Skip to main content

Physics of Radiotherapy Planning and Delivery

  • Chapter
  • First Online:
  • 4826 Accesses

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

A solid foundation in the physics concepts used in the planning and delivery of the cancer patient’s radiation therapy is one of the fundamental cornerstones for the practice of radiation therapy. The essential concepts are discussed in this chapter, including a brief review of modern treatment machines, basic dosimetry parameters used in treatment planning, monitor unit and dose calculation methods, dose calculation algorithms and correction factors for the effects of patient topography and internal heterogeneities, isodose distributions for various combined fields, peripheral dose, field junctions, field shaping and special considerations including patients with cardiac pacemakers, fetal dose and gonadal dose. These topics are presented in detail suitable for practicing radiation oncologists and physician residents.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • AAPM (2001) Report 72: Basic applications of multileaf collimators: report of task group 50 of the radiation therapy committee. Medical Physics Publishing, Madison, WI

    Google Scholar 

  • Abrath FG, Purdy JA (1980) Wedge design and dosimetry for 25 MV X-rays. Radiology 136:757–762

    PubMed  CAS  Google Scholar 

  • Adler JR, Chang SD, Murphy MJ, Doty J, Geis P, Hancock SL (1997) The CyberKnife: a frameless robotic system for radiosurgery. Stereotact Funct Neurosurg 69:124–128

    PubMed  Google Scholar 

  • Adler JR, Murphy MJ, Chang SD, Hancock SL (1999) Image-guided robotic radiosurgery. Neurosurgery 44:1299–1307

    PubMed  Google Scholar 

  • Ahnesjö A (1989) Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media. Med Phys 16:577–592

    PubMed  Google Scholar 

  • Ahnesjö A, Aspradakis MM (1999) Dose calculations for external photon beams in radiotherapy. Phys Med Biol 44:R99–R155

    PubMed  Google Scholar 

  • Ahnesjö A, Andreo P, Brahme A (1987) Calculation and application of point spread functions for treatment planning with high energy photon beams. Acta Oncol 26:49–56

    PubMed  Google Scholar 

  • Aoyama H, Westerly DC, Mackie TR, Olivera GH, Bentzen SM, Patel RR, Jaradat H, Tome WA, Ritter MA, Mehta MP (2006) Integral radiation dose to normal structures with conformal external beam radiation. Int J Radiat Oncol Biol Phys 64(3):962–967

    PubMed  Google Scholar 

  • Batho HF (1964) Lung corrections in Cobalt 60 beam therapy. J Can Assoc Radiol 15:79–83

    PubMed  CAS  Google Scholar 

  • Beach JL, Mendiondo MS, Mendiondo OA (1987) A comparison of air-cavity inhomogeneity effects for cobalt-60, 6- and 10 MV X-ray beams. Med Phys 14:140

    PubMed  CAS  Google Scholar 

  • Bentel GC (1996) Radiation therapy planning, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • BJR (1996) Central axis depth dose data for use in radiotherapy. Br J Radiol Supplement 25

    Google Scholar 

  • Boyer AL, Ochran TG, Nyerick CE, Waldron TJ, Huntzinger CJ (1992) Clinical dosimetry for implementation of a multileaf collimator. Med Phys 19(5):1255–1261

    PubMed  CAS  Google Scholar 

  • Brahme A (1988) Optimization of stationary and moving beam radiation therapy techniques. Radiother Oncol 12:129–140

    PubMed  CAS  Google Scholar 

  • Caporaso GJ, Mackie TR, Sampayan S, Chen Y-J, Blackfield D, Harris J, Hawkins S, Holmes C, Nelson S, Paul A, Poole B, Rhodes M, Sanders D, Sullivan J, Wang L, Watson J, Reckwerdt PJ, Schmidt R, Pearson D, Flynn RW, Matthews D, Purdy J (2008) A compact linac for intensity modulated proton therapy based on a dielectric wall accelerator. Phys Med 24(2):98–101

    PubMed  CAS  Google Scholar 

  • Cella L, Lomax A, Miralbell R (2001) Potential role of intensity modulated proton beams in prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys 49(1):217–223

    PubMed  CAS  Google Scholar 

  • Christopherson D, Courlas GJ, Jette D (1984) Field matching in radiotherapy. Med Phys 3:369

    Google Scholar 

  • Chui C, Mohan R, Fontanela D (1986) Dose computation for asymmetric fields defined by independent jaws. Med Phys 15:92

    Google Scholar 

  • Coutrakon G, Bauman M, Lesyna D, Miller D, Nusbaum J, Slater J, Johanning J, Miranda J, Jr DeLuca PM, Siebers J, Ludewigt B (1991) A prototype beam delivery system for the proton medical accelerator at loma linda. Med Phys 18(6):1093–1099

    PubMed  CAS  Google Scholar 

  • Cundiff JH, Cunningham JR, Golden R, Lanze LJ, Meurk LJ, Ovadia J, Pagelast V, Pope RA, Sampiere VA, Saylor WL, Shalek RJ, Suntharalingham N (1973) A method for the calculation of dose in the radiation treatment of Hodgkin’s disease. Am J Roentgenol 117:30–44

    CAS  Google Scholar 

  • Cunningham JR (1972) Scatter-air ratios. Phys Med Biol 17:42–51

    PubMed  CAS  Google Scholar 

  • Cygler JE, Daskalov GM, Chan GH, Ding GX (2004) Evaluation of the first commercial monte carlo dose calculation engine for electron beam treatment planning. Med Phys 31(1):142–153

    PubMed  CAS  Google Scholar 

  • Das IJ, Khan FM (1989) Backscatter dose perturbation at high atomic number interfaces in megavoltage photon beams. Med Phys 16(3):367–375

    PubMed  CAS  Google Scholar 

  • Das IJ, Kase KR, Meigooni AS, Khan FM, Werner BL (1990) Validity of transition-zone dosimetry at high atomic number interfaces in megavoltage photon beams. Med Phys 17(1):10–16

    PubMed  CAS  Google Scholar 

  • Das IJ, Desobry GE, McNeeley SW, Cheng EC, Schultheiss TE (1998) Beam characteristics of a retrofitted double-focused multileaf collimator. Med Phys 25(9):1676–1684

    PubMed  CAS  Google Scholar 

  • Das IJ, Cheng C-W, Watts RJ, Ahnesjo A, Gibbons J, Li XA, Lowenstein J, Mitra RK, Simon WE, Zhu TC (2008a) Accelerator beam data commissioning equipment and procedures: Report of the TG-106 of the Therapy Physics Committee of the AAPM. Med Phys 35(9):4186–4215

    Google Scholar 

  • Das IJ, Ding GX, Ahnesjo A (2008b) Small fields: nonequilibrium radiation dosimetry. Med Phys 35(1):206–215

    Google Scholar 

  • Depuydt T, Verellen D, Haas O, Gevaert T, Linthout N, Duchateau M, Tournel K, Reynders T, Leysen K, Hoogeman M, Storme G, Ridder MD (2011) Geometric accuracy of a novel gimbals based radiation therapy tumor tracking system. Radioth and Oncol 98(3):365–372

    Google Scholar 

  • DesRosiers C, Moskvin V, Bielajew AF, Papiez L (2000) 150–250 MeV electron beams in radiation therapy. Phys Med Biol 45:1781–1805

    PubMed  CAS  Google Scholar 

  • Du MN, Yu CX, Symons M, Eng C, Yan D, Taylor R, Matter RC, Gustafson G, Martinez A, Wong JW (1995) A multi-leaf collimator prescription preparation system for conventional radiotherapy. Int J Radiat Oncol Biol Phys 32:513–520

    PubMed  CAS  Google Scholar 

  • Dutreix A, Bjärngard BE, Bridier A, Mijnheer b, Shaw JE, Svensson H (1997) Monitor unit calculation for high energy photon beams. Garant, Leuven-Apeldoorn

    Google Scholar 

  • Ellis F, Miller H (1944) The use of wedge filters in deep X-ray therapy. Brit J Radiol 17:90

    Google Scholar 

  • Emami B, Lyman J, Brown A, Burman C, Coia L, Goitein M, Munzenrider J, Sloan L, Shank B, Wesson M (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21:109–122

    PubMed  CAS  Google Scholar 

  • Epp ER, Boyer AL, Doppke KP (1977) Underdosing of lesions resulting from lack of electronic equilibrium in upper respiratory air cavities irradiated by 10 MV X-ray beams. Int J Radiat Oncol Biol Phys 2:613

    PubMed  CAS  Google Scholar 

  • Fischer JJ, Moulder JE (1975) The steepness of the dose-response curve in radiation therapy. Radiology 117:179–184

    PubMed  CAS  Google Scholar 

  • Followill D, Geis P, Boyer A (1997a) Errata: estimates of whole-body dose equivalent produced by beam intensity modulated conformal therapy. Int J Radiat Oncol Biol Phys 39(3):783

    Google Scholar 

  • Followill D, Geis P, Boyer A (1997b) Estimates of whole-body dose equivalent produced by beam intensity modulated conformal therapy. Int J Radiat Oncol Biol Phys 38(3):667–672

    CAS  Google Scholar 

  • Foo ML, McCullough EC, Foote RL, Pisansky TM, Shaw EG (1993) Doses to radiation sensitive organs and structures located outside the radiotherapeutic target volume for four treatment situations. Int J Radiat Oncol Biol Phys 27:403–405

    PubMed  CAS  Google Scholar 

  • Forrest LJ, Mackie TR, Ruchala K, Turek M, Kapatoes J, Jaradat H, Hui S, Balog J, Vail DM, Mehta MP (2004) The utility of megavoltage computed tomography images from a helical tomotherapy system for setup verification purposes. Int J Radiat Oncol Biol Phys 60(5):1639–1644

    PubMed  Google Scholar 

  • Fraass BA, Tepper JE, Glatstein E, van de Geijn J (1983) Clinical use of a match line wedge for adjacent megavoltage radiation field matching. Int J Radiat Oncol Biol Phys 9:209–216

    PubMed  CAS  Google Scholar 

  • Fraass BA, Kinsella TJ, Harrington ES, Glatstein E (1985) Peripheral dose to the testes: the design and clinical use of a practical and effective gonadal shield. Int J Radiat Oncol Biol Phys 11(3):609–616

    PubMed  CAS  Google Scholar 

  • Fraass BA, Smathers J, Deye JA (2003) Summary and recommendations of a National Cancer Intitute workshop on issues limiting the clinical use of Monte Carlo dose calculation algorithms for megavoltage external beam radiation therapy. Med Phys 30(12):3206–3216

    PubMed  Google Scholar 

  • Francois P, Beurtheret C, Dutreix A (1988) Calculation of the dose delivered to organs outside the radiation beams. Med Phys 15(6):879–883

    PubMed  CAS  Google Scholar 

  • Frank SJ, Forster KM, Stevens CW, Cox JD, Komaki R, Liao Z, Tucker S, Wang X, Steadham RE, Brooks C, Starkschall G (2003) Treatment planning for lung cancer: traditional homogeneous point-dose prescription compared with heterogeneity-corrected dose-volume prescription. Int J Radiat Oncol Biol Phys 56(5):1308–1318

    PubMed  Google Scholar 

  • Fuchs T, Szymanowski H, Oelfke U, Glinec Y, Rechatin C, Faure J, Malka V (2009) Treatment planning for laser-accelerated very-high energy electrons. Phys Med Biol 54:3315–3328

    PubMed  CAS  Google Scholar 

  • Gagnon WF, Horton JL (1979) Physical factors affecting absorbed dose to the skin from cobalt-60 gamma rays and 25 MeV X-rays. Med Phys 6:285

    PubMed  CAS  Google Scholar 

  • Galvin JM, Smith AR, Lally B (1993a) Characterization of a multileaf collimator system. IJROBP 25:181–192

    CAS  Google Scholar 

  • Galvin JM, Xuan-Gen C, Smith RM (1993b) Combining multileaf fields to modulate fluence distributions. Int J Radiat Oncol Biol Phys 27:697–705

    CAS  Google Scholar 

  • Georg D, Huekelom S, Venselaar J (2001) Formalisms for MU calculations, ESTRO booklet 3 versus NCS report 12. Radiother Oncol 60(3):319–328

    PubMed  CAS  Google Scholar 

  • Georg D, Nyholm T, Olofsson J, Kjær-Kristoffersen F, Schnekenburger B, Winkler P, Nyström H, Ahnesjö A, Karlsson M (2007) Clinical evaluation of monitor unit software and the application of action levels. Radioth Oncol 85(2):306–315

    Google Scholar 

  • Georg D, Kragl G, Wetterstedt Sa, McCavana P, McClean B, Knoos T (2010) Photon beam quality variations of a flattening filter free linear accelerator. Med Phys 37(1):49–53

    PubMed  Google Scholar 

  • Gerbi BJ, Khan FM (1990) Measurement of dose in the buildup region using fixed-separation plane-parallel ionization chambers. Med Phys 17:17–26

    PubMed  CAS  Google Scholar 

  • Gerbi BJ, Meigooni A, Khan FM (1987) Dose buildup for obliquely incident photon beams. Med Phys 14:393–399

    PubMed  CAS  Google Scholar 

  • Gibbons JP (ed) (2000) Monitor unit calculations for external photon and electron beams. Advanced Medical Publishing, Madison, WI

    Google Scholar 

  • Gillin MT, Kline RW (1980) Field separation between lateral and anterior fields on a 6 MV linear accelerator. Int J Radiat Oncol Biol Phys 6:233

    PubMed  CAS  Google Scholar 

  • Hanson WF, Berkley LW (1980) Off-axis beam quality change in linear accelerator X-ray beams. Med Phys 7(2):145–146

    PubMed  CAS  Google Scholar 

  • Hanson WF, Berkley LW, Peterson M (1980) Calculative technique to correct for the change in linear accelerator beam energy at off-axis points. Med Phys 7:147

    PubMed  CAS  Google Scholar 

  • Henning W, Shank C (2010) Accelerators for America’s future. In: Energy U.S.D.o. (ed) Department of energy’s office of science

    Google Scholar 

  • Herring DF (1975) The consequences of dose response curves for tumor control and normal tissue injury on the precision necessary in patient management. Laryngos 85:119–125

    Google Scholar 

  • Herring DF, Compton DMJ (1971) The degree of precision required in radiation dose delivered in cancer radiotherapy. In: Glicksman AJ, Cohen M, Cunningham, JR (eds) Computers in radiotherapy. Br J Radiol Special Report Series No. 5

    Google Scholar 

  • Holt JD, Laughlin JS, Moroney JP (1970) The extension of the concept of tissue-air (TAR) to high energy X-ray beams. Radiology 96:437

    PubMed  CAS  Google Scholar 

  • Hounsell AR, Sharrock PJ, Moore CJ, Shaw AJ, Wilkinson JM, Williams PC (1992) Computer-assisted generation of multileaf collimator settings for conformation therapy. Br J Radiol 65:321–326

    PubMed  CAS  Google Scholar 

  • Hudson F, Coulshed D, D’Souza E, Baker C (2010) Effect of radiation therapy on the latest generation of pacemakers and implantable cardioverter defibrillators: a systematic review. J Med Imaging Radiat Oncol 54(1):53–61. doi:10.1111/j.1754-9485.2010.02138.x

    PubMed  CAS  Google Scholar 

  • Hurkmans CW, Scheepers E, Springorum BGF, Uiterwaal H (2005) Influence of radiotherapy on the latest generation of implantable cardioverter-defibrillators. Int J Radiat Oncol Biol Phys 63(1):282

    PubMed  Google Scholar 

  • Hurkmans C, Budiharto T, Musat E, Poortmans P, Monti A, Bar-Deroma R, Bernstein Z, van Tienhoven G, Collette L, Davis B, Aird E, Slotman B, Vos P (2008) Staffing and equipment of RT centres; comparing the proposed EORTC guidelines to ESTRO and Dutch guidelines. Radioth and Oncol 88, Suppl 2:S118–S119

    Google Scholar 

  • ICRU (1987) Report No. 42, Use of computers in external beam radiotherapy procedures with high energy photons and electrons. International commission on radiation units and measurements, Bethesda, MD

    Google Scholar 

  • IMRTCWG (2001) NCI IMRT collaborative working group: intensity modulated radiation therapy: current status and issues of interest. Int J Radiat Oncol Biol Phys 51(4):880–914

    Google Scholar 

  • Islam MK, Purdie TG, Norrlinger BD, Alasti HM, Douglas J, Sharpe MB, Siewerdsen JH, Jaffray DA (2006) Patient dose from kilovoltage cone beam computed tomography imaging in radiation therapy. Med Phys 33(6):1573–1582

    PubMed  Google Scholar 

  • Jaffray DA, Drake DG, Moreau M, Martinez AA, Wong JW (1999) A radiographic and tomographic imaging system integrated into a medical linear accelerator for localization of bone and soft-tissue targets. Int J Radiat Oncol Biol Phys 45:773–789

    PubMed  CAS  Google Scholar 

  • Jaffray DA, Siewerdsen JH, Wong JW, Martinez AA (2002) Flat-panel cone-beam computed tomography for image-guided radiation therapy. Int J Radiat Oncol Biol Phys 53(5):1337–1349

    PubMed  Google Scholar 

  • Johns HE, Cunningham JR (1983) The physics of radiology, 4th edn. Charles C Thomas, Springfield, IL

    Google Scholar 

  • Johnson JM, Khan FM (1994) Dosimetric effects of abutting extended source to surface distance electron fields with photon fields in the treatment of head and neck cancers. Int J Radiat Oncol Biol Phys 28:741–747

    PubMed  CAS  Google Scholar 

  • Kamino Y, Takayama K, Kokubo M, Narita Y, Hirai E, Kawawda N, Mizowaki T, Nagata Y, Nishidai T, Hiraoka M (2006) Development of a four-dimensional image-guided radiotherapy system with a gimbaled X-ray head. Int J Radiat Oncol Biol Phys 66(1):271–278

    PubMed  Google Scholar 

  • Karzmark CJ, Deubert A, Loevinger R (1965) Tissue-phantom ratios-an aid to treatment planning. Br J Radiol 38:158–159

    Google Scholar 

  • Karzmark CJ, Nunan CS, Tanabe E (1993) Medical electron accelerators. McGraw-Hill, Inc., New York

    Google Scholar 

  • Keys R, Grigsby PW (1990) Gapping fields on sloping surfaces. Int J Radiat Oncol Biol Phys 18:1183–1190

    PubMed  CAS  Google Scholar 

  • Khan F (1993) Dosimetry of wedged fields with asymmetric collimation. Med Phys 20:1447

    PubMed  CAS  Google Scholar 

  • Khan FM (1994a) The physics of radiation therapy, 2nd edn. Williams & Wilkins, Baltimore

    Google Scholar 

  • Khan FM (1994b) The physics of radiation therapy, 3rd edn. Williams & Wilkins, Baltimore

    Google Scholar 

  • Khan FM (2010) The physics of radiation therapy, 4th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Khan FM, Sewchand W, Lee J, Williamson JF (1980) Revision of tissue-maximum ratio and scatter-maximum ratio concepts for cobalt 60 and higher energy X-ray beams. Med Phys 7:230–237

    PubMed  CAS  Google Scholar 

  • Kirkby C, Stanescu T, Rathee S, Carlone M, Murray B, Fallone BG (2008) Patient dosimetry for hybrid MRI-radiotherapy systems. Med Phys 35(3):1019–1027

    PubMed  CAS  Google Scholar 

  • Klein EE, Kuske RR (1993) Changes in photon dosimetry due to breast prosthesis. Int J Radiat Oncol Biol Phys 25(3):541–549

    PubMed  CAS  Google Scholar 

  • Klein EE, Purdy JA (1993) Entrance and exit dose regions for Clinac-2100C. Int J Radiat Oncol Biol Phys 27:429–435

    PubMed  CAS  Google Scholar 

  • Klein EE, Rice RK, Mijnheer BJ, Chin LM (1988) Influence of aluminum and bone on dose distributions for photon beams (abstract). Med Phys 15:122

    Google Scholar 

  • Klein EE, Chin LM, Rice RK, Mijnheer BJ (1993) The influence of air cavities on interface doses for photon beams (abstract). Int J Radiat Oncol Biol Phys 27:419

    PubMed  CAS  Google Scholar 

  • Klein EE, Taylor M, Michaletz-Lorenz M, Zoeller D, Umfleet W (1994) A mono-isocentric technique for breast and regional nodal therapy using dual asymmetric jaws. Int J Radiat Oncol Biol Phys 28:753–760

    PubMed  CAS  Google Scholar 

  • Klein EE, Harms WB, Low DA, Willcut V, Purdy JA (1995) Clinical implementation of a commercial multileaf collimator: dosimetry, networking, simulation, and quality assurance. Int J Radiat Oncol Biol Phys 33:1195–1208

    PubMed  CAS  Google Scholar 

  • Klein EE, Gerber R, Zhu XR, Oehmke F, Purdy JA (1998) Multiple machine implementation of enhanced dynamic wedge. Int J Radiat Oncol Biol Phys 40(4):977–985

    PubMed  CAS  Google Scholar 

  • Klein EE, Maserang B, Wood R, Mansur D (2006) Peripheral doses from pediatric IMRT. Med Phys 33(7):2525–2531

    PubMed  Google Scholar 

  • Kornelsen RO, Young MEJ (1982) Changes in the dose-profile of a 10 MV X-ray beam within and beyond low density material. Med Phys 9:114–116

    PubMed  CAS  Google Scholar 

  • Kouloulias VE, Poortmans P, Antypas C, Kappas C, Sandilos P (2003) Field flatness and symmetry of photon beams: review of the current recommendations. Technol Health Care 11(4):283–288

    PubMed  CAS  Google Scholar 

  • Kragl G, af Wetterstedt S, Knäusl B, Lind M, McCavana P, Knöös T, McClean B, Georg D (2009) Dosimetric characteristics of 6 and 10 MV unflattened photon beams. Radioth Oncol 93(1):141–146

    CAS  Google Scholar 

  • Kung JH, Chen GTY, Kuchnir FK (2000) A monitor unit verification calculation in intensity modulated radiotherapy as a dosimetry quality assurance. Med Phys 27(10):2226–2230

    PubMed  CAS  Google Scholar 

  • Lam WC, Lam KS (1983) Errors in off-axis treatment planning for a 4 MeV machine. Med Phys 10:480–482

    PubMed  CAS  Google Scholar 

  • Leavitt DD, Gibbs FA Jr (1992) Field shaping. In: Purdy JA (ed) Advances in radiation oncology physics: dosimetry, treatment planning, and brachytherapy. American Institute of Physics, New York, pp 500–523

    Google Scholar 

  • Leavitt DD, Martin M, Moeller JH, Lee WL (1990) Dynamic wedge field techniques through computer-controlled collimator motion and dose delivery. Med Phys 17:87–91

    PubMed  CAS  Google Scholar 

  • Leksell L (1968) Cerebral radiosurgery: I Gammathalamotomy in two cases of intractable pain. Acta Chir Scand 134:585–595

    PubMed  CAS  Google Scholar 

  • Lim MLF (1985) A study of four methods of junction change in the treatment of medulloblastoma. Am Assoc Med Dosim J 10:17–24

    Google Scholar 

  • Lim MLF (1986) Evolution of medulloblastoma treatment techniques. Am Assoc Med Dosim J 11:25–33

    Google Scholar 

  • Ling CC, Zhang P, Archambault Y, Bocanek J, Tang G, LoSasso T (2008) Commissioning and quality assurance of RapidArc radiotherapy delivery system. Int J Radiat Oncol Biol Phys 72(2):575–581

    PubMed  Google Scholar 

  • Ling CC, Archambault Y, Bocanek J, Zhang P, LoSasso T, Tang G (2009) Scylla and charybdis: longer beam-on time or lesser conformality–the dilemma of tomotherapy. Int J Radiat Oncol Biol Phys 75(1):8–9

    Google Scholar 

  • Lomax AJ, Cella L, Weber D, Kurtz JM, Miralbell R (2003) Potential role of intensity-modulated photons and protons in the treatment of the breast and regional nodes. Int J Radiat Oncol Biol Phys 55(3):785–792

    PubMed  Google Scholar 

  • LoSasso T, Kutcher GJ (1995) Multi-leaf collimation vs. cerrobend blocks: analysis of geometric accuracy. Int J Radiat Oncol Biol Phys 32:499–506

    PubMed  CAS  Google Scholar 

  • LoSasso T, Chui CS, Kutcher GJ (1993) The use of a multi-leaf collimator for conformal radiotherapy of carcinomas of the prostate and nasopharynx. Int J Radiat Oncol Biol Phys 25:161–170

    PubMed  CAS  Google Scholar 

  • Lydon JM (1998) Photon dose calculations in homogeneous media for a treatment planning system using a collapsed cone superposition convolution algorithm. Phys Med Biol 43:1813–1822

    PubMed  CAS  Google Scholar 

  • Mackie TR, Scrimger JW, Battista JJ (1985) A convolution method of calculating dose for 15 MV X-rays. Med Phys 12:188–196

    PubMed  CAS  Google Scholar 

  • Mackie TR, Holmes T, Swerdloff S, Reckwerdt P, Deasy JO, Yang J, Paliwal B, Kinsella T (1993) Tomotherapy: a new concept for the delivery of dynamic conformal radiotherapy. Med Phys 20(6):1709–1719

    PubMed  CAS  Google Scholar 

  • Mackie TR, Reckwerdt P, McNutt T, Gehring M, Sanders C (1996) Photon beam dose computations. In: Palta J, Mackie TR (eds) Teletherapy: present and future. Advanced Medical Publishing, College Park, MD, pp 103–136

    Google Scholar 

  • Marbach JR, Sontag MR, Van Dyk J, Wolbarst AB (1994) Management of radiation oncology patients with implanted cardiac pacemakers: report of AAPM task group no. 34. Med Phys 21(1):85–90

    PubMed  CAS  Google Scholar 

  • Marks LB, Ten Haken RK, Martel MK (2010) Guest editor’s introduction to QUANTEC: a users guide. Int J Radiat Oncol Biol Phys 76(3, Suppl 1):S1–S2

    PubMed  Google Scholar 

  • Marshall M (1993) Three-field isocentric breast irradiation using asymmetric jaws and a tilt board. Radiother Oncol 28:228–232

    PubMed  CAS  Google Scholar 

  • Mehta M, Hoban P, Mackie TR (2009) Commissioning and quality assurance of RapidArc radiotherapy delivery system: in regard to Ling et al. (Int J Radiat Oncol Biol Phys 2008;72;575-581): absence of data does not constitute proof; the proof is in tasting the pudding. Int J Radiat Oncol Biol Phys 75(1), 4-6

    Google Scholar 

  • Mock U, Georg D, Bogner J, Auberger T, Potter R (2004) Treatment planning comparison of conventional, 3D conformal, and intensity-modulated photon (IMRT) and proton therapy for paranasal sinus carcinoma. Int J Radiat Oncol Biol Phys 58(1):147–154

    PubMed  Google Scholar 

  • Mouton J, Huag A, Bridier A, Dodinot B, Eschwege F (2002) Influence of high-energy photon beam irradiation on pacemaker operation. Phys Med Biol 47(16):2879–2893

    PubMed  CAS  Google Scholar 

  • NHLBI: national heart, lung, and blood institute (NHLBI): what is a pacemakerr? http://www.nhlbi.nih.gov/health/dci/Diseases/pace/pace_whatis.html (2011a)

  • NHLBI: national heart, lung, and blood institute (NHLBI): what is an implantable cardioverter defibrillator? http://www.nhlbi.nih.gov/health/dci/Diseases/icd/icd_whatis.html (2011b)

  • Nillson B, Schnell S (1976) Build-up effects at air cavities measured with thin thermoluminescent dosimeters. Acta Radiol Ther, Phys Biol 15:427–432

    Google Scholar 

  • Niroomand-Rad A, Cumberlin RL (1993) Measured dose to ovaries and testes from Hodgkin’s fields and determination of genetically significant dose. Int J Radiat Oncol Biol Phys 25(4):745–751

    PubMed  CAS  Google Scholar 

  • Ostwald PM, Kron T, Hamilton CS (1996) Assessment of mucosal underdosing in larynx irradiation. Int J Radiat Oncol Biol Phys 36(1):181–187

    PubMed  CAS  Google Scholar 

  • Palta JR, Ayyangar KM, Suntharalingam N (1988) Dosimetric characteristics of a 6 MV photon beam from a linear accelerator with asymmetric collimator jaws. Int J Radiat Oncol Biol Phys 14:383–387

    PubMed  CAS  Google Scholar 

  • Palta JR, Yeung DK, Frouhar V (1996) Dosimetric considerations for a multileaf collimator system. Med Phys 23(7):1219–1224

    PubMed  CAS  Google Scholar 

  • Papanikolaou N, Battista JJ, Boyer AL, Kappas C, Klein EE, Mackie TR, Sharpe M, Van Dyk J (2004) AAPM report 85: tissue inhomogeneity corrections for megavoltage photon beams. Report of the AAPM radiation therapy committee task group 65

    Google Scholar 

  • Pawlicki T, Yoo S, Court LE, McMillan SK, Rice RK, Russell JD, Pacyniak JM, Woo MK, Basran PS, Shoales J, Boyer AL (2008) Moving from IMRT QA measurements toward independent computer calculations using control charts. Radioth Oncol 89(3):330–337

    Google Scholar 

  • Petti PL, Siddon RL (1985) Effective wedge angles with a universal wedge. Phys Med Biol 30(9):985–991

    PubMed  CAS  Google Scholar 

  • Petti PL, Chuang CF, Smith V, Larson DA (2006) Peripheral doses in CyberKnife radiosurgery. Med Phys 33(6):1770–1779

    PubMed  Google Scholar 

  • Podgorsak EB, Metcalfe P, Van Dyk J (1999) Medical accelerators. In: Van Dyk J (ed) The modern technology of radiation oncology. Medical Physics Publishing, Madison, WI, pp 349–435

    Google Scholar 

  • Powers WE, Kinzie JJ, Demidecki AJ, Bradfield JS, Feldman A (1973) A new system of field shaping for external-beam radiation therapy. Radiology 108:407–411

    PubMed  CAS  Google Scholar 

  • Powlis WD, Smith AR, Cheng E, Galvin JM, Villari F, Bloch P, Kligerman MM (1993) Initiation of multileaf collimator conformal radiation therapy. Int J Radiat Oncol Biol Phys 25:171–179

    PubMed  CAS  Google Scholar 

  • Purdy JA (1986) Buildup/surface dose and exit dose measurements for 6 MV linear accelerator. Med Phys 13:259

    PubMed  CAS  Google Scholar 

  • Purdy JA (2008) Dose to normal tissues outside the radiation therapy patient’s treated volume: a review of different radiation therapy techniques. Health Phys 95(5):666–676

    PubMed  CAS  Google Scholar 

  • Ramsey CR, Seibert R, Mahan SL, Desai D, Chase D (2006) Out-of-field dosimetry measurements for a helical tomotherapy system. J Appl Clin Med Phys 7(3):1–11

    PubMed  Google Scholar 

  • Rao M, Yang W, Chen F, Sheng K, Ye J, Mehta V, Shepard D, Cao D (2010) Comparison of Elekta VMAT with helical tomotherapy and fixed field IMRT: plan quality, delivery efficiency and accuracy. Med Phys 37(3):1350–1359

    PubMed  Google Scholar 

  • Rice RK, Mijnheer BJ, Chin LM (1988) Benchmark measurements for lung dose corrections for X-ray beams. Int J Radiat Oncol Biol Phys 15:399–409

    PubMed  CAS  Google Scholar 

  • Rosenberg I, Chu JC, Saxena V (1995) Calculation of monitor units for a linear accelerator with asymmetric jaws. Med Phys 22:55–61

    PubMed  CAS  Google Scholar 

  • Rosenow UF, Valentine ES, Davis LW (1990) A technique for treating local breast cancer using a single set-up point and asymmetric collimation. Int J Radiat Oncol Biol Phys 19:183–188

    PubMed  CAS  Google Scholar 

  • Rustgi SN, Rodgers JE (1985) Improvement in the buildup characteristics of a 10 MV photon beam with electron filters. Phys Med Biol 30:587

    Google Scholar 

  • Schulz-Ertner D, Jakel O, Schlegel W (2006) Radiation therapy with charged particles. Sem Radiat Oncol 16(4):249–259

    Google Scholar 

  • Sewchand W, Khan FM, Williamson J (1978) Variations in depth-dose data between open and wedge fields for 4 MV X-rays. Radiology 127:789–792

    PubMed  CAS  Google Scholar 

  • Sibata CH, Mota HC, Hoggins PD, Gaissen D, Saxton JP, Shin KH (1990) Influence of hip prostheses on high energy photon dose distribution. Int J Radiat Oncol Biol Phys 18:455–461

    PubMed  CAS  Google Scholar 

  • Siddon RL, Tonnesen GL, Svensson GK (1981) Three-field techniques for breast treatment using a rotatable half-beam block. Int J Radiat Oncol Biol Phys 7:1473–1477

    PubMed  CAS  Google Scholar 

  • Siebers JV, Keall PJ, Kawrakow I (2005) Monte Carlo dose calculations for external beam radiation therapy. In: Dyk JV (ed) The modern technology of radiation oncology—a compendium for medical physicists and radiation oncologists (volume 2). Medical Physics Publishing, Madison, WI, pp 91–130

    Google Scholar 

  • Slessinger ED, Gerber RG, Harms WB, Klein EE, Purdy JA (1993) Independent collimator dosimetry for a dual photon energy linear accelerator. Int J Radiat Oncol Biol Phys 27(3):681–687

    PubMed  CAS  Google Scholar 

  • Sohn JW, Suh JH, Pohar S (1995) A method for delivering accurate and uniform radiation dosages to the head and neck with asymmetric collimators and a single isocenter. Int J Radiat Oncol Biol Phys 32:809–814

    PubMed  CAS  Google Scholar 

  • Solan AN, Solan MJ, Bednarz G, Goodkin MB (2004) Treatment of patients with cardiac pacemakers and implantable cardioverter-defibrillators during radiotherapy. Int J Radiat Oncol Biol Phys 59(3):897–904

    PubMed  Google Scholar 

  • Sontag MR, Cunningham JR (1978) The equivalent tissue-air ratio needed for making absorbed dose calculations in a heterogeneous medium. Radiology 129:787–794

    PubMed  CAS  Google Scholar 

  • Stern RL, Heaton R, Fraser MW, Goddu SM, Kirby TH, Lam KL, Molineu A, Zhu TC (2011) Verification of monitor unit calculations for non-IMRT clinical radiotherapy: report of AAPM task group 114. Med Phys 38(1):504–530

    PubMed  Google Scholar 

  • Stewart J, Jackson A (1975) The steepness of the dose response curve for both tumor cure and normal tissue injury. Laryngoscope 85:1107–1111

    PubMed  CAS  Google Scholar 

  • Stovall M, Blackwell CR, Cundiff J, Novack DH, Palta JR, Wagner LK, Webster EW, Shalek RJ (1995) Fetal dose from radiotherapy with photon beams: report of AAPM radiation therapy committee task group no. 36. Med Phys 22:63–82

    PubMed  CAS  Google Scholar 

  • Sundar S, Symonds RP, Deehan C (2005) Radiotherapy to patients with artificial cardiac pacemakers. Cancer Treat Rev 31(6):474–486

    PubMed  CAS  Google Scholar 

  • Takahaski S (1965) Conformation radiotherapy-rotation techniques as applied to radiography and radiotherapy of cancer. Acta Radiol Suppl 242:1–142

    Google Scholar 

  • Thatcher M (1984) Perturbation of Cobalt 60 radiation doses by metal objects implanted during oral and maxillofactial surgery. J Oral Maxillofac Surg 42:108–110

    Google Scholar 

  • van der Giessen PH (1996) A simple and generally applicable method to estimate the peripheral dose in radiation teletherapy with high energy X-rays or gamma radiation. Int J Radiat Oncol Biol Phys 35(5):1059–1068

    PubMed  Google Scholar 

  • van der Giessen P-H (2001) Peridose, a software program to calculate the dose outside the primary beam in radiation therapy. Radiother Oncol 58(2):209–213

    PubMed  Google Scholar 

  • Van Dyk J, Jenkin RDT, Leung PMK, Cunningham JR (1977) Medulloblastoma: treatment technique and radiation dosimetry. Int J Radiat Oncol Biol Phys 2:993–1005

    PubMed  Google Scholar 

  • Verhaegen F, Seuntjens J (2003) Monte Carlo modelling of external radiotherapy photon beams (Topical Review). Phys Med Biol 48(21):R107–R164

    PubMed  CAS  Google Scholar 

  • Williams P, Hounsell R (2001) X-ray leakage considerations for IMRT (Correspondence). Br J Radiol 74:98–102

    PubMed  CAS  Google Scholar 

  • Williamson TJ (1979) A technique for matching orthogonal megavoltage fields. Int J Radiat Oncol Biol Phys 5:111

    PubMed  CAS  Google Scholar 

  • Xu XG, Bednarz B, Paganetti H (2008) A review of dosimetry studies on external-beam radiation treatment with respect to second cancer induction. Phys Med Biol 53(13):R193–R241

    PubMed  Google Scholar 

  • Yang Y, Xing L, Li JG, Palta J, Chen Y, Luxton G, Boyer A (2003) Independent dosimetric calculation with inclusion of head scatter and MLC transmission for IMRT. Med Phys 30(11):2937–2947

    PubMed  CAS  Google Scholar 

  • Yang J, Li J, Chen L, Price R, McNeeley S, Qin L, Wang L, Xiong W, Ma CM (2005) Dosimetric verification of IMRT treatment planning using Monte Carlo simulations for prostate cancer. Phys Med Biol 50(5):869–878

    PubMed  CAS  Google Scholar 

  • Young MEJ, Gaylord JD (1970) Experimental tests of corrections for tissue inhomogeneities in radiotherapy. Br J Radiol 43:349–355

    PubMed  CAS  Google Scholar 

  • Yu CX (1995) Intensity modulated arc therapy with dynamic multileaf collimation: an alternative to tomotherapy. Phys Med Biol 40(9):1435–1449

    PubMed  CAS  Google Scholar 

  • Yu CX, Tang G (2011) Intensity-modulated arc therapy: principles, technologies and clinical implementation. Phys Med Biol 56(5):R31–R54

    PubMed  Google Scholar 

  • Zhu Y, Boyer AL, Desorby GE (1992) Dose distributions of X-ray fields as shaped with multileaf collimators. Phys Med Biol 37:163–173

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Purdy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Purdy, J.A., Poortmans, P., Perez, C.A., Levitt, S.H. (2011). Physics of Radiotherapy Planning and Delivery. In: Levitt, S., Purdy, J., Perez, C., Poortmans, P. (eds) Technical Basis of Radiation Therapy. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2011_320

Download citation

  • DOI: https://doi.org/10.1007/174_2011_320

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11571-4

  • Online ISBN: 978-3-642-11572-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics