Skip to main content

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 2699 Accesses

Abstract

FDG-PET imaging has a defined role in the management of primary brain tumors. In contrast to other tumors, the primary role of FDG-PET imaging is to identify high-grade tumor. This task is complicated by the high background glucose metabolism present in normal cerebral cortex and gray matter structures. In general, high-grade brain neoplasms have FDG accumulation similar to cortical gray matter, while low-grade tumors have uptake more similar to white matter. As a consequence, accurate anatomic localization (preferably MRI) is necessary to identify areas of suspected tumor, so that corresponding FDG uptake within the abnormality can be evaluated. Tumor grade assessment by FDG-PET has prognostic implications for initial evaluation of brain tumor patients, and can be useful for evaluating patients for high-grade tumor recurrence following therapy. Other PET tracers under investigation will potentially have an increasingly important role as new treatment strategies are developed to manage primary brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alavi JB, Alavi A, Chawluk J, Kushner M, Powe J, Hickey W, Reivich M (1988) Positron emission tomography in patients with glioma. A predictor of prognosis. Cancer 62(6):1074–1078

    Article  PubMed  CAS  Google Scholar 

  • Alexiou GA, Tsiouris S, Kyritsis AP, Voulgaris S, Argyropoulou MI, Fotopoulos AD (2009) Glioma recurrence versus radiation necrosis: accuracy of current imaging modalities. J Neurooncol 95(1):1–11

    Article  PubMed  Google Scholar 

  • Barker FG 2nd, Chang SM, Valk PE, Pounds TR, Prados MD (1997) 18-Fluorodeoxyglucose uptake and survival of patients with suspected recurrent malignant glioma. Cancer 79(1):115–126

    Article  PubMed  CAS  Google Scholar 

  • Becherer A, Karanikas G, Szabó M, Zettinig G, Asenbaum S, Marosi C, Henk C, Wunderbaldinger P, Czech T, Wadsak W, Kletter K (2003) Brain tumour imaging with PET: a comparison between [18F]fluorodopa and [11C]methionine. Eur J Nucl Med Mol Imaging 30(11):1561–1567

    Article  PubMed  CAS  Google Scholar 

  • Behin A, Hoang-Xuan K, Carpentier AF, Delattre JY (2003) Primary brain tumours in adults. Lancet 361(9354):323–331

    Article  PubMed  Google Scholar 

  • Bondy ML et al (2008) Brain tumor epidemiology: consensus from the brain tumor epidemiology consortium. Cancer 113(7 Suppl):1953–1968

    Article  PubMed  Google Scholar 

  • Burton EC, Prados MD (2000) Malignant gliomas. Curr Treat Options Oncol 1(5):459–468

    Article  PubMed  CAS  Google Scholar 

  • Chao ST, Suh JH, Raja S, Lee SY, Barnett G (2001) The sensitivity and specificity of FDG PET in distinguishing recurrent brain tumor from radionecrosis in patients treated with stereotactic radiosurgery. Int J Cancer 96(3):191–197

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Silverman DH, Delaloye S, Czernin J, Kamdar N, Pope W, Satyamurthy N, Schiepers C, Cloughesy T (2006) 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J Nucl Med 47(6):904–911

    PubMed  CAS  Google Scholar 

  • Cher LM, Murone C, Lawrentschuk N, Ramdave S, Papenfuss A, Hannah A, O’Keefe GJ, Sachinidis JI, Berlangieri SU, Fabinyi G, Scott AM (2006) Correlation of hypoxic cell fraction and angiogenesis with glucose metabolic rate in gliomas using 18F-fluoromisonidazole, 18F-FDG PET, and immunohistochemical studies. J Nucl Med 47(3):410–418

    PubMed  CAS  Google Scholar 

  • Choi SJ, Kim JS, Kim JH, Oh SJ, Lee JG, Kim CJ, Ra YS, Yeo JS, Ryu JS, Moon DH (2005) [18F]3’-deoxy-3’-fluorothymidine PET for the diagnosis and grading of brain tumors. Eur J Nucl Med Mol Imaging 32(6):653–659

    Article  PubMed  Google Scholar 

  • Chung JK, Kim YK, Kim SK, Lee YJ, Paek S, Yeo JS, Jeong JM, Lee DS, Jung HW, Lee MC (2002) Usefulness of 11C-methionine PET in the evaluation of brain lesions that are hypo- or isometabolic on 18F-FDG PET. Eur J Nucl Med Mol Imaging 29(2):176–182

    Article  PubMed  CAS  Google Scholar 

  • Croteau D, Mikkelsen T (2001) Adults with newly diagnosed high-grade gliomas. Curr Treat Options Oncol 2(6):507–515

    Article  PubMed  CAS  Google Scholar 

  • Daumas-Duport C, Scheithauer B, O’Fallon J, Kelly P (1988) Grading of astrocytomas. A simple and reproducible method. Cancer 62(10):2152–2165

    Article  PubMed  CAS  Google Scholar 

  • De Witte O, Levivier M, Violon P, Salmon I, Damhaut P, Wikler D Jr, Hildebrand J, Brotchi J, Goldman S (1996) Prognostic value positron emission tomography with [18F]fluoro-2-deoxy-d-glucose in the low-grade glioma. Neurosurgery 39(3):470–476; discussion 476–477

    Google Scholar 

  • Delbeke D, Meyerowitz C, Lapidus RL, Maciunas RJ, Jennings MT, Moots PL, Kessler RM (1995) Optimal cutoff levels of F-18 fluorodeoxyglucose uptake in the differentiation of low-grade from high-grade brain tumors with PET. Radiology 195(1):47–52

    PubMed  CAS  Google Scholar 

  • Derlon JM, Chapon F, Noël MH, Khouri S, Benali K, Petit-Taboué MC, Houtteville JP, Chajari MH, Bouvard G (2000) Non-invasive grading of oligodendrogliomas: correlation between in vivo metabolic pattern and histopathology. Eur J Nucl Med 27(7):778–787

    Article  PubMed  CAS  Google Scholar 

  • Di Chiro G, Oldfield E, Wright DC, De Michele D, Katz DA, Patronas NJ, Doppman JL, Larson SM, Ito M, Kufta CV (1988) Cerebral necrosis after radiotherapy and/or intraarterial chemotherapy for brain tumors: PET and neuropathologic studies. Am J Roentgenol 150(1):189–197

    CAS  Google Scholar 

  • Floeth FW, Sabel M, Stoffels G, Pauleit D, Hamacher K, Steiger HJ, Langen KJ (2008) Prognostic value of 18F-fluoroethyl-l-tyrosine PET and MRI in small nonspecific incidental brain lesions. J Nucl Med 49(5):730–737

    Article  PubMed  Google Scholar 

  • Foo SS, Abbott DF, Lawrentschuk N et al (2004) Functional imaging of intra-tumoral hypoxia. Mol Imaging Biol 6:291–305

    Article  PubMed  Google Scholar 

  • Fulham MJ, Brunetti A, Aloj L, Raman R, Dwyer AJ, Di Chiro G (1995) Decreased cerebral glucose metabolism in patients with brain tumors: an effect of corticosteroids. J Neurosurg 83(4):657–664

    Article  PubMed  CAS  Google Scholar 

  • Glantz MJ, Hoffman JM, Coleman RE, Friedman AH, Hanson MW, Burger PC, Herndon JE 2nd, Meisler WJ, Schold SC Jr (1991) Identification of early recurrence of primary central nervous system tumors by [18F]fluorodeoxyglucose positron emission tomography. Neurology 29(4):347–355

    CAS  Google Scholar 

  • Goldman S, Levivier M, Pirotte B, Brucher JM, Wikler D, Damhaut P, Stanus E, Brotchi J, Hildebrand J (1996) Regional glucose metabolism and histopathology of gliomas. A study based on positron emission tomography-guided stereotactic biopsy. Cancer 78(5):1098–1106

    Article  PubMed  CAS  Google Scholar 

  • Goldman S, Levivier M, Pirotte B, Brucher JM, Wikler D, Damhaut P, Dethy S, Brotchi J, Hildebrand J (1997) Regional methionine and glucose uptake in high-grade gliomas: a comparative study on PET-guided stereotactic biopsy. J Nucl Med 38(9):1459–1462

    PubMed  CAS  Google Scholar 

  • Hanson MW, Glantz MJ, Hoffman JM, Friedman AH, Burger PC, Schold SC, Coleman RE (1991) FDG-PET in the selection of brain lesions for biopsy. J Comput Assist Tomogr 15(5):796–801

    Article  PubMed  CAS  Google Scholar 

  • Hoffman JM, Waskin HA, Schifter T, Hanson MW, Gray L, Rosenfeld S, Coleman RE (1993) FDG-PET in differentiating lymphoma from nonmalignant central nervous system lesions in patients with AIDS. J Nucl Med 34(4):567–575

    PubMed  CAS  Google Scholar 

  • Hustinx R, Smith RJ, Benard F, Bhatnagar A, Alavi A (1999) Can the standardized uptake value characterize primary brain tumors on FDG-PET? J Nucl Med 26(11):1501–1509

    Article  CAS  Google Scholar 

  • Jager PL, Vaalburg W, Pruim J, de Vries EG, Langen KJ, Piers DA (2008) Radiolabeled amino acids: basic aspects and clinical applications in oncology. J Nucl Med 42(3):432–445

    Google Scholar 

  • Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009) Cancer statistics, 2009. CA Cancer J Clin 59(4):225–249

    Article  PubMed  Google Scholar 

  • Kaal EC, Niël CG, Vecht CJ (2005) Therapeutic management of brain metastasis. Lancet Neurol 4(5):289–298

    Article  PubMed  Google Scholar 

  • Kim DW, Jung SA, Kim CG, Park SA (2010) The efficacy of dual time point F-18 FDG PET imaging for grading of brain tumors. Clin Nucl Med 35(6):400–403

    Article  PubMed  Google Scholar 

  • Kosaka N, Tsuchida T, Uematsu H, Kimura H, Okazawa H, Itoh H (2008) 18F-FDG PET of common enhancing malignant brain tumors. Am J Roentgenol 190(6):W365–W369

    Article  Google Scholar 

  • Kracht LW, Miletic H, Busch S, Jacobs AH, Voges J, Hoevels M, Klein JC, Herholz K, Heiss WD (2004) Delineation of brain tumor extent with [11C]l-methionine positron emission tomography: local comparison with stereotactic histopathology. Clin Cancer Res 10(21):7163–7170

    Article  PubMed  CAS  Google Scholar 

  • Kwee SA, Ko JP, Jiang CS, Watters MR, Coel MN (2007) Solitary brain lesions enhancing at MR imaging: evaluation with fluorine 18 fluorocholine PET. Radiology 244(2):557–565

    Article  PubMed  Google Scholar 

  • Larcos G, Maisey MN (1996) FDG-PET screening for cerebral metastases in patients with suspected malignancy. Nucl Med Commun 17(3):197–198

    Article  PubMed  CAS  Google Scholar 

  • Laverman P, Boerman OC, Corstens FH, Oyen WJ (2002) Fluorinated amino acids for tumour imaging with positron emission tomography. Eur J Nucl Med Mol Imaging 29(5):681–690

    Article  PubMed  CAS  Google Scholar 

  • Mineura K, Sasajima T, Kowada M, Ogawa T, Hatazawa J, Shishido F, Uemura K (1994) Perfusion and metabolism in predicting the survival of patients with cerebral gliomas. Cancer 73(9):2386–2394

    Article  PubMed  CAS  Google Scholar 

  • Minn H (2005) PET and SPECT in low-grade glioma. Eur J Radiol 56(2):171–178

    Article  PubMed  Google Scholar 

  • Miyagawa T, Oku T, Uehara H, Desai R, Beattie B, Tjuvajev J, Blasberg R (1998) “Facilitated” amino acid transport is upregulated in brain tumors. J Cereb Blood Flow Metab 18(5):500–509

    Article  PubMed  CAS  Google Scholar 

  • Nariai T, Tanaka Y, Wakimoto H, Aoyagi M, Tamaki M, Ishiwata K, Senda M, Ishii K, Hirakawa K, Ohno K (2005) Usefulness of L-[methyl-11C] methionine-positron emission tomography as a biological monitoring tool in the treatment of glioma. J Neurosurg 103(3):498–507

    Article  PubMed  Google Scholar 

  • Nelson JS, Tsukada Y, Schoenfeld D, Fulling K, Lamarche J, Peress N (1983) Necrosis as a prognostic criterion in malignant supratentorial, astrocytic gliomas. Cancer 52(3):550–554

    Article  PubMed  CAS  Google Scholar 

  • Ohgaki H (2009) Epidemiology of brain tumors. Methods Mol Biol 472:323–342

    Article  PubMed  CAS  Google Scholar 

  • Padma MV, Said S, Jacobs M, Hwang DR, Dunigan K, Satter M, Christian B, Ruppert J, Bernstein T, Kraus G, Mantil JC (2003) Prediction of pathology and survival by FDG PET in gliomas. J Neurooncol 64(3):227–237

    Article  PubMed  CAS  Google Scholar 

  • Pardo FS, Aronen HJ, Fitzek M, Kennedy DN, Efird J, Rosen BR, Fischman AJ (2004) Correlation of FDG-PET interpretation with survival in a cohort of glioma patients. Anticancer Res 24(4):2359–2365

    PubMed  Google Scholar 

  • Patronas NJ, Di Chiro G, Kufta C, Bairamian D, Kornblith PL, Simon R, Larson SM (1985) Prediction of survival in glioma patients by means of positron emission tomography. J Neurosurg 62(6):816–822

    Article  PubMed  CAS  Google Scholar 

  • Pauleit D, Stoffels G, Bachofner A, Floeth FW, Sabel M, Herzog H, Tellmann L, Jansen P, Reifenberger G, Hamacher K, Coenen HH, Langen KJ (2009) Comparison of (18)F-FET and (18)F-FDG PET in brain tumors. Nucl Med Biol 36(7):779–787

    Article  PubMed  CAS  Google Scholar 

  • Pichler R, Dunzinger A, Wurm G, Pichler J, Weis S, Nußbaumer K, Topakian R, Aigner RM (2010) Is there a place for FET PET in the initial evaluation of brain lesions with unknown significance? Eur J Nucl Med Mol Imaging. 16 Apr 2010. [Epub ahead of print]

    Google Scholar 

  • Pirotte B, Goldman S, Massager N, David P, Wikler D, Vandesteene A, Salmon I, Brotchi J, Levivier M (2004) Comparison of 18F-FDG and 11C-methionine for PET-guided stereotactic brain biopsy of gliomas. J Nucl Med 45(8):1293–1298

    PubMed  CAS  Google Scholar 

  • Pöpperl G, Götz C, Rachinger W, Gildehaus FJ, Tonn JC, Tatsch K (2004) Value of O-(2-[18F]fluoroethyl)- l-tyrosine PET for the diagnosis of recurrent glioma. Eur J Nucl Med Mol Imaging 31(11):1464–1470

    Article  PubMed  Google Scholar 

  • Rachinger W, Goetz C, Pöpperl G, Gildehaus FJ, Kreth FW, Holtmannspötter M, Herms J, Koch W, Tatsch K, Tonn JC (2005) Positron emission tomography with O-(2-[18F]fluoroethyl)-l-tyrosine versus magnetic resonance imaging in the diagnosis of recurrent gliomas. Neurosurgery 57(3):505–511; discussion 505−511

    Google Scholar 

  • Ribom D, Eriksson A, Hartman M, Engler H, Nilsson A, Långström B, Bolander H, Bergström M, Smits A (2001) Positron emission tomography (11)C-methionine and survival in patients with low-grade gliomas. Cancer 92(6):1541–1549

    Article  PubMed  CAS  Google Scholar 

  • Roelcke U, Blasberg RG, von Ammon K, Hofer S, Vontobel P, Maguire RP, Radü EW, Herrmann R, Leenders KL (1998) Dexamethasone treatment and plasma glucose levels: relevance for fluorine-18-fluorodeoxyglucose uptake measurements in gliomas. J Nucl Med 39(5):879–884

    PubMed  CAS  Google Scholar 

  • Saga T, Kawashima H, Araki N, Takahashi JA, Nakashima Y, Higashi T, Oya N, Mukai T, Hojo M, Hashimoto N, Manabe T, Hiraoka M, Togashi K (2006) Evaluation of primary brain tumors with FLT-PET: usefulness and limitations. Clin Nucl Med 31(12):774–780

    Article  PubMed  Google Scholar 

  • Salskov A, Tammisetti VS, Grierson J, Vesselle H (2007) FLT: measuring tumor cell proliferation in vivo with positron emission tomography and 3′-deoxy-3′-[18F]fluorothymidine. Semin Nucl Med 37(6):429–439

    Article  PubMed  Google Scholar 

  • Singhal T, Narayanan TK, Jain V, Mukherjee J, Mantil J (2008) 11C-l-methionine positron emission tomography in the clinical management of cerebral gliomas. Mol Imaging Biol 10(1):1–18

    Article  PubMed  Google Scholar 

  • Spence AM, Muzi M, Mankoff DA, O’Sullivan SF, Link JM, Lewellen TK, Lewellen B, Pham P, Minoshima S, Swanson K, Krohn KA (2004) 18F-FDG PET of gliomas at delayed intervals: improved distinction between tumor and normal gray matter. J Nucl Med 45(10):1653–1659

    PubMed  Google Scholar 

  • Spence AM, Muzi M, Swanson KR, O’Sullivan F, Rockhill JK, Rajendran JG, Adamsen TC, Link JM, Swanson PE, Yagle KJ, Rostomily RC, Silbergeld DL, Krohn KA (2008) Regional hypoxia in glioblastoma multiforme quantified with [18F]fluoromisonidazole positron emission tomography before radiotherapy: correlation with time to progression and survival. Clin Cancer Res 14(9):2623–2630

    Article  PubMed  CAS  Google Scholar 

  • Stieber VW (2001) Low-grade gliomas. Curr Treat Options Oncol 2(6):495–506

    Article  PubMed  CAS  Google Scholar 

  • Terakawa Y, Tsuyuguchi N, Iwai Y, Yamanaka K, Higashiyama S, Takami T, Ohata K (2008) Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med 49(5):694–699

    Article  PubMed  Google Scholar 

  • Tripathi M, Sharma R, D’Souza M, Jaimini A, Panwar P, Varshney R, Datta A, Kumar N, Garg G, Singh D, Grover RK, Mishra AK, Mondal A (2009) Comparative evaluation of F-18 FDOPA, F-18 FDG, and F-18 FLT-PET/CT for metabolic imaging of low grade gliomas. Clin Nucl Med 34(12):878–883

    Article  PubMed  Google Scholar 

  • Ullrich R, Backes H, Li H, Kracht L, Miletic H, Kesper K, Neumaier B, Heiss WD, Wienhard K, Jacobs AH (2008) Glioma proliferation as assessed by 3′-fluoro-3′-deoxy-L-thymidine positron emission tomography in patients with newly diagnosed high-grade glioma. Clin Cancer Res 14(7):2049–2055

    Article  PubMed  CAS  Google Scholar 

  • Vallabhajosula S (2007) (18)F-labeled positron emission tomographic radiopharmaceuticals in oncology: an overview of radiochemistry and mechanisms of tumor localization. Semin Nucl Med 37(6):400–419

    Article  PubMed  Google Scholar 

  • Vecht CJ, Haaxma-Reiche H, Noordijk EM, Padberg GW, Voormolen JH, Hoekstra FH, Tans JT, Lambooij N, Metsaars JA, Wattendorff AR et al (1993) Treatment of single brain metastasis: radiotherapy alone or combined with neurosurgery? Ann Neurol 33(6):583–590

    Article  PubMed  CAS  Google Scholar 

  • Wang SX, Boethius J, Ericson K (2006) FDG-PET on irradiated brain tumor: ten years’ summary. Acta Radiol 47(1):85–90

    Article  PubMed  CAS  Google Scholar 

  • Weber WA, Wester HJ, Grosu AL, Herz M, Dzewas B, Feldmann HJ, Molls M, Stöcklin G, Schwaiger M (2000) O-(2-[18F]fluoroethyl)-l-tyrosine and L-[methyl-11C]methionine uptake in brain tumours: initial results of a comparative study. Eur J Nucl Med 27(5):542–549

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terence Z. Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Miller, J.A., Wong, T.Z. (2011). Central Nervous System. In: Peller, P., Subramaniam, R., Guermazi, A. (eds) PET-CT and PET-MRI in Oncology. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2011_431

Download citation

  • DOI: https://doi.org/10.1007/174_2011_431

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01138-2

  • Online ISBN: 978-3-642-01139-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics