Rhenium-188 generator and concentrator system and preparation of Re-188 HDD: a report. World J Nucl Med 3:137–143

    Google Scholar 

  • Koo BK, Lee MM, Oh S, Park YB, Choi YS, Lee DS (2004) Effects of β-radiation with a 188Re-filled balloon catheter system on non-stented adjacent coronary artery segment. Int J Cardiol 96:73–77 (The “SPARE” Trial)

    Google Scholar 

  • Kotzerke J, Gabelmann J, Hanke H (2002) “Recurrent renal artery stenosis—endovascular brachytherapy with a Rhenium-188 filled balloon catheter”, Rofo Fortschr. Geg Rontgentr Neuen Bildgeb Verfahr 174:1176–1178

    CAS  Google Scholar 

  • Kotzerke J, Hanke H, Hoeher M (2000) Endovascular brachytherapy for the prevention of restenosis after angioplasty. Eur J Nucl Med 27:223–236

    CAS  PubMed  Google Scholar 

  • Kresnik E, Mikosch P et al (2002) Clinical outcome of radiosynoviorthesis: a meta-analysis including 2190 treated joints. Nucl Med Commun 23:683–688

    CAS  PubMed  Google Scholar 

  • Kropp J, Pinkert J, Wunderlich G, Knapp FF Jr (2003) Radiochemistry, evaluation and first clinical results in the treatment of oncologic diseases with Rhenium-188-labeled microspheres. In: Proceedings, the 11th mediterranean symposium on nuclear medicine and radiopharmaceuticals, Athens, Greece, 28–30 May, Mediterrea Pub., Athens (ISBN 960-86437-2-4); pp 157–166

    Google Scholar 

  • Krötz F, Schiele TM, Zahler S, König A, Rieber J, Kantlehner R, Pöllinger B, Dühmke E, Theisen K, Sohn HY, Klauss V (2002) Sustained platelet activation following intracoronary beta irradiation. Am J Cardiol 90:1381–1384

    Google Scholar 

  • Kumar A, Bal C, Srivastava DN, Thulkar SP, Sharma S, Acharya SK, Duttagupta S (2006a) Management of multiple intrahepatic recurrences after radiofrequency ablation of hepatocellular carcinoma with Rhenium-188-HDD-lipiodol. Eur J Gastroenterol Hepatol 18:219–223

    CAS  PubMed  Google Scholar 

  • Kumar A, Bal CS, Srivastava DN, Acharya SK, Thulkar SP, Sharma S, Duttagupta S (2005) Transarterial radionuclide therapy with Re-188-HDD-lipiodol in case of unrespectable hepatocellular carcinoma with extensive portal vein thrombosis. Eur J Radiol 1–8

    Google Scholar 

  • Kumar A, Srivastava DN, Bal C (2006b) Management of postsurgical recurrence of hepatocellular carcinoma with Rhenium-188-HDD labeled iodized oil. J Vasc Interv Radiol 17:157–161

    PubMed  Google Scholar 

  • Kumar A, Srivastava DN, Chau TT, Long HD, Bal C, Chandra P, le Chien T, Hoa NV, Thulkar S, Sharma S, le Tam H, Xuan TQ, Canh NX, Pant GS, Bandopadhyaya GP (2007) Inoperable hepatocellular carcinoma: transarterial 188Re HDD-Iodized oil for treatment—prospective multicentre clinical trial. Radiolo 243:509–519

    Google Scholar 

  • Kutzner J, Grimm W et al (1982) Yttrium-90-therapy of bone metastases. Dtsch Med Wochenschr 107:1360–1361

    CAS  PubMed  Google Scholar 

  • Lam MGH, Bosma TB, van Rijk PP, Zoonenberg BA (2009a) 188Re-HEDP combined with capecitabine in hormone-refractory prostate cancer patients with bone metastases: a phase i safety and toxicity study. Eur J Nucl Med Mol Imag 36:1425–1433

    CAS  Google Scholar 

  • Lam AS, De Klerk JM et al (2009b) Treatment of painful bone metastases in hormon-refractory prostate cancer with zoledrinic acid and samarium-153-ethylenediaminetetramethylphosphonic acid combined. J Pall Med 12:649–651

    Google Scholar 

  • Lambert B (2005a) Advantage of 188Re-radiopharmaceuticals in heptacellular cancer and liver metastases, reply to letter to the editor. J Nucl Med 46:1408

    Google Scholar 

  • Lambert B, Bacher K, Defreyne L, Van Vlierberghe H, Jeong JM, Wang RF, van Meerbeeck J, Smeets P, Troisi R, Thierens H, De Vos F, Van de Wiele C (2006a) 188Re-HDD/lipiodol therapy for hepatocellular carcinoma: an activity escalation study. Eur J Nucl Med 33:344–352

    CAS  Google Scholar 

  • Lambert B, Bacher K, Defryne L, Gemmel F, Van Vlierberghe H, Jeong JM, Dierckx RA, Van de Wiele C, Thierens H, De Vos F (2005b) 188Re-HDD/lipiodol therapy for hepatocellular carcinoma: a phase I clinical trial. J Nucl Med 46:60–66

    CAS  PubMed  Google Scholar 

  • Lambert B, Backer K, Defreyne L (2009) Rhenium-188 based radiopharmaceuticals for treatment of liver tumors. Q J Nucl Med Imaging 53:305–310

    CAS  Google Scholar 

  • Lambert B, de Klerk JMH (2006) Clinical applications of 188Re-labelled radiopharmaceuticals for radionuclide therapy. Nucl Med Commun 27:223–230

    CAS  PubMed  Google Scholar 

  • Lambert B, Ridder LD, Vos FD, Slegers G, de Gelder V, de Wiele CV, Thierens H (2006b) Assessment of supra-additive effects of cytotoxic drugs and low dose rate irradiation in an in vitro model of hepatocellular carcinoma. Can J Physiol Pharmacol 84:1021–1028

    CAS  PubMed  Google Scholar 

  • Lambert B, Van De Wiele C (2009) Selective internal radiation therapy of HCC and liver metastases: a locoregional or worldwide therapy? Q J Nucl Med 53:302–304

    CAS  Google Scholar 

  • Lambert B, Bacher K, et al. (2003) 188Re-lipiodol for locoregioneal treatment of hepatocellular carcinoma: a phase I study. Eur J Nucl Med 30(Suppl 2):S 219

    Google Scholar 

  • Lau WY, Ho S et al (1998) Selective internal radiation therapy for nonresectable hepatocellular carcinoma with intraarterial infusion of 90yttrium microspheres. Int J Radiat Oncol Biol Phys 40:583–592

    CAS  PubMed  Google Scholar 

  • Lau WY, Leung TW et al (1999) Adjuvant intra-arterial iodine-131-labelled lipiodol for resectable hepatocellular carcinoma: a prospective randomised trial. Lancet 353:797–801

    CAS  PubMed  Google Scholar 

  • Lee YL, Chung JK, Shin JH, Kang JH, Jeong JM, Lee DS, Lee MC (2004) In vitro and in vivo properties of human anaplastic thyroid carcinoma cell line transfected with the sodium iodide symporter gene. Thyroid 14:889–895

    PubMed  Google Scholar 

  • Lee EB, Shin KC, Lee YJ, Cheon GJ, Jeong JM, Son MW, Song YW (2003) 188Re-tin-colloid as a new therapeutic agent for rheumatoid arthritis. Nucl Med Commun 24:689–696

    CAS  PubMed  Google Scholar 

  • Lee JL, Lee DS, Kim KM, Yeo JS, Cheon GJ, Kim SK, Ahn JY, Jeong JM, Chung JK, Lee MC (2000) Dosimetry of Rhenium-188 diethylenetriamminepentaaceric acid for endovascular intra-balloon brachytherapy after corornayr angioplasty. Eur J Nucl Med 27:76–82

    CAS  PubMed  Google Scholar 

  • Lee SW, Park SW, Hong MK, Kim YH, Han KH, Kim J, Park JH, Oh SJ, Moon DH, Oh SJ, Lee CW, Kim JJ, Park SJ (2006) Incidence and predictors of late recurrence after beta-irradiation therapy with Re-188-MAG3-filled balloom for diffuse in-stent restenosis. Am Heart J 151:158–163

    PubMed  Google Scholar 

  • Lee SW, Park SW, Hong MK, Kim YH, Han KH, Moon DH, Oh SJ, Lee CW, Kim JJ, Park SJ (2005a) Comparison of angiographic and clinical outcomes between rotational atherectomy and cutting balloon angioplasty followed by radiation therapy with a Rhenium-188-mercaptoacetyltriglycine-filled balloon in the treatment of diffuse in-stent restenosis. Am Heart J 150:577–582

    PubMed  Google Scholar 

  • Lee SW, Park SW, Hong MK, Lee JH, Kim YH, Moon DH, Oh SJ, Lee CW, Kim JJ, Park SJ (2005b) Comparison of angiographic and clinical outcomes between rotational atherectomy versus balloon angioplasty followed by radiation therapy with a Rhenium-188-mercaptoacetyltriglycine-filled balloon in the treatment of diffuse in-stent restenosis. Int J Cardiol 102:179–185

    PubMed  Google Scholar 

  • Lee SW, Park SW, Park DW, Lee SW, Kim SH, Jang JS, Jeong YH, Kim YH, Lee SC, Hong MK, Yun SC, Kim JJ, Park SJ (2007) Comparison of six-month angiographic and three-year outcomes after stirolimus-eluting stent implantation versus brachytherapy for bare metal in-stent restenosis. Am J Cardiol 100:425–430

    CAS  PubMed  Google Scholar 

  • Lee YS, Jeong JM, Kim YJ, Chung JW, Park JH, Suh YG, Lee DS, Chung JK, Lee MC (2002) Synthesis of 188Re-labeled long chain alkyl diaminedithiol for therapy of liver cancer. Nucl Med Commun 23:237–242

    CAS  PubMed  Google Scholar 

  • Leung TW, Lau WY et al (1995) Radiation pneumonitis after selective internal radiation treatment with intraarterial yttrium-90 microspheres for inoperable hepatic tumors. Int J Radiat Oncol Biol Phys 33:919–924

    CAS  PubMed  Google Scholar 

  • Lewington VJ (1993) Targeted radionuclide therapy for bone metastases. Eur J Nucl Med 20:66–74

    CAS  PubMed  Google Scholar 

  • Lewington VJ, McEwan AJ et al (1991) A prospective, randomised double-blind crossover study to examine the efficacy of strontium-89 in pain palliation in patients with advanced prostate cancer metastatic to bone. Eur J Cancer 27:954–958

    CAS  PubMed  Google Scholar 

  • Li P, Yu J, Cen G, Jiang X, Tand Z, Chen S, Jiang L, Tang L, Yin D (2006) Applied radioactivity in radiation synovectomy with 188Re-rhenium sulfide suspension. Nucl Med Commun 27:603–609

    CAS  PubMed  Google Scholar 

  • Li S, Liu J, Zhang H, Tian, Wang J, Zheng X (2001) Rhenium-188 HEDP to treat painful bone metastases. J Clin Nucl Med 26:919–922

    CAS  Google Scholar 

  • Li P, Chen G et al (2004) Radiation synovectomy by 188Re-Sulfide in haemophilic synovitis. Haemophilia 10:422–427

    CAS  PubMed  Google Scholar 

  • Liepe K (2010) Alpharadin, a 223Ra-based α-particle-emitting pharmaceutical for the treatment of bone metastases in patients with cancer. Curr Opin Investigat Drugs 10:346–358

    Google Scholar 

  • Liepe K, Brogsitter C, Leonhard J, Wunderlich G, Hliscs R, Pinkert J, Folprecht G, Kotzerke J (2007a) Feasibility of high activity Rhenium-188-microsphere in hepatic radioembolization. Jpn J Clin Oncol 37:942–950

    PubMed  Google Scholar 

  • Liepe K, Kotzerke J (2005) “Advantage of 188Re-radipharmaceuticals in heptacellular cancer and liver metastases”, letter to the editor. J Nucl Med 46:1407–1408

    PubMed  Google Scholar 

  • Liepe K, Kropp J, Hliscs R, Runge R, Knapp FF Jr, Franke WG (2003a) Radiation dosimetry of Rhenium-188-HEDP in human prostate cancer skeletal metastases. J Nucl Med 44:953–960

    CAS  PubMed  Google Scholar 

  • Liepe K, Kropp J, Runge R, Kotzerke J (2003b) Therapeutic efficacy of Rhenium-188-HEDP in human prostate cancer skeletal metastases. Brit J Can 89:625–629

    CAS  Google Scholar 

  • Liepe K, Runge R, Kotzerke J (2005a) The benefit of bone-seeking radiopharmaceuticals in the treatment of metastatic bone pain. J Can Res Clin Oncol 131:60–66

    CAS  Google Scholar 

  • Liepe K, Kotzerke J (2007) A comparative study of 188Re-HEDP, 186Re-HEDP, 153Sm-EDTMP and 89Sr in the treatment of painful skeletal metastases. Nucl Med Commun 28:623–630

    CAS  PubMed  Google Scholar 

  • Liepe K, Faulhaber D, et al. (2010) Radiation pneumopathy (rat) following intravenous application of 188Re-labeled microspheres, work in progress

    Google Scholar 

  • Liepe K, Geidel HH et al (2009) Autoradiographic studies of rhenium-188-hydroxyethylidine diphosphonate in normal skeleton and osteoblastic bone metastases in a rat model of metastatic prostate cancer. Nucl Med Commun 30:693–699

    CAS  PubMed  Google Scholar 

  • Liepe K, Zaknun JJ, et al. (2007) Radiosynovectomy using yttrium-90, phosphorus-32 and rhenium-188 colloids in rheumatoid arthritis. Eur J Nucl Med 34(Suppl.):476

    Google Scholar 

  • Liepe K, Zaknun JJ, et al. (2010b) Radiosynovectomy using yttrium-90, phosphorus-32 or rhenium-188 radiocolloids vs. corticoid instillation for rheumatoid arthritis of the knee, work in progress

    Google Scholar 

  • Liepe K, Kotzerke J et al (2005c) Advantage of 188Re-radiopharmaceuticals in hepatocellular cancer and liver metastases. J Nucl Med 46:1407–1408

    PubMed  Google Scholar 

  • Liermann D, Bottcher HD, Kollath J, Schopohl B, Strasmann G, Strecker EP, Breddin KH (1994) Prophylactic endovascular radiotherapy to prevent intimal hyperplasia after stent implantation in femoropopliteal arteries. Cardiovasc Intervent Radiol 17:12–16

    CAS  PubMed  Google Scholar 

  • Lin CP, Lin WY, Hsieh BT, Ting G, Wang SJ, Yen TC, Knapp FF Jr, Yeh SJ (1999a) Effect of reaction conditions on preparation of Rhenium-188 hydroxyethylidene diphosphonate complexes. Nucl Med Biol 26:455–459

    CAS  PubMed  Google Scholar 

  • Lin WY, Hsieh JF, Tsai SC, Yen TC, Wang SJ, Knapp FF Jr (2000a) A comprehensive study of thyroid and gastric uptake of 188Re-perrhenate in endovascular irradiation using liquid-filled balloons to prevent restenosis. Nucl Med Biol 27:83–87

    CAS  PubMed  Google Scholar 

  • Lin WY, Lin CP, Hsieh BT, Tsai ZT, Yen TC, Wang SJ, Ting G, Yeh SJ, Knapp FF Jr (1997) Rhenium-188 HEDP: a new potential, generator-produced radiotherapeutic drug for bone metastases. Eur J Nucl Med 24:590–595

    CAS  PubMed  Google Scholar 

  • Lin WY, Tsai SC, Hsieh BT, Lee TW, Ting G, Wang SJ (2000a) Evaluation of three Rhenium-188 candidates for intravascular radiation therapy with liquid-filled balloons to prevent restenosis. J Nucl Cardiol 37–42

    Google Scholar 

  • Lisic EC, Phillips M et al (2001) Synthesis of a new bisphosphonate acid ligand (SEDP) and preparation of a 188Re-(SN)SEDP bone seeking radiotracer. Nucl Med Biol 28:419–424

    CAS  PubMed  Google Scholar 

  • Llovet JM, Real MI et al (2002) Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomised controlled trial. Lancet 359:1734–1739

    PubMed  Google Scholar 

  • Luo TY, Hsieh BT, Wang SJ, Lin WY, Lee TW, Shen LH, Su MJ (2004a) Preparation and biodistribution of Rhenium-188 ECD/lipiodol in rats following hepatic arterial injection. Nucl Med Biol 31:671–677

    CAS  PubMed  Google Scholar 

  • Luo TY, Lo AR, Hseih BT, Lin WJ (2006) A design for automated preparation of highly concentrated 188Re-perrhenate solution. Appl Radiat Isot 65:21–25

    PubMed  Google Scholar 

  • Luo TY, Tang IC, Wu YL, Hsu KL, Liu SW, Kung HC, Lai PS, Lin WJ (2009) Evaluating the potential of 188Re-SOCTA-trastuzumab as a new radioimmunoagent for breast cancer treatment. Nucl Med Biol 36:81–88

    CAS  PubMed  Google Scholar 

  • Magram MY, Edelman MJ, Forero A, Meredith RF, Shen S, Stubbs JB, Rudoltz MS, Schlief R, Line BR (2003) A novel Rhenium-188 labeled somatostatin receptor (SSTR) targeting peptide, P2045, as potential targeting therapy for lung cancer. J Nucl Med 44:137P

    Google Scholar 

  • Mah K, Van Dyk J et al (1987) Acute radiation-induced pulmonary damage: a clinical study on the response to fractionated radiation therapy. Int J Radiat Oncol Biol Phys 13:179–188

    CAS  PubMed  Google Scholar 

  • Makker R, Whiting J, Li A, Hidehiko H, Fishbein MC, Knapp FF Jr, Litvack F, Eigler NL (2001) Effects of β–emitting liquid isotope (Rhenium-188) filled balloon in stented porcine coronaries: an angiographic, intravascular ultrasound and histomorphometric follow-up study. Circ 102:117–123

    Google Scholar 

  • Maxon HR, Schroder LE et al (1990) Re-186(Sn) HEDP for treatment of painful osseous metastases: initial clinical experience in 20 patients with hormone-resistant prostate cancer. Radiology 176:155–159

    PubMed  Google Scholar 

  • Maxon HR, Schroder LE et al (1991) Rhenium-186(Sn)HEDP for treatment of painful osseous metastases: results of a double-blind crossover comparison with placebo. J Nucl Med 32:1877–1881

    PubMed  Google Scholar 

  • Maxon HR, Schroder LE et al (1998) Rhenium-188(Sn) HEDP for treatment of osseous metastases. J Nucl Med 39:659–663

    CAS  PubMed  Google Scholar 

  • Maxon HR, Deutsch EA et al (1988) Re-186(Sn) HEDP for treatment of multiple metastatic foci in bone: human biodistribution and dosimetric studies. Radiology 166:501–507

    CAS  PubMed  Google Scholar 

  • McEwan AJ (1998) Palliative therapy with bone seeking radiopharmaceuticals. Cancer Biother Radiopharm 13:413–426

    CAS  PubMed  Google Scholar 

  • Meier DA, Brill DR et al (2002) Procedure guideline for therapy of thyroid disease with 131iodine. J Nucl Med 43:856–861

    CAS  PubMed  Google Scholar 

  • Melendez-Alafort L, Nadali A, Zangoni E, Banzato A, Rondina M, Rosato A, Mazzi U (2009) Biokinetic and dosimetric studies of 188-Re-hyaluronic acid: a new radiopharmaceutical for treatment of hepatocelluar carcinoma. Nucl Med Biol 36:693–701

    CAS  PubMed  Google Scholar 

  • Miao Y, Owen N, Whitener D, Gallazzi F, Hoffman T, Quinn T (2002a) In vivo evaluation of 188Re-labeled alpha-melanocycte stimulating hormone peptide analogs for melanoma therapy. Int J Can 10:48–487

    Google Scholar 

  • Miao Y, Owen NK, Fischer DR, Hoffman TJ, Quinn TP (2005) Therapeutic efficacy of a 188Re-labeled α-melanocyte-stimulating hormone peptide analog in murine and human melanoma-bearing mouse models. J Nucl Med 46:121–129

    CAS  PubMed  Google Scholar 

  • Miao Y, Owen NK, Wittener D, Gallazzi F, Hoffman TJ, Quinn TP (2002b) In vivo evaluation of 188Re-labeled alpha-melanocyte stimulating hormone peptide analogs for melanoma therapy. Int J Can 101:480–487

    CAS  Google Scholar 

  • Miao Y, Whitener D, Fang W, Owen NK, Chen J, Quinn TP (2003) Evaluation of the human melanoma targeting properties of radiolabeled α-melanocyte stimulating hormone peptide analogues. Bioconj Chem 14:1177–1184

    CAS  Google Scholar 

  • Mirzadeh S, Knapp FFJR (1996) Biomedical radionuclide generators systems. J Radioanalyt Nucl Chem 203:469–486

    Google Scholar 

  • Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2:584–593

    CAS  PubMed  Google Scholar 

  • Murray A, Simms MS, Schofield DP, Vincent RM, Denton G, Bishop MC, Prince MR, Pekins AC (2001) Production and characterization of 188Re-C595 antibody for radioimmunotherapy of transitional cell bladder cancer. J Nucl Med 42:726–732

    CAS  PubMed  Google Scholar 

  • Nair N (1999) Relative efficacy of 32P and 89Sr in palliation in skeletal metastases. J Nucl Med 40:256–261

    CAS  PubMed  Google Scholar 

  • Nakajo M, Kobayashi H et al (1988) Biodistribution and in vivo kinetics of iodine-131 lipiodol infused via the hepatic artery of patients with hepatic cancer. J Nucl Med 29:1066–1077

    CAS  PubMed  Google Scholar 

  • Nakamura H, Hashimoto T et al (1988) Iodized oil in the portal vein after arterial embolization. Radiology 167:415–417

    CAS  PubMed  Google Scholar 

  • Nakamura T, Hanada K et al (1995) Stimulation of endosteal bone formation by systemic injections of recombinant basic fibroblast growth factor in rats. Endocrinology 136:1276–1284

    CAS  PubMed  Google Scholar 

  • Nilsson S, Franzén L et al (2007) Bone-targeted radium-223 in symptomatic, hormone-refractory prostate cancer: a randomised, multicentre, placebo-controlled phase II study. Lancet Oncol 8:587–594

    CAS  PubMed  Google Scholar 

  • Nilsson S, Larsen RH et al (2005) First clinical experience with alpha-emitting radium-223 in the treatment of skeletal metastases. Clin Cancer Res 15:4451–4459

    Google Scholar 

  • Oh SJ, Moon DH, Ha HJ, Park AW, Hong MK, Park SJ, Choi TH, Lim SM, Choi CW, Knapp FF Jr, Lee HK (2001) Synthesis of highly concentrated 188Re-MAG3 and automation for intracoronary radiation therapy. Appl Rad Isot 54:419–427

    CAS  Google Scholar 

  • Oh SJ, Moon DH, Lee WW, Park SW, Hong KK, Park SJ, Shin DI, Lee HK (2003) Automated preparation of 188Re-labeled radiopharmaceuticals for endovascular radiation therapy. Appl Radiat Isot 59:225–230

    CAS  PubMed  Google Scholar 

  • Okuda K, Ohtsuki T et al (1985) Natural history of hepatocellular carcinoma and prognosis in relation to treatment. Study of 850 patients. Cancer 56:918–928

    CAS  PubMed  Google Scholar 

  • Ong SY (2003) Neoadjuvant chemotherapy in the management of colorectal metastases: a review of the literature. Ann Acad Med Singapore 32:205–211

    CAS  PubMed  Google Scholar 

  • O’Sullivan JM, Norman AR et al (2006) A phase 2 study of high-activity 186Re-HEDP with autologous peripheral blood stem cell transplant in progressive hormone-refractory prostate cancer metastatic to bone. Eur J Nucl Med Mol Imaging 33:1055–1061

    PubMed  Google Scholar 

  • Padhy AJ, Bernal P, Buscombe RJ, Chau T, Chen SL, Divgi C, Jeong JM, Knapp FF Jr, Kumar A, Ogbac R, Pusuwan P, Raoul JL, Saw MM, Sereegotov E, Stare J, Sundram FX, Turner JH, Vidmar G, Zanzonica P (2007) Rhenium-188 lipiodol therapy of hepatocellular carcinoma: results of a multicentre-multinational study. World J Nucl Med 6:S-55–57

    Google Scholar 

  • Padhy AK, Dondi MA (2008) Report on the implementation aspects of the international atomic energy agency’s first doctoral coordinated research project, management of liver cancer using radionuclide methods with special emphasis on trans-arterial radio-conjugate therapy and internal dosimetry. Semin Nucl Med 38:S5–S12

    PubMed  Google Scholar 

  • Pain therapeutics trial, Rheniumn-188-PT1-6D2 antibody in patients with metastatic melanoma. Pain Therapeutics, Inc.—ClinicalTrials.gov identified—NCT00734188. Recruiting patients—Jan 2009–March 2010

    Google Scholar 

  • Palmedo H, Guhlke S, Bender H, Schoemich G, Gruenwald F, Knapp FF Jr, Biersack HJ (2000) Dose escalation study with Rhenium-188-HEDP in prostate cancer patients with osseous metastases. Eur J Nucl Med 27:123–130

    CAS  PubMed  Google Scholar 

  • Palmedo H, Manka-Waluch A, Albers P, Schmidt W, Guhlke S, Reinhardt M, Ezziddin S, Joe A, Roedel R, Fimmers H, Knapp FF Jr, Biersack HJ (2003) Repeated bone targeted therapy for hormone-refractory prostate carcinoma: randomized phase ii trial with the new, high-energy radiopharmaceutical Rhenium-188-HEDP. J Clin Oncol 21:2869–2875

    CAS  PubMed  Google Scholar 

  • Pecher P (1942) Biological investigation with radioactive calcium and strontium. Preliminary report on the use of radioactive strontium in the treatment of metastatic bone cancer. Uni Calif Publ Pharmacol 2:117–149

    CAS  Google Scholar 

  • Pinkert J, Wunderlich G, Franke WG, Bergman R, Hiliscs R, Kropp J, Knapp FF Jr (1999) Re-188-labeled HSA microspheres for radioembolization. Eur J Nucl Med 26:1010

    Google Scholar 

  • Raoul JL, Boucher E, Rolland Y, Garin E (2010) Treatmnt of hepatocellualr carcinoma with intra-atrterial injection of radionuclides. Nat Rev Gastroenterol Hepatol 7:41–49

    CAS  PubMed  Google Scholar 

  • Reske SN, Bunjes D, Buchmann I, Seitz U, Glatting G, Neumaier B, Kotzerke J, Buck A, Martin H, Doehner H, Begrmann L (2001) Targeted bone marrow ablation in the conditioning of high-risk leukaemia prior to stem cell transplantation. Eur J Nucl Med 28:807–815

    CAS  PubMed  Google Scholar 

  • Reynen K, Kockeritz U, Kropp J, Wunderlich G, Knapp FF Jr, Schmeisser A, Strasser RH (2004) Intracoronary radiotherapy with a Re-188 liquid-filled PTCA balloon system in in-stent restenosis: acute and long-term angiographic results, as well as 1-year clinical follow-up. Int J Cardiol 95:29–34

    PubMed  Google Scholar 

  • Reynen K, Kropp J, Koeckerits U, Wunderlich G, Knapp FF, Schmeisser A, Strasser RH (2006) Intracoronary radiotherapy with a 188Rhenium liquid-filled angioplasty balloon system in in-stent restenosis: a single-center, prospective, randomized, placebo-controlled, double-blind evaluation. Coron Adtery Dis 17:371–377

    Google Scholar 

  • Ricke J, Wust P et al (2004) CT-guided interstitial brachytherapy of liver malignancies alone or in combination with thermal ablation: phase I-II results of a novel technique. Int J Radiat Oncol Biol Phys 58:1496–1505

    PubMed  Google Scholar 

  • Robinson RG, Preston DF et al (1995) Strontium 89 therapy for the palliation of pain due to osseous metastases. JAMA 274:420–424

    CAS  PubMed  Google Scholar 

  • Robinson RG, Blake GM et al (1989) Strontium-89: treatment results and kinetics in patients with painful metastatic prostate and breast cancer in bone. Radiographics 9:271–281

    CAS  PubMed  Google Scholar 

  • Roesch F, Knapp FF Jr (2003) Radionuclide generators. In: Vertes A, Klencsar NS (eds) Handbook of nuclear chemistry, vol. 4 Chapter 3, Kluwer Academic Publishers, Amsterdam, pp 81–118

    Google Scholar 

  • Safavy A, Khazaeli MB et al (1997) Synthesis of bombesin analogues for radiolabeling with rhenium-188. Cancer 80(12 Suppl):2354–2359

    CAS  PubMed  Google Scholar 

  • Samaratunga RC, Thomas SR et al (1995) A monte carlo simulation model for radiation dose to metastatic skeletal tumor from rhenium-186(Sn)-HEDP. J Nucl Med 36:336–350

    CAS  PubMed  Google Scholar 

  • Savio E, Gaudiano J, Robles A, Martinez G, Leon A, Veredra S, Muniz S, Hermida JC, Knapp FF Jr (2001) Rhenium-188-HEDP: pharmacokinetic characterization in osseous metastatic patients with two levels of radiopharmaceutial dose. BMC Nucl Med 1:1471–1485

    Google Scholar 

  • Savio E, Ures MC, Zeledon P, Triondade V, Paolino A, Mockford V, Malanga A, Fernandez M, Gaudiano J (2004) 188Re radiopharmaceuticals for radiosynovectomy: evaluation and comparison of tin colloid, hydroxyapatite and tin-ferric hydroxide macroaggregates. BioMed Central 4:1

    Google Scholar 

  • Schaart DR, Bos AJ, Winkelman AJ, Clarijs MC (2002) The radial depth-dose distribution of a 188W/188Re beta line source measured with novel, ultra-thin TLDs in a PMMA phantom: comparison with Monte Carlo simulations. Phys Med Biol 47:3605–3627

    CAS  PubMed  Google Scholar 

  • Schneider P, Farahati J et al (2005) Radiosynovectomy in rheumatology, orthopedics, and hemophilia. J Nucl Med 46(Suppl 1):48S–54S

    PubMed  Google Scholar 

  • Schopohl B, Liermann D, Jülling L, Heyd R, Strassmann G, Bauersachs R, Schulte- Huermann D, Rahl CG, Menegold KH, Kollath J, Böttcher HD (1996). Ir-192 endovascular brachytherapy for avoidance of intimal hyperplasia after percutaneous transluminal angioplasty and stent implantation in peripheral vessels: 6 years of experience. Int J Radiation Oncology Biol Phys 36:835–840

    Google Scholar 

  • Schuelen H, Eigler N, Whiting JS, Haubner R, Hausleiter J, Dirhinger J, Kastrati A, Schwaiger M, Schoemig A (2001) Usefulness of intracoronary brachytherapy for in-stent restenosis with a 188Re liquid-filled balloon. Amer J Cardiol 87:463–466

    Google Scholar 

  • Schwartz JD, Schwartz M et al (2002) Neoadjuvant and adjuvant therapy for resectable hepatocellular carcinoma: review of the randomised clinical trials. Lancet Oncol 3:593–603

    PubMed  Google Scholar 

  • Schweitzer AD, Rakesh V, Revskaya E, Datta A, Casadevall A, Dadchova E (2007) Computational model predicts effective delivery of 188Re-labeled melanin-binding antibody to metastatic melanoma tumors with wide range of melanin concentrations. Melanoma Res 17:291–303

    CAS  PubMed  Google Scholar 

  • Sedda AF, Rossi G, Cipriani C, Carozzo AM, Donati P (2008) Dermatological high-dose rate brachytherapy for the treatment of basal and squamous cell carcinoma. Clin Exp Dermatol 33:745–749

    CAS  PubMed  Google Scholar 

  • Sherman SI (2003) Thyroid carcinoma. Lancet 361:501–511

    PubMed  Google Scholar 

  • Shin JH, Lee SK, Song HY, Kim JS, Choe H, Kim EH, Lee IG, Kim TH, Kim EY, Woo CW, Nah KH (2008) The effects of 188Re-filled balloon dilation following bare stent palcement in a rabbitt oesophageal model. Br J Radiol 81:413–421

    CAS  PubMed  Google Scholar 

  • Shin JH, Song HY, Moon DH, Oh SJ, Kim JS, Kim TH, Choi WC, Suh JY, Kang W, Seol HY, Lee JH (2004) Reduction of tissue hyperplasia with a Rhenium-188 MAG3-filled balloon: preliminary study in a Canine Urethral model. J Vasc Interven Radiol 15:737–743

    Google Scholar 

  • Shin JH, Song HY, Moon DH, Oh SJ, Kim TH, Lim JO (2006) Rhenium-188 mercaptoacetyltriglycine-filled balloon dilation in the treatment of recurrent urethral strictures: initial experience with five patients. J Vasc Intervent Radiol 17:1471–1477

    Google Scholar 

  • Silberstein EB (1993) The treatment of painful osseous metastases with phosphorus-32-labeled phosphates. Semin Oncol 20(Suppl 2):10–21

    CAS  PubMed  Google Scholar 

  • Smeland S, Erikstein B et al (2003) Role of strontium-89 as adjuvant to palliative external beam radiotherapy is questionable: results of a double-blind randomized study. Int J Radiat Oncol Biol Phys 56:1397–1404

    PubMed  Google Scholar 

  • Soerdjbalie-Maikoe V, Pelger RC et al (2002) Strontium-89 (Metastron) and the bisphosphonate olpadronate reduce the incidence of spinal cord compression in patients with hormone-refractory prostate cancer metastatic to the skeleton. Eur J Nucl Med Mol Imaging 29:494–498

    CAS  PubMed  Google Scholar 

  • Soroa VE, del Huerto Velazquez Espeche M, et al. (2005) Effects of radiosynovectomy with P-32 colloid therapy in hemophilia and rheumatoid arthritis. Cancer Biother Radiopharm 20:344–348

    Google Scholar 

  • Stabin MG (1996) MIRDOSE: personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 37:538–546

    CAS  PubMed  Google Scholar 

  • Stabin MG, Konijnenberg M, Knapp FF Jr, Spener RH (2000) Monte Carlo modeling of radiation dose distributions in intravascular radiation therapy. Med Phys 27:1088–1092

    Google Scholar 

  • Sundram F, Chaur TCM, Onkhuudai P, Bernal P, Padhy AK (2004) Preliminary results of transarterial Rhenium-188 HDD lipiodol treatment of inoperable primary hepatocellular carcinoma. Eur J Nucl Med 31:250–257

    CAS  Google Scholar 

  • Sundram FF, Yu SW, Jeong JM, Somnesan S, Premaraj J, Saw MM, Tang BS (2001) Rhenium-188-TDD-Lipiodol in treatment of inoperable primary hepatocelular carcinoma—a case report. Ann Acad Med Singapore 30:542–545

    CAS  PubMed  Google Scholar 

  • Sundram FX, Yu S, Somanesan S, Jeong JM, Bernal P, Osorio M, Esguerra R, Chau TCM, Long HD, Hoa NV, Huay NDS, Onkhuudai P, Lamjav T, Zanzonica P, Padhy AK, Saw MM, Rooland Y, Knapp FF Jr (2002) Phase I Study of Transarterial Rhenium-188-HDD Lipiodol in Treatment of Inoperable Primary Hepatocellular Cacinoma - A Multicentre Evaluation. World J Nucl Med 1:5–11

    Google Scholar 

  • Sundram F, Chau TC, et al. (2003) Preliminary results of transarterial rhenium-188 HDD lipiodol in the treatment of inoperable primary hepatocellular carcinoma. Eur J Nucl Med Mol Imaging

    Google Scholar 

  • Swailem FM, Krishnamurthy GT et al (1998) In vivo tissue uptake and retention of Sn-117 m(4 +)DTPA in a human subject with metastatic bone pain and in normal mice. Nucl Med Biol 25:279–287

    CAS  PubMed  Google Scholar 

  • Syeda B, Siostrzonek P, Schmid R, Wexberg P, Kirisits C, Denk S, Beran G, Khorsand A, Lang I, Pokrajac B, Potter R, Glogar D (2002) Geographical miss during intracoronary irradiation: impact on restenosis and determination of required safety margin length. J Am Coll Cardiol 40:1225–1231

    PubMed  Google Scholar 

  • Tian JH, Zhang JM et al (1999) Multicentre trial on the efficacy and toxicity of single-dose samarium-153-ethylene diamine tetramethylene phosphonate as a palliative reatment for painful skeletal metastases in China. Eur J Nucl Med 26:2–7

    CAS  PubMed  Google Scholar 

  • Trotti A, Byhardt R et al (2000) Common toxicity criteria: version 2.0. An improved reference for grading the acute effects of cancer treatment: impact on radiotherapy. Int J Radiat Oncol Biol Phys 47:13–47

    CAS  PubMed  Google Scholar 

  • Tu SM, Millikan RE et al (2001) Bone-targeted therapy for advanced androgen-independent carcinoma of the prostate: a randomised phase II trial. Lancet 357:336–341

    CAS  PubMed  Google Scholar 

  • Turner JH, Martindale AA et al (1989) Samarium-153 EDTMP therapy of disseminated skeletal metastasis. Eur J Nucl Med 15:784–795

    CAS  PubMed  Google Scholar 

  • Ures MC, Savio E, Malanga A, Fernandez M, Paolino A, Guadiano J (2002) Physico-chemical characterization and biological evaluation of 188-Rhenium colloids for radiosynovectomy. BioMed Central 2:1–19

    Google Scholar 

  • van Rensburg AJ, Alberts AS et al (1998) Quantifying the radiation dosage to individual skeletal lesions treated with samarium-153-EDTMP. J Nucl Med 39:2110–2115

    PubMed  Google Scholar 

  • Vogl TJ, Straub R et al (2004) Colorectal carcinoma metastases in liver: laser-induced interstitial thermotherapy–local tumor control rate and survival data. Radiology 230:450–458

    PubMed  Google Scholar 

  • Waksman R, Ajani AE, White RL, Pinnow E, Mehran R, Bui AB, Deible R, Gruberg L, Mintz GS, Satler LF, Pichard AD, Kent KM, Lindsay J (2001) Two-year follow-up after beta and gamma intracoronary radiation therapy for patients with diffuse in-stent restenosis. Am J Cardiol 88:425–428

    CAS  PubMed  Google Scholar 

  • Wang SJ, Lin WY, Chen MN, Chen JT, Ho WL, Hsieh BT, Huang H, Shen LH, Ting G, Knapp FF Jr (2001a) Histologic study of effects of radiation synovectomy with Rhenium-188 microsphere. Nucl Med Biol 28:727–732

    CAS  PubMed  Google Scholar 

  • Wang SJ, Lin WY, Chen MN, Chi CS, Chen JT, Ho WL, Hsieh BT, Shen LH, Tsai ZT, Ting G, Mirzadeh S, Knapp FF Jr (1998a) The efficacy of intratumoral injection of Rhenium-188 microsphere in an animal model with hepatoma. J Nucl Med 39:1752–1756

    CAS  PubMed  Google Scholar 

  • Wang SJ, Lin WY, Chen MN, Hsieh BT, Huang H, Shen LH, Ting G (2001b) Histologic study of the effects of radiation synovectomy with Rhenium-188 microsphere. Nucl Med Biol 28:709–717

    Google Scholar 

  • Wang SJ, Lin WY et al (1995) Rhenium-188 sulphur colloid as a radiation synovectomy agent. Eur J Nucl Med 22:505–507

    CAS  PubMed  Google Scholar 

  • Wang SJ, Lin WY et al (1998b) Rhenium-188 microspheres: a new radiation synovectomy agent. Nucl Med Commun 19:427–433

    CAS  PubMed  Google Scholar 

  • Weinberger J, Giedd KN, Simon AD, Marboe C, Knapp FF Jr, Trichter F, Amols H (1999) Radioactive beta-emitting solution-filled balloon treatment prevents porcine coronary restenosis. Cardiovasc Rad Med 1:252–256

    CAS  Google Scholar 

  • Weinberger J, Knapp FF Jr (1999) Use of liquid-filled balloons for coronary irradiation, chapter 45, In: Waksman R (ed) Vascular Brachytherapy, 2nd edn. Futura Publishing Co., Inc., Armonk pp 521–535 (ISBN 0-87993-4131)

    Google Scholar 

  • Weinberger J, Knapp FF Jr (2002) Use of liquid-filled balloons for coronary irradiation.” In: Waksman R (ed.) Vascular Brachytherapy, 3rd edn. Futura Publishing Co., Inc., Armonk, pp 753–790

    Google Scholar 

  • Wiesinger B, Farkas E, Kehlbach R, Bantleon R, Werner M, Wiskirchen J (2009) Impact of rhenium-188, gemcitabine and 5-fluorouracil on cholangiocelluar carcinoma cells: an in vitro study. Cardiovasc Interven Radiol 4:737–744

    Google Scholar 

  • Woehrle J, Nusser T, Krause BJ, Kochs M, Habig T, Mottaghy FM, Kestler HA, Hombach V, Reske SN (2007) Patients with in-stent restenosis: comparison of intracorornary beta-brachytherapy using a Rhenium-188 filled balloon catheter with the polymer-based paclitaxel-eluting taxus-express stent. Nukelamed 46:185–191

    Google Scholar 

  • Wohlfrom M, Kotzerke J, Kamena J, Eble M, Hess B, Wohrle J, Reske SN, Hombach V, Hanke H, Hoher M (2001) Endovascular irradiation with the liquid beta-emitter Rhenium-188 to reduce restenosis after experimental wall injury. Cardiovasc Res 49:169–176

    CAS  PubMed  Google Scholar 

  • Wohlgemuth WA, Leissner G, Wegenmair H, Bohndorf K, Kirchof K (2008) Endovascular brachytherapy in the femoropopliteal segment using 192Ir and 188Re. Cardiovasc Intervent Radiol 31:698–708

    PubMed  Google Scholar 

  • Wohrle J, Krause BJ, Nusser T, Kochs M, Hoher M (2006a) Repeat intracoronary beta-brachytherapy using a Rhenium-188-filled balloon catheter for recurrent restenosis in patients who failed intarcoronary radiation therapy. Cardiovasc Revasc Med 7:2–6

    PubMed  Google Scholar 

  • Wohrle J, Krause BJ, Nusser T, Mottaghy FM, Habig T, Kochs M, Kotzerke J, Reske SN, Hombach V, Hoher M (2006b) “Intracorornary beta-brachytherapy using a Rhenium-188-filled balloon catheter in restenotic lesions of native coronary arteries and venous bypass grafts. Eur J Nucl Med Mol Imaging 33:1314–1320

    PubMed  Google Scholar 

  • Wunderlich G, Pinkert J, Franke WG, Knapp FF Jr, Kropp J (2000a) Preparation and biodistribution of Rhenium-188-labeled albumin microspheres: a promising new agent for endoradiotherapy of tumors. Appl Radiat Isot 52:63–68

    CAS  PubMed  Google Scholar 

  • Wunderlich G, Hartmann H, Andreef M, Kotzerke J (2008) A semi-automated system for concentration of Rhenium-188 for radiopharmaceutical applications. Appl Radiat Isot 66:1876–1880

    CAS  PubMed  Google Scholar 

  • Wunderlich G, Pinkert J, Franke WG, Knapp FF Jr, Kropp J (2000b) Preparation and biodistribution of Rhenium-188-labeled albumin microspheres: a promising new agent for endoradiotherapy of tumors. Appl Radiat Isot 52:63–68

    CAS  PubMed  Google Scholar 

  • Young JY, Rhee TK et al (2007) Radiation dose limits and liver toxicities resulting from multiple yttrium-90 radioembolization treatments for hepatocellular carcinoma. J Vasc Interventional Radiol 18:1375–1382

    Google Scholar 

  • Zaknun JJ, Liepe K et al (2007a) Blood and urine biokinetics of rhenium-188-tin and phosphorus-32 colloids in radiosynovectomy. Europ J Nucl Med 34(Suppl):476

    Google Scholar 

  • Zaknun JJ, Liepe K, et al. (2007) Managment of haemarthrosis applying radiosynovectomy in haemophilia patients with emphasis on developing countries. Eur J Nucl Med 34(Suppl.):P439

    Google Scholar 

  • Zamora PO, Guhlke S, Bender H, Diek-mann D, Rhodes BA, Biersack HJ, Knapp FF Jr (1996) Experimental radiotherapy of receptor-positive human adenocarcinoma with 188Re-RC-160, a directly-radiolabeled somatostatin analog. Internat J Can 65:214–220

    CAS  Google Scholar 

  • Zanzonico PB, Divgi C (2008) Patient-specific radiation dosimetry for radionuclide therapy of liver tumors with intrahepatic artery Rhenium-188 Lipiodol. Semin Nucl Med 38:S30–S39

    PubMed  Google Scholar 

  • Zenz T, Glatting G, Schlenk RF, Buchmann I, Doehner H, Reske SN, Bunjes D (2006) Targeted marrow irradiation with radioactivity labeled anti-CD66 monoclonal antibody prior to allogenic stem cell transplantation for patients with Leukemia: results of a phase I-II study. Haematologica 91:285–286

    PubMed  Google Scholar 

  • Zhang H, Tian M, Li S, Liu J, Tanada S, Endo K (2003) Rhenium-188-HEDP therapy for the palliation of pain due to ossesous metastases in lung cancer patients. Can Biother Radiopharm 18:719–726

    CAS  Google Scholar 

Download references

Acknowledgments

Research at the Oak Ridge National Laboratory (ORNL) is supported by the U.S. Department of Energy (DOE) under contract DE-AC05-00OR22725 with UT-Battelle, LLC.

The submitted manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. F. (Russ) Knapp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(Russ) Knapp, F.F., Kropp, J., Liepe, K. (2012). Rhenium-188 Generator-Based Radiopharmaceuticals for Therapy. In: Baum, R. (eds) Therapeutic Nuclear Medicine. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2012_669

Download citation

  • DOI: https://doi.org/10.1007/174_2012_669

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36718-5

  • Online ISBN: 978-3-540-36719-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics