Skip to main content

Intensity-Modulated Radiation Therapy and Volumetric-Modulated Arc Therapy for Lung Cancer

  • Chapter
  • First Online:
Advances in Radiation Oncology in Lung Cancer

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 1782 Accesses

Abstract

Per 2010 estimates by the American Cancer Society, lung cancer has both the highest incidence and mortality of all malignancies in the United States. Overall, outcomes, though improving, remain poor, and radiation therapy (RT) is an important mainstay of locoregional therapy. The technical challenges of delivering biologically effective doses of RT capable of achieving adequate local control are many and relate to target definition, respiratory tumor motion, tissue heterogeneities and normal tissue tolerance. Advancements over standard two-dimensional RT, including three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), and more recently volumetrically-modulated arc therapy (VMAT), in addition to four-dimensional (4D) CT simulation and planning techniques, using biological targeting via positron emission tomography (PET) and 2 and 3-D image-guided delivery methods have aided the path toward achieving radiation dose escalation while concurrently sparing organs at risk (OAR) and reducing target miss. IMRT planning studies have shown improvements over 3D-CRT with respect to tumor dose escalation and OAR dose, particularly for locally-advanced disease. This, however, is potentially at the cost of longer treatment times, monitor units, and volume of lung receiving low dose, with some concern for higher pneumonitis rates. Commercial planning software and quality assurance measures now allow for dynamically delivered VMAT, which similarly may achieve higher tumor dose and lower OAR dose while concurrently reducing treatment times and monitor units and increasing target conformality. Though IMRT and VMAT planning studies and short-term, single-institution clinical data are encouraging, long-term, multi-institutional studies comparing these techniques to 2D or 3D-CRT in terms of locoregional control, survival, and quality of life are lacking but should be supported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the purposes of this chapter, the abbreviation “IMRT” by default will refer only to fixed-field IMRT, whereby intensity-modulated beams are delivered from multiple discrete, fixed angles (using segmental or dynamic MLCs) without any gantry rotation during beam-on time, thus excluding techniques such as tomotherapy, IMAT, VMAT, etc. The unabbreviated term “intensity-modulated radiation therapy” may, however, confer a broader connotation.

  2. 2.

    Notably, distinctions for IMAT and VMAT are not universally agreed upon. The term “arc therapy” will refer both to IMAT and VMAT. As the term “VMAT” corresponds to technological advances of IMAT, Yu et al. refer to VMAT expressly as IMAT. Further, VMAT technology has been trademarked with Elekta (VMAT™), Varian (RapidArc™), and Philips (SmartArc™) and has also been referred to as “arc-modulated radiation therapy” (AMRT). Here forward, the terms “volumetric-modulated arc therapy” and “VMAT” will refer generically to the advanced IMAT technology inclusive of variable gantry velocity and variable dose rate and exclusive of arc therapy delivered with uniform dose rate and uniform gantry velocity, which will be referred to as intensity-modulated arc therapy or “IMAT.” Furthermore, tomotherapy will be considered its own modality (not to be incorporated by default with the terms “IMRT,” “arc therapy,” “IMAT,” or “VMAT.”

References

  • American Cancer Society: Cancer Facts And Figures (2010) American Cancer Society, Atlanta, Ga. http://www.cancer.org/acs/groups/content/@nho/documents/document/acspc-024113.pdf. Accessed 19 Feb 2011

  • Armstrong JG, Minsky BD (1989) Radiation therapy for medically inoperable stage I, II non-small-cell lung cancer. Cancer Treat Rev 16(4):247–255

    Article  PubMed  CAS  Google Scholar 

  • Arriagada R, Le Chevalier T, Quoix E, Ruffie P, de Cremoux H, Douillard JY, Tarayre M, Pignon JP, Laplanche A (1991) ASTRO (American Society for Therapeutic Radiology and Oncology) plenary: effect of chemotherapy on locally advanced non-small-cell lung carcinoma: a randomized study of 353 patients. GETCB (Groupe d’Etude et Traitement des Cancers Bronchiques), FNCLCC (Féderation Nationale des Centres de Lutte contre le Cancer) and the CEBI trialists. Int J Radiat Oncol Biol Phys 20:1183–1190

    Article  PubMed  CAS  Google Scholar 

  • Ataman ÖU, Bentzen SM, Saunders MI, Dische S (2001) Cancer research campaign failure-specific prognostic factors after continuous hyperfractionated accelerated radiotherapy (CHART) or conventional radiotherapy in locally advanced non-small-cell lung cancer: a competing risks analysis. Br J Cancer 85(8):1113–1118. doi:10.1054/bjoc.2001.2049

    Article  PubMed  CAS  Google Scholar 

  • Bedford JL, Warrington AP (2009) Commissioning of volumetric modulated arc therapy (VMAT). Int J Radiat Oncol Biol Phys 73:537–545. doi:10.1016/j.ijrobp.2008.08.055

    Article  PubMed  Google Scholar 

  • Bedford JL, Young K (2009) Evaluation of the delta4 phantom for IMRT and VMAT verification. Phys Med Biol 54:N167–N176. doi:10.1088/0031-9155/54/9/N04

    Article  PubMed  Google Scholar 

  • Bedford J, Nordmark Hansenv V, McNair H, Aitken AH, Brock JEC, Warrington AP, Brada M (2008) Treatment of lung cancer using volumetric modulated arc therapy and image-guidance: a case study. Acta Oncol 47:1438–1443. doi:10.1080/02841860802282778

    Article  PubMed  CAS  Google Scholar 

  • Bortfield T (2006) IMRT: a review and preview. Phys Med Biol 51:R363–R379. doi:10.1088/0031-9155/51/13/R21

    Article  Google Scholar 

  • Bradley J et al (2004) Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 59:78–86

    Article  PubMed  Google Scholar 

  • Bradley et al (2007) RTOG 0617 a randomized phase III comparison of standard-dose (60 Gy) versus high dose (74 Gy) conformal radiotherapy with concurrent and consolidation carboplatin/paclitaxel ± cetuximab (IND #103444) in patients with stage IIIA/IIIB non-small-cell lung cancer. http://www.rtog.org/members/protocols/0617/0617.pdf. Accessed 4 Feb 2011

  • Bradley J, Graham MV, Winter K, Purdy JA, Komaki R, Roa WH, Ryu JK, Bosch W, Emami B (2005) Toxicity and outcome results of RTOG 9311: a phase I–II dose-escalation study using three-dimensional conformal radiotherapy in patients with inoperable non-small-cell lung carcinoma. Int J Radiat Oncol Biol Phys 61:318–328. doi:10.1016/j.ijrobp.2004.06.260

    Article  PubMed  Google Scholar 

  • Brahme A (1988) Optimization of stationary and moving beam radiation therapy. Radiother Oncol 12:129–140

    Article  PubMed  CAS  Google Scholar 

  • Bral S, Duchateau M, Versmessen H, Engels B, Tournel K, Vinh-Hung V, De Ridder M, Schallier D, Storme G (2010) Toxicity and outcome results of a class solution with moderately hypofractionated radiotherapy in inoperable stage III non-small cell lung cancer using helical tomotherapy. Int J Radiat Oncol Biol Phys 77:1352–1359. doi:10.1016/j.ijrobp.2009.06.075

    Article  PubMed  Google Scholar 

  • Cao D, Holmes TW, Afghan M, Shepard DM (2007) Comparison of plan quality provided by intensity-modulated arc therapy and helical tomotherapy. Int J Radiat Oncol Biol Phys 69:240–250. doi:10.1016/j.ijrobp.2007.04.073

    Article  PubMed  Google Scholar 

  • Cao D, Afghan MK, Ye J, Chen F, Shepard DM (2009) A generalized inverse planning tool for volumetric-modulated arc therapy. Phys Med Biol 54:6725–6738. doi:10.1088/0031-9155/54/21/018

    Article  PubMed  Google Scholar 

  • Chapet O, Thomas E, Kessler ML, Fraass BA, Ten Haken RK (2005) Esophagus sparing in lung tumor irradiation: an EUD-based optimization technique. Int J Radiat Oncol Biol Phys 63:179–187. doi:10.1016/j.ijrobp.2005.01.028

    Article  PubMed  Google Scholar 

  • Chapet O, Fraass BA, Ten Haken RK (2006) Multiple fields may offer better esophagus sparing without increased probability of lung toxicity in optimized IMRT of lung tumors. Int J Radiat Oncol Biol Phys 65:255–265. doi:10.1016/j.ijrobp.2005.12.028

    Article  PubMed  Google Scholar 

  • Choy H, Akerley W, Safran H, Graziano S, Chung C, Williams T, Cole B, Kennedy T (1998) Multiinstitutional phase II trial of paclitaxel carboplatin and concurrent radiation therapy for locally advanced non-small-cell lung cancer. J Clin Oncol 16:3316–3322

    PubMed  CAS  Google Scholar 

  • Clark GM, Popple RA, Young PE, Fiveash JB (2010) Feasibility of single-isocenter volumetric modulated arc radiosurgery for treatment of multiple brain metastases. Int J Radiat Oncol Biol Phys 76:296–302. doi:10.1016/j.ijrobp.2009.05.029

    Article  PubMed  Google Scholar 

  • Coleman RE, Tesar RD (1997) Clinical PET: Are we ready? J Nucl Med 38:16N–24N

    PubMed  CAS  Google Scholar 

  • Cox JD, Stetz J, Pajak TF (1995) Toxicity criteria of the radiation therapy oncology group (RTOG) and the European Organization For Research And Treatment Of Cancer (EORTC). Int J Radiat Oncol Biol Phys 31:1341–1346. doi:10.1016/0360-3016(95)00060-C

    Article  PubMed  CAS  Google Scholar 

  • Craft D, Halabi T, Shih HA, Bortfeld T (2007) An approach for practical multiobjective IMRT treatment planning. Int J Radiat Oncol Biol Phys 69:1600–1607. doi:10.1016/j.ijrobp.2007.08.019

    Article  PubMed  Google Scholar 

  • Curran W, Scott C, Langer C, Komaki R, Lee JS, Hauser S, Movsas B, Wasserman T, Sause W, Cox JD (2003) Long-term benefit is observed in a phase III comparison of sequential versus concurrent chemo-radiation for patients with unresectable NSCLC: RTOG 9410 [Abstract 2499]. Proc Am Soc Clin Oncol 22:621a

    Google Scholar 

  • Dosoretz DE, Katin MJ, Blitzer PH et al (1996) Medically inoperable lung carcinoma: the role of radiation therapy. Semin Radiat Oncol 6(2):98–104

    Article  PubMed  Google Scholar 

  • Dwamena BA, Sonnad SS, Angobaldo JO, Wahl RL (1999) Metastases from non-small-cell lung cancer: mediastinal staging in the 1990s—meta-analytic comparison of PET and CT. Radiology 213(2):530–536

    PubMed  CAS  Google Scholar 

  • Edelman et al (2010) RTOG 0839 randomized phase II study of pre-operative chemoradiotherapy ± panitumumab (IND #110152) followed by consolidation chemotherapy in potentially operable locally-advanced (stage IIIA, N2+), non-small-cell lung cancer. http://www.rtog.org/members/protocols/0839/0839.pdf. Accessed 19 Feb 2011

  • Erdi YE et al (2002) Radiotherapy treatment planning for patients with non-small-cell lung cancer using positron emission tomography (PET). Radiother Oncol 62:51–60

    Article  PubMed  Google Scholar 

  • Ezzell GA, Galvin JM, Low D, Palta JR, Rosen I, Sharpe MB, Xia P, Xiao Y, Xing L, Yu CX (2003) Guidance document on delivery, treatment planning, and clinical implementation of IMRT: report of the IMRT subcommittee of the AAPM radiation therapy committee. Med Phys 30:2089–2115. doi:10.1118/1.1591194

    Article  PubMed  Google Scholar 

  • Fay M, Tan A, Fisher R, Mac Manus M, Wirth A, Ball D (2005) Dose–volume histogram analysis as predictor of radiation pneumonitis in primary lung cancer patients treated with radiotherapy. Int J Radiat Oncol Biol Phys 66:1355–1363. doi:10.1016/j.ijrobp.2004.08.025

    Article  Google Scholar 

  • Furuse K, Fukuoka M, Kawahara M, Nishikawa H, Takada Y, Kudoh S, Katagami N, Ariyoshi Y (1999) Phase III study of concurrent versus sequential thoracic radiotherapy in combination with mitomycin, vindesine, and cisplatin in unresectable stage III non-small-cell lung cancer. J Clin Oncol 17:2692–2699

    PubMed  CAS  Google Scholar 

  • Giraud P et al (2001) CT and (18) F-deoxyglucose (FDG) image fusion for optimization of conformal radiotherapy of lung cancers. Int J Radiat Oncol Biol Phys 49:1249–1257

    Article  PubMed  CAS  Google Scholar 

  • Gopal R, Starkschall G, Tucker SL, Cox JD, Liao Z, Hanus M, Kelly JF, Stevens CW, Komaki R (2003) Effects of radiotherapy and chemotherapy on lung function in patients with non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 56:114–120. doi:10.1016/S0360-3016(03)00077-4

    Article  PubMed  Google Scholar 

  • Grills IS, Yan D, Martinez AA, Vicini FA, Wong JW, Kestin LL (2003) Potential for reduced toxicity and dose-escalation in the treatment of inoperable non-small-cell lung cancer: a comparison of intensity-modulated radiation therapy (IMRT), 3D-conformal radiation, and elective nodal irradiation. Int J Radiat Oncol Biol Phys 57:875–890. doi:10.1016/S0360-3016(03)00743-0

    Article  PubMed  Google Scholar 

  • Grills IS, Fitch DL, Goldstein NS, Yan D, Chmielewski GW, Welsh RJ, Kestin LL (2007) Clinicopathologic analysis of microscopic extension in lung adenocarcinoma: defining clinical target volume for radiotherapy. Int J Radiat Oncol Biol Phys 69:334–341. doi:10.1016/j.ijrobp.2007.03.023

    Article  PubMed  Google Scholar 

  • Grills IS, Hope AJ, Guckenberger M, Kestin LL, Werner-Wasik M, Yan D, Sonke J, Bissonnette J, Xiao Y, Belderbos J (2010a) A Collaborative Analysis of Stereotactic LungRadiotherapy (Lung SBRT) Outcomes for Stage I Non-small Cell Lung Cancer (NSCLC) using Daily Online Cone-beam CT Image-guided Radiotherapy (CBCT-IGRT) [Abstract 30] Int J Radiat Oncol Biol Phys 78:S14. doi: 10.1016/j.ijrobp.2010.07.075

  • Grills IS, Mangona VS, Welsh R, Chmielewski G, McInerney E, Martin S, Wloch J, Ye H, Kestin LL (2010b) Outcomes after stereotactic lung radiotherapy or wedge resection for stage I non-small-cell lung cancer. J Clin Oncol 28:928-935. doi: 10.1200/JCO.2009.25.0928

    Google Scholar 

  • Guckenberger M, Richter A, Krieger T, Wilbert J, Baier K, Flentje M (2009) Is a single arc sufficient in volumetric-modulated arc therapy (VMAT) for complex-shaped target volumes? Radiother Oncol 93:259–265. doi:10.1016/j.radonc.2009.08.015

    Article  PubMed  Google Scholar 

  • Harsolia A, Hugo GD, Kestin LL, Grills IS, Yan D (2008) Dosimetric advantages of four-dimensional adaptive image-guided radiotherapy for lung tumors using online cone-beam computed tomography. Int J Radiat Oncol Biol Phys 70:582–589. doi:10.1016/j.ijrobp.2007.08.078

    Article  PubMed  Google Scholar 

  • Hayman JA, Martel MK, Ten Haken RK, Normolle DP, Todd RF III, Littles JF, Sullivan MA, Possert PW, Turrisi AT, Lichter AS (2001) Dose-escalation in non-small-cell lung cancer using three-dimensional conformal radiation therapy: update of a phase I trial. J Clin Oncol 19:127–136

    PubMed  CAS  Google Scholar 

  • Holt A, van Vliet-Vroegindeweij C, Mans A, Belderbos JS, Damen EMF (2011) Volumetric-modulated arc therapy for stereotactic body radiotherapy of lung tumors: a comparison with intensity-modulated radiotherapy techniques. Int J Radiat Oncol Biol Phys (ePub 2011 Feb 5). doi:10.1016/j.ijrobp.2010.09.014

  • Hugo GD, Yan D, Liang J (2007a) Population and patient-specific target margins for 4D adaptive radiotherapy to account for intra- and inter-fraction variation in lung tumour position. Phys Med Biol 52:257. doi:10.1088/0031-9155/52/1/017

    Google Scholar 

  • Hugo GD, Liang J, Campbell J, Yan D (2007b) On-line target position localization in the presence of respiration: a comparison of two methods. Int J Radiat Oncol Biol Phys 69:1634-1641. doi:10.1016/j.ijrobp.2007.08.023

    Google Scholar 

  • Kaskowitz L, Graham MV, Emami B, Halverson KJ, Rush C (1993) Radiation therapy alone for stage I non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 7(3):517–523

    Article  Google Scholar 

  • Lau D, Leigh B, Gandara D, Edelman M, Morgan R, Israel V, Lara P, Wilder R, Ryu J, Doroshow J (2001) Twice weekly paclitaxel and weekly carboplatin with concurrent thoracic irradiation followed by carboplatin/paclitaxel consolidation for stage III non-small-cell lung cancer. a California Cancer Consortium phase II trial. J Clin Oncol 19:442–447

    PubMed  CAS  Google Scholar 

  • Lievens Y, De Wever W, Stroobants S, Van den Heuvel F (2011) Intensity-modulated radiotherapy for locally advanced non-small-cell lung cancer: a dose-escalation planning study. Int J Radiat Oncol Biol Phys 80:306–313. doi:10.1016/j.ijrobp.2010.06.025

    Article  PubMed  Google Scholar 

  • Liu HH, Wang X, Dong L et al (2004) Feasibility of sparing lung and other thoracic structures with intensity-modulated radiotherapy for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 58:1268–1279

    Article  PubMed  Google Scholar 

  • Liu HH, Jauregui M, Zhang X, Wang X, Dong L, Mohan R (2006) Beam angle optimization and reduction for intensity-modulated radiation therapy of non-small-cell lung cancers. Int J Radiat Oncol Biol Phys 65:561–572. doi:10.1016/j.ijrobp.2006.01.033

    Article  PubMed  Google Scholar 

  • Luan S, Wang C, Cao D, Chen DZ, Shepard DM, Yu CX (2008) Leaf-sequencing for intensity-modulated arc therapy using graph algorithms. Med Phys 35:61–69. doi:10.1118/1.2818731

    Article  PubMed  Google Scholar 

  • Mah K et al (2002) The impact of (18)FDG-PET on target and critical organs in CT-based treatment planning of patients with poorly defined non-small-cell lung carcinoma: a prospective study. Int J Radiat Oncol Biol Phys 52:339–350

    Article  PubMed  Google Scholar 

  • Matuszak MM, Yan D, Grills IS, Martinez A (2010) Potential impact of volumetric modulated arc therapy on the planning and delivery of radiation therapy. Int J Radiat Oncol Biol Phys 77:608–616. doi:10.1016/j.ijrobp.2009.08.032

    Article  PubMed  Google Scholar 

  • Mayo CS, Urie MM, Fitzgerald TJ, Ding L, Lo YC, Bogdanov M (2008) Hybrid IMRT for treatment of cancers of the lung and esophagus. Int J Radiat Oncol Biol Phys 71:1408–1418. doi:10.1016/j.ijrobp.2007.12.008

    Article  PubMed  Google Scholar 

  • McDermott PN, Orton CG (2010) The physics and technology of radiation therapy. Madison, Wisconsin

    Google Scholar 

  • McGee MC, Grills IS, Ionascu D, Wloch J, Martin S, Margolis J, Welsh R, Chmielewski G, Yan D, Kestin LL (2010) Feasibility and toxicity of dose-escalated 4D-adaptive image-guided radiotherapy (IGRT) for non-small-cell lung cancer (NSCLC) [Abstract 2706]. Int J Radiat Oncol Biol Phys 78:S520. doi:10.1016/j.ijrobp.2010.07.1214

    Article  Google Scholar 

  • McGrath SD, Matuszak MM, Yan D, Kestin LL, Martinez AA, Grills IS (2010) Volumetric modulated arc therapy for delivery of hypofractionated stereotactic lung radiotherapy: a dosimetric and treatment efficiency analysis. Radiother Oncol 95:153–157. doi:10.1016/j.radonc.2009.12.039

    Article  PubMed  Google Scholar 

  • Mohammed N, Kestin LL, Grills IS, Battu M, Fitch DL, Wong CY, Margolis JH, Chmielewski GW, Welsh RJ (2011a) Rapid disease progression with delay in treatment of non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 79(2):466-72. doi: 10.1016/j.ijrobp.2009.11.029

    Google Scholar 

  • Mohammed N, Grills IS, Wong CY, Galerani AP, Chao K, Welsh R, Chmielewski G, Yan D, Kestin LL (2011b) Radiographic and metabolic response rates following image-guided stereotactic radiotherapy for lung tumors. Radiother Oncol 99:18-22. doi: 10.1016/j.radonc.2011.03.003

    Google Scholar 

  • Murshed H, Liu HH, Liao Z, Barker JL, Wang X, Tucker SL, Chandra A, Guerrero T, Stevens C, Chang JY, Jeter M, Cox JD, Komaki R, Mohan R (2004) Dose and volume reduction for normal lung using intensity modulated radiotherapy for advanced stage non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 58:1258–1267. doi:10.1016/j.ijrobp.2003.09.086

    Article  PubMed  Google Scholar 

  • Narayan S, Henning GT, Ten Haken RK, Sullivan MA, Martel MK, Hayman JA (2004) Results following treatment to doses of 92.4 or 102.9 Gy on a phase I dose-escalation study for non-small-cell lung cancer. Lung Cancer 44:79–88. doi:10.1016/j.lungcan.2003.09.015

    Article  PubMed  Google Scholar 

  • Nelms BE, Rasmussen KH, Tomé WA (2010) Evaluation of a fast method of EPID-based dosimetry for intensity-modulated radiation therapy. J Appl Clin Med Phys 11(2):3185

    PubMed  Google Scholar 

  • Ong CL, Verbakel WF, Cuijpers JP, Slotman BJ, Lagerwaard FJ, Senan S (2010) Stereotactic radiotherapy for peripheral lung tumors: a comparison of volumetric modulated arc therapy with three other delivery techniques. Radiother Oncol 97(3):437–442. doi:10.1016/j.radonc.2010.09.027

    Article  PubMed  Google Scholar 

  • Onishi H, Shirato H, Nagata Y, Hiraoka M, Fujino M, Gomi K, Karasawa K, Hayakawa K, Niibe Y, Takai Y, Kimura T, Takeda A, Ouchi A, Hareyama M, Kokubo M, Kozuka T, Arimoto T, Hara R, Itami J, Araki T (2010) Stereotactic body radiotherapy (SBRT) for operable stage i non-small-cell lung cancer: Can SBRT Be Comparable to Surgery? Int J Radiat Oncol Biol Phys (ePub 2010 Jul 15). doi:10.1016/j.ijrobp.2009.07.1751

  • Otto K (2008) Volumetric modulated arc therapy: IMRT in a single gantry arc. Med Phys 35:310–317. doi:10.1118/1.2818738

    Article  PubMed  Google Scholar 

  • Pisters KM (2000) The role of chemotherapy in early-stage (stage I and II) resectable non-small-cell lung cancer. Semin Radiat Oncol 10:274–279

    Article  PubMed  CAS  Google Scholar 

  • Ramsey C, Spencer K, Alhakeem R, Olive AL (2001) Leaf position error during conformal dynamic arc and intensity modulated arc treatments. Med Phys 28:67–72

    Article  PubMed  CAS  Google Scholar 

  • Rebueno NC, Welsh J (2009) Exploring the feasibility of dose-escalation with IMRT and the effects on normal tissue structures for thoracic malignancies [Abstract 2616]. Int J Radiat Oncol Biol Phys 75:S458–S459. doi:10.1016/j.ijrobp.2009.07.1048

    Article  Google Scholar 

  • Rengan R, Rosenzweig KE, Venkatraman E, Koutcher LA, Fox JL, Nayak R, Amols H, Yorke E, Jackson A, Ling CC, Leibel SA (2004) Improved local control with higher doses of radiation in large-volume stage III non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 60:741–747. doi:10.1016/j.ijrobp.2004.04.013

    Article  PubMed  Google Scholar 

  • Rosenzweig KE, Fox JL, Yorke E, Amols H, Jackson A, Rusch V, Kris MG, Ling CC, Leibel SA (2005) Results of a phase I dose-escalation study using three-dimensional conformal radiotherapy in the treatment of inoperable non-small-cell lung carcinoma. Cancer 103:2118–2127. doi:10.1002/cncr.21007

    Article  PubMed  Google Scholar 

  • Schallenkamp JM, Miller RC, Brinkmann DH, Foote T, Garces YI (2007) Incidence of radiation pneumonitis after thoracic irradiation: dose–volume correlates. Int J Radiat Oncol Biol Phys 67:410–416. doi:10.1016/j.ijrobp.2006.09.030

    Article  PubMed  Google Scholar 

  • Schwarz M, Alber M, Lebesque JV, Mijnheer BJ, Damen EMF (2005) Dose heterogeneity in the target volume and intensity-modulated radiotherapy to escalate the dose in the treatment of non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 62:561–570. doi:10.1016/j.ijrobp.2005.02.011

    Article  PubMed  Google Scholar 

  • Scorsetti M, Navarria P, Mancoso P, Alongi F, Castiglioni S, Cavina R, Cozzi L, Fogliata A, Pentimalli S, Tozzi A, Santoro A (2010) Large-volume unresectable locally-advanced non-small-cell lung cancer: acute toxicity and initial outcome results with rapid arc. Radiat Oncol 5:94. doi:10.1186/1748-717X-5-94

    Article  PubMed  Google Scholar 

  • Shaitelman SF, Grils IS, Liang J, Zhuang L, Mangona V, Yan D, Kestin LL (2009) A comprehensive dose–volume analysis of predictors of pneumonitis and esophagitis following radiotherapy for non-small-cell lung cancer (NSCLC) [Abstract 2636]. Int J Radiat Oncol Biol Phys 75:S468. doi:10.1016/j.ijrobp.2009.07.1068

    Article  Google Scholar 

  • Shi A, Zhu G, Wu H, Yu R, Li F, Xu B (2010) Analysis of clinical and dosimetric factors associated with severe acute radiation pneumonitis in patients with locally advanced non-small-cell lung cancer treated with concurrent chemotherapy and intensity-modulated radiotherapy. Radiat Oncol 12:35. doi:10.1186/1748-717X-5-35

    Article  Google Scholar 

  • Sura S, Gupta V, Yorke E, Jackson A, Amols H, Rosenzweig KE (2008) Intensity modulated radiation therapy (IMRT) for inoperable non-small-cell lung cancer: the Memorial Sloan-Kettering Cancer Center (MSKCC) experience. Radiother Oncol 87:17–23. doi:10.1016/j.radonc.2008.02.005

    Article  PubMed  Google Scholar 

  • Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van Glabbeke M, van Oosterom AT, Christian MC, Gwyther SG (2000) New guidelines to evaluate the response to treatment in solid tumor. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92(3):205–216. doi:10.1093/jnci/92.3.205

    Article  PubMed  CAS  Google Scholar 

  • Timmerman R, Paulus R, Galvin J, Michalski J, Straube W, Bradley J, Fakiris A, Bezjak A, Videtic G, Johnstone D, Fowler J, Gore E, Choy H (2010) Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA 303:1070–1076. doi:10.1001/jama.2010.261

    Article  PubMed  CAS  Google Scholar 

  • Ung YC et al (2000) Fusing 18-fluorodeoxyglucose (FDG)-hybrid PET to CT images significantly alters treatment planning in the radical treatment of non-small-cell carcinoma of the lung. Int J Radiat Oncol Biol Phys 52:339–350

    Google Scholar 

  • Wang S, Liao Z, Wei X, Liu HH, Tucker SL, Hu CS, Mohan R, Cox JD, Komaki R (2006) Analysis of clinical and dosimetric factors associated with treatment-related pneumonitis (TRP) in patients with non-small-cell lung cancer (NSCLC) treated with concurrent chemotherapy and three-dimensional conformal radiotherapy (3D-CRT). Int J Radiat Oncol Biol Phys 66:1399–1407. doi:10.1016/j.ijrobp.2006.07.1337

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Luan S, Tang G, Chen DZ, Earl MA, Yu CX (2008) Arc-modulated radiation therapy (AMRT): a single-arc form of intensity-modulated arc therapy. Phys Med Biol 53:6291–6303. doi:10.1088/0031-9155/53/22/002

    Article  PubMed  Google Scholar 

  • Welsh R, Grills IS, Deraniyagala R, Kestin L, Baschnagel A, Mangona V, Ye H, Chmielewski G (2010) Lobectomy, wedge resection, or stereotactic radiotherapy (SBRT) for stage I non-small-cell lung cancer: Which treatment yields the best outcome? [Abstract 1088]. Int J Radiat Oncol Biol Phys 78:S180. doi:10.1016/j.ijrobp.2010.07.438

    Article  Google Scholar 

  • Werner-Wasik M, Scott C, Graham ML, Smith C, Byhardt RW, Roach M III, Andras EJ (1999) Interfraction interval does not affect survival of patients with non-small-cell lung cancer treated with chemotherapy and/or hyperfractionated radiotherapy: a multivariate analysis of 1076 RTOG patients. Int J Radiat Oncol Biol Phys 44:327–331. doi:10.1016/S0360-3016(99)00031-0

    Article  PubMed  CAS  Google Scholar 

  • Willner J, Jost A, Baier K, Flentje M (2003) A little to a lot or a lot to a little? an analysis of pneumonitis risk from dose–volume histogram parameters of the lung in patients with lung cancer treated with 3D-conformal radiotherapy. Strahlenther Onkol 179:548–556

    Article  PubMed  Google Scholar 

  • Wolff D, Stieler F, Welzel G, Lorenz F, Abo-Madyan Y, Mai S, Herskind C, Polednik M, Steil V, Wenz F, Lohr F (2009) Volumetric modulated arc therapy (VMAT) vs. serial tomotherapy, step-and-shoot IMRT and 3D-conformal RT for treatment of prostate cancer. Radiother Oncol 93:226–233. doi:10.1016/j.radonc.2009.08.011

    Article  PubMed  Google Scholar 

  • Wong CY, Schmidt J, Bong JS, Chundru S, Kestin L, Yan D, Grills I, Gaskill M, Cheng V, Martinez AA, Fink-Bennett D (2007) Correlating metabolic and anatomic responses of primary lung cancers to radiotherapy by combined F-18 FDG PET-CT imaging. Radiat Oncol 23:18. doi:10.1186/1748-717X-2-18

    Article  Google Scholar 

  • Wulf J, Baier K, Mueller G, Flentje MP (2005) Dose-response in stereotactic irradiation of lung tumors. Radiother Oncol 77:83–87

    Article  PubMed  Google Scholar 

  • Yom SS, Liao Z, Liu HH, Tucker SL, Hu CS, Wei X, Wang X, Wang S, Mohan R, Cox JD, Komaki R (2007) Initial evaluation of treatment-related pneumonitis in advanced-stage non-small-cell lung cancer patients treated with concurrent chemotherapy and intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 68:94–102

    Article  PubMed  CAS  Google Scholar 

  • Yorke ED, Jackson A, Rosenzweig KE, Braban L, Leibel SA, Ling CC (2005) Correlation of dosimetric factors and radiation pneumonitis incidence for non-small-cell lung cancer (NSCLC) patients in a recently completed dose-escalation study. Int J Radiat Oncol Biol Phys 63:672–682. doi:10.1016/j.ijrobp.2005.03.026

    Article  PubMed  Google Scholar 

  • Yu CX (1995) Intensity-modulated arc therapy with dynamic multileaf collimation: an alternative to tomotherapy. Phys Med Biol 40:1435–1449. doi:10.1088/0031-9155/40/9/004

    Article  PubMed  CAS  Google Scholar 

  • Yu CX, Tang G (2011) Intensity-modulated arc therapy: principles, technologies and clinical implementation. Phys Med Biol 56:R31–R54. doi:10.1088/0031-9155/56/5/R01

    Article  PubMed  Google Scholar 

  • Yu CX, Symons MJ, Du MN, Martinez AA, Wong JW (1995) A method for implementing dynamic photon beam intensity modulation using independent jaws and multileaf collimator. Phys Med Bio 40:769–787. doi:10.1088/0031-9155/40/5/005

    Article  CAS  Google Scholar 

  • Zhang P, Hugo GD, Yan D (2008) Planning study comparison of real-time target tracking and four-dimensional inverse planning for managing patient respiratory motion. Int J Radiat Oncol Biol Phys 72:1221–1227. doi:10.1016/j.ijrobp.2008.07.025

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inga S. Grills .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grills, I.S., Mangona, V.S. (2011). Intensity-Modulated Radiation Therapy and Volumetric-Modulated Arc Therapy for Lung Cancer. In: Jeremic, B. (eds) Advances in Radiation Oncology in Lung Cancer. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2011_283

Download citation

  • DOI: https://doi.org/10.1007/174_2011_283

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19924-0

  • Online ISBN: 978-3-642-19925-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics