Skip to main content

Physical, Biological and Clinical Background for the Development of Light Ion Therapy

  • Chapter
  • First Online:
Book cover Technical Basis of Radiation Therapy

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 4188 Accesses

Abstract

The light ions have a unique role in the development of modern radiation therapy where biological optimized radiation quality and intensity-modulated radiation therapy are increasingly coming into clinical interest, not least through a systems biology approach to therapy optimization. The traditional dose distributional qualities of light ions like penumbra and depth dose are ideally suited for high-quality radiation therapy, and their radiation biological properties are even more important for eradicating large complex generally radiation resistant and/or hypoxic tumor volumes with minimal damage to surrounding normal tissues. The remaining challenge to a more wide spread clinical use of light ions are to improve the sensitivity and specificity of Molecular Tumor Imaging to more accurately localize the tumor tissues and their biological characteristics as well as to develop fast scanning systems that preserve the fundamental biological and physical advantages of the light ions. For optimal application it is essential to modulate the ion beams and select the best possible ion species depending on the molecular and anatomic properties of the tumor and that is where systems biology will play a key role in the future. For small hypoxic tumors the high-apoptotic induction at the Bragg peak of lithium ions is ideal, whereas large tumor masses may require carbon and sometimes even oxygen ions and large microscopically invasive tumors may be best treated by photons, electrons, protons and helium ions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ågren A, Brahme A, Turesson I (1990) Optimization of uncomplicated control for head and neck tumors. Int J Radiat Oncol Biol Phys 19:1077–1085

    Article  PubMed  Google Scholar 

  • Andisheh B, Bitaraf MA, Mavroidis P, Brahme A, Lind BK (2010) Vascular structure and binomial statistics for response modeling in radiosurgery of cerebral arteriovenous malformations. Phys Med Biol 55:2057–2067

    Article  PubMed  Google Scholar 

  • Blakely EA, Chang PY (2009) Biology of charged particles. Cancer J 15:271–284

    Article  PubMed  CAS  Google Scholar 

  • Brahme A (1979) Scanning system for charged and neutral particles. Swe Pat 7904360-0

    Google Scholar 

  • Brahme A (1982) Physical and biologic aspects on the optimum choice of radiation modality. Acta Radiol Oncol 21:469–479

    Article  PubMed  CAS  Google Scholar 

  • Brahme A (1984) Dosimetric precision requirements in radiation therapy. Acta Radiol Oncol 23:379–391

    Article  PubMed  CAS  Google Scholar 

  • Brahme A (1988) Optimization of stationary and moving beam radiation therapy techniques. Radiother Oncol 12:129–140

    Article  PubMed  CAS  Google Scholar 

  • Brahme A (2003) Biologically optimized 3-dimensional in vivo predictive assay based radiation therapy using positron emission tomography-computerized tomography imaging. Acta Oncol 42:123–136

    Article  PubMed  Google Scholar 

  • Brahme A (2004) Recent advances in light ion radiation therapy. Int J Radiat Oncol Biol Phys 58:603–616

    Article  PubMed  Google Scholar 

  • Brahme A (2005) Development of biologically optimized light ion therapy. Proceedings of the 7th international conference on time dose fractionation, Madison pp 50–67

    Google Scholar 

  • Brahme A (2009) Potential developments of light ion therapy: the ultimate conformal treatment modality. In: Tsujii H (ed) 1st NIRS international open laboratory workshop, November 17th 2008, Chiba, Japan, Rad Sci 52:8–31

    Google Scholar 

  • Brahme A (2011) Accurate description of the cell survival and biological effect at low and high dose and LET’s. J Rad Res 52:389–407

    Article  CAS  Google Scholar 

  • Brahme A, Kraepelien T, Svensson H (1980) Electron and photon beam characteristics from a 50 MeV racetrack microtron. Acta Radiol 19:305–319

    Article  CAS  Google Scholar 

  • Brahme A, Roos J-E, Lax I (1982) Solution of an integral equation encountered in rotation therapy. Phys Med Biol 27:1221–1229

    Article  PubMed  CAS  Google Scholar 

  • Brahme A, Eenmaa J, Lindbäck S, Montelius A, Wootton P (1983) Neutron beam characteristics of 50 MeV protons on beryllium with a continuously variable multileaf collimator. Radiat Ther Oncol 1:65–76

    CAS  Google Scholar 

  • Brahme A, Källman P, Lind BK (1989) Optimization of proton and heavy ion therapy using an adaptive inversion algorithm. Radiother Oncol 15:189–197

    Article  PubMed  CAS  Google Scholar 

  • Brahme A, Rydberg B, Blomqvist P (1997) Dual spatially correlated nucleosomal double strand breaks in cell inactivation. In: Goodhead DT, O′Neill P, Menzel HG, (eds) Microdosimetry: an interdisciplinary approach. The Royal Society of Chemistry, Cambridge pp 125–128

    Google Scholar 

  • Brahme A, Nilsson J, Belkic D (2001a) Biologically optimized radiation therapy. Nobel Conference 2000, Acta Oncol 40:725–734

    Google Scholar 

  • Brahme A, Lewensohn R, Ringborg U, Amaldi U, Gerardi F, Rossi S (2001b) Design of a centre for biologically optimized light ion therapy in Stockholm. Nucl Instrum Meth Phys Res B 184:569–588

    Article  CAS  Google Scholar 

  • Brahme A, Nyman P, Skatt B (2008) 4D laser camera for accurate patient positioning, collision avoidance, image fusion and adaptive approaches during diagnostic and therapeutic procedures. Med Phys 35:1670–1681

    Article  PubMed  Google Scholar 

  • Cera F, Cherubini R, Dalla Vecchia M, Favaretto S, Moschini G, Tiveron P, Belli M, Ianzini F, Levati L, Sapora O, Tabocchini M A, Simone G (1997) Cell inactivation, mutation and DNA damage induced by light ions: dependence on radiation quality. In: Goodhead DT, O′Neill P, Menzel HG (eds) Microdosimetry: an interdisciplinary approach. The Royal Society of Chemistry, Cambridge, pp 191–94

    Google Scholar 

  • Eklöf A, Brahme A (1999) Composit energy deposition kernels for focused point monodirectional photon beams. Phys Med Biol 44:1655–1668

    Article  PubMed  CAS  Google Scholar 

  • Furusawa Y, Fukutsu K, Aoki M, Itsukaichi H, Eguchi-Kasai K, Ohara H, Yatagai F, Kanai T, Ando K (2000) Inactivation of aerobic and hypoxic cells from three different cell lines by accelerated 3He-, 12C- and 20Ne-ion beams. Radiat Res 154:485–496

    Article  PubMed  CAS  Google Scholar 

  • Hall EJ, Giaccia AJ (2006) Radiobiology for the radiologist, 6th edn. Lippincott Williams&Wilkins, Philadelphia

    Google Scholar 

  • Källman P, Ågren A, Brahme A (1992a) Tumor and normal tissue responses to fractionated non uniform dose delivery. Int J Rad Biol 62:249–262

    Article  PubMed  Google Scholar 

  • Källman P, Lind BK, Brahme A (1992b) An algorithm for maximizing the probability of complication free tumour control in radiation therapy. Phys Med Biol 37:871–890

    Article  PubMed  Google Scholar 

  • Lazzeroni M, Brahme A (2011) Production of clinically useful positron emitter beams during carbon ion deceleration. Phys Med Biol 56:1585–1600

    Article  PubMed  CAS  Google Scholar 

  • Lind B, Brahme A (1985) Generation of desired dose distributions with scanned elementary beams by deconvolution methods. In: Proceedings of the VII ICMP, Espoo, Finland p 953

    Google Scholar 

  • Lind B, Brahme A (1987) Optimization of radiation therapy dose distributions using scanned photon beams. In: Bruinvis IAD, Van der Giessen PH, Van Kleffens HJ (eds) Proceedings of the 9th International Conference on Comp. in Rad. Therapy, Elsevier, Amsterdam pp 235–239

    Google Scholar 

  • Lind BK, Brahme A (2007) The radiation response of heterogeneous tumors. Phys Med 23:91–99

    Article  PubMed  Google Scholar 

  • Lind BK, Brahme A (2010) A systems biology approach to radiation therapy optimization. Radiat Environ Biophys 49:111–124

    Article  PubMed  Google Scholar 

  • Lind BK, Nilsson J, Löf J, Brahme A (2001) Generalization of the normalized dose-response gradient to non-uniform dose delivery. Nobel Conference 2000. Acta Oncol 40:718–724

    Google Scholar 

  • Lind BK, Persson LM, Edgren MR, Hedlöf I, Brahme A (2003) Repairable-conditionally repairable damage model based on dual Poisson processes. Radiat Res 160:366–375

    Article  PubMed  CAS  Google Scholar 

  • Lindborg L, Brahme A (1990) Influence of microdosimetric quantities on observed dose-response relationships in radiation therapy. Radiat Res 124(Suppl 1):S23–S28

    Article  PubMed  CAS  Google Scholar 

  • Näfstadius P, Brahme A, Nordell B (1984) Computer assisted dosimetry of scanned electron and photon beams. Radiother Oncol 2:261–269

    Article  PubMed  Google Scholar 

  • Nakamura Y (2004) Isolation of p53-target genes and their functional analysis. Cancer Sci 95:7–11

    Article  PubMed  CAS  Google Scholar 

  • Nilsson J, Lind BK, Brahme A (2002) Radiation response of hypoxic and generally heterogeneous tissues. Int J Radiat Biol 78:389–405

    Article  PubMed  CAS  Google Scholar 

  • Raju MR (1980) Heavy particle radiotherapy. Academic Press, London

    Google Scholar 

  • Ringborg U, Bergqvist D, Brorson B, Cavallin-Ståhl E, Ceberg J, Einhorn N, Frödin JE, Järhult J, Lamnevik G, Lindholm C, Littbrand B, Norlund A, Nylén U, Rosén M, Svensson H, Möller TR (2003) The Swedish Council on Technology Assessment in Health Care (SBU) systematic overview of radiotherapy for cancer including a prospective survey of radiotherapy practice in Sweden 2001–summary and conclusions. Acta Oncol 42:357–365

    Article  PubMed  Google Scholar 

  • Tilikidis A, Brahme A (1994) Microdosimetric description of beam quality and biological effectiveness in radiation therapy. Acta Oncol 33:457–469

    Article  PubMed  CAS  Google Scholar 

  • Vreede P, Brahme A (2009) Development of biologically optimized radiation therapy: Maximizing the apoptotic cell kill. Rad Sci 52(7):31–52

    Google Scholar 

  • Zhou SA, Brahme A (2008) Development of phase-contrast X-ray imaging techniques and potential medical applications. Phys Med 24(3):129–148

    Article  PubMed  Google Scholar 

  • Zhou S A, Brahme A (2010) Development of High-resolution molecular phase-contrast stereoscopic X-ray imaging for accurate cancer diagnostics. Rad Pro Dos 139:334–338

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Brahme .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brahme, A. (2011). Physical, Biological and Clinical Background for the Development of Light Ion Therapy. In: Levitt, S., Purdy, J., Perez, C., Poortmans, P. (eds) Technical Basis of Radiation Therapy. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2011_265

Download citation

  • DOI: https://doi.org/10.1007/174_2011_265

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11571-4

  • Online ISBN: 978-3-642-11572-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics