Skip to main content

Radiobiology of Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy

  • Chapter
  • First Online:
Technical Basis of Radiation Therapy

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

In recent years, increasing number of cancer patients are treated with stereotactic radiosurgery (SRS) or stereotactic body radiation therapy (SBRT), which deliver hypofractionated irradiation with high-dose per fraction . It is highly likely that the radiobiological principles such as 4 Rs (Reoxygenation, Repair, Redistribution, Repopulation) for the conventional fractionated radiotherapy with small-dose per fractions do not apply for SRS and SBRT. Reoxygenation: When tumors are exposed to high-dose per fraction, e.g. >10 Gy, significant vascular damage will occur. Consequently, intratumor environment becomes hypoxic and acidic, which not only will prevent reoxygenation of hypoxic cells but also will cause indirect cell death. Repair: delivery of SRS or SBRT lasts considerable lengths of time, which may allow repair of sub-lethal radiation damage during the irradiation exposure. Redistribution: high-dose irradiation prevents cell cycle progression and cells undergo interphase death in the cell cycle phases where they are irradiated. Repopulation: Since SRS or SBRT treatment is completed within 1-2 weeks, repopulation of tumor cells during the course of treatment may be negligible. The linear-quadratic (LQ) model , which is used to calculate isoeffect doses for different hyperfractionated irradiation schemes, may be applied for hypofractionated SRS or SBRT, provided that indirect cell death due to vascular damage is negligible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ang KK, Thames HD, van der Vogel AG et al (1987) Is the rate of repair of radiation induced sublethal damage in rat spinal cord ependent on the the size of dose per fractions? Int J Radiat Oncol Biol Phys 13:557–562

    Article  PubMed  CAS  Google Scholar 

  • Baumann M, Krause M, Hill R (2008) Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer 8:545–554

    Article  PubMed  CAS  Google Scholar 

  • Belli JA, Bonte FJ, Rose MS (1966) Radiation recovery response of mammalian tumor cells in vivo. Nature 211:662–663

    Article  PubMed  CAS  Google Scholar 

  • Brenner DJ (2008) The linear-quadratic model is an appropriate methodology for determining isoeffective doses at large doses per fraction. Semin Radiat Oncol 18:234–239

    Article  PubMed  Google Scholar 

  • Brenner DJ, Hlatky LR, Hahnfeldt PJ et al (1995) A convenient extension of the linear-quadratic model to include redistribution and reoxygenation. Int J Radiat Oncol Biol Phys 32:379–390

    Article  PubMed  CAS  Google Scholar 

  • Brown JM, Boong AC (2008) High-dose single-fraction radiotherapy: exploiting a new biology? Int J Radiat Oncol Biol Phys 71:324–325

    Article  PubMed  Google Scholar 

  • Brown JM, Diehn M, Loo BW (2010) Stereotactic ablative radiotherapy should be combined with a hypoxic cell radiosensitizer. Int J Radiat Oncol Biol Phys 78:323–327

    Article  PubMed  Google Scholar 

  • Bruberg KJ, Thuen M, Ruud EBM et al (2006) Fluctuations in pO2 in irradiated human melanoma xenografts. Radiat Res 165:16–25

    Article  Google Scholar 

  • Calabrese C, Poppleton H, Kocak M et al (2006) A perivascular niche for brain tumor stem cells. Cancer Cell 11:69–82

    Article  Google Scholar 

  • Carabe-Fernandez A, Dale RG, Hopewell JW et al (2010) Fractionation effects in particle radiotherapy: implications for hypo-fractionation regimes. Phys Med Biol 55:5685–5700

    Article  PubMed  CAS  Google Scholar 

  • Charles N, Holland EC (2010) The perivascular niche microenvironment in brain tumor progression. Cell Cycle 9:3012–3021

    Article  PubMed  CAS  Google Scholar 

  • Chen F-H, Chiang C-S, Wang C-C et al (2009) Radiotherapy decreases vascular density and causes hypoxia with macrophage aggregation in TRAMP-C1 prostate tumors. Clin Cancer Res 15:1721–1729

    Article  PubMed  CAS  Google Scholar 

  • Clement JJ, Song CW, Levitt SH (1976) Changes in functional vascularity and cell number following x-irradiation of a murine carcinoma. Int J Radiat Oncol Biol Phys 1:671–678

    Article  PubMed  CAS  Google Scholar 

  • Clement JJ, Tanaka N, Song CW (1978) Tumor reoxygenation and postirradion vascular changes. Radiology 127:799–803

    PubMed  CAS  Google Scholar 

  • Coutard H (1932) Roentgen therapy of epithemiomas of the tonsillar region, hypophraynx, and larynx from 1920–1926. Am J Roentgenol 28:313–331

    Google Scholar 

  • Dean M (2006) Cancer stem cells-redefining the paradigm of cancer treatment strategies. Mol interv 6:140–148

    Article  PubMed  CAS  Google Scholar 

  • Denekamp J (1984) Vascular endothelium as the vulnerable element in tumours. Acta Radiol Oncol 23:217–225

    Article  PubMed  CAS  Google Scholar 

  • Dewhirst MW, Cao Y, Moeller B, Li CY (1996) The cycle between angiogenesis, perfusion, and hypoxia in tumors. In: Teicher BA (ed) Cancer drug resistance. Humana Press, Totowa, pp 3–24

    Google Scholar 

  • Dolinsky C, Glatstein E (2008) Some cases of severe normal tissue toxicity can be anticipated with ablated fractionated radiation with appropriate long-term follow up. Semin Radiat Oncol 18:229–233

    Article  PubMed  Google Scholar 

  • Elkind MM, Sutton H (1960) Radiation response of mammalian cells grown in culture: repair of X-ray damage in surviving Chinese hamster cells. Radiat Res 13:556–593

    Article  PubMed  CAS  Google Scholar 

  • Endrich B, Vaupel P (1998) The role of the microcirculation in the treatment of malignant tumors: facts and fiction. In: Molls M, Vaupel P (eds) Blood perfusion and microenvironment of human tumors, Implications for clinical radiooncology. Springer, Berlin, pp 19–39

    Chapter  Google Scholar 

  • Fenton B, Lord EM, Paoni SF (2001) Effects of radiation on tumor intravascular oxygenation, vascular configuration, development of hypoxia, and clonogenic survival. Radiat Res 155:360–368

    Article  PubMed  CAS  Google Scholar 

  • Folkman J (1985) Tumor angiogenesis. Adv Cancer Res 43:175–203

    Article  PubMed  CAS  Google Scholar 

  • Fowler JF (1989) The linear-quadratic formula and progress in fractionated radiotherapy. Br J Radiol 62:679–694

    Article  PubMed  CAS  Google Scholar 

  • Fowler JF (2007) An arguing point? ESTRO 64:15

    Google Scholar 

  • Fowler JF, Welsh JS, Howard SP (2004a) Loss of biological effect in prolonged fraction delivery. Int J Radiat Oncol Biol Phys 59:242–249

    Article  PubMed  Google Scholar 

  • Fowler JF, Wolfgang AT, Fenwick JD et al (2004b) A challenge to traditional radiation oncology. Int J Radiat Oncol Biol Phys 60:1241–1256

    Article  PubMed  Google Scholar 

  • Fuks Z, Kolesnick R (2003) Engaging the vascular component of the tumor response. Cancer Cell 8:89–91

    Article  Google Scholar 

  • Garcia-Barrps M, Paris F, Cordon-Cardo C et al (2003) Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 3000:1155–1159

    Article  Google Scholar 

  • Guerrero M, Li XA (2004) Extending the linear-quadratic model for large fraction doses pertinent to stereotactic radiotherapy. Phys Med Biol 49:4825–4835

    Article  PubMed  CAS  Google Scholar 

  • Hall EJ (2006) Radiobiology for the radiologist, 6th edn. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  • Hall EJ, Brenner DJ (1991) The dose-rate effect revisited: Radiobiological considerations of importance in radiotherapy. Int J Radiat Oncol Biol Phys 21:1403–1414

    Article  PubMed  CAS  Google Scholar 

  • Hall EJ, Brenner DJ (1993) The radiobiology of radiosurgery: rationale for different treatment regimes for AVMs and malignancies. Int J Radiat Oncol Biol Phys 25:381–385

    Article  PubMed  CAS  Google Scholar 

  • Hammersen F, Endrich B, Messmer K (1985) The fine structure of tumor blood vessels. I. Participation of non-endothelial cells in tumor angiogenesis. Int J Microcirc Cli Exp 4:31–43

    CAS  Google Scholar 

  • Hermens AF, Barendsen GW (1969) Changes of cell proliferation characteristics in a rat rhabodomyosarcoma before and after x-irradiation. Eur J Cancer 5:173–189

    Article  PubMed  CAS  Google Scholar 

  • Howes AK (1969) An estimation of changes in the proportion and absolute numbers of hypoxic cells after irradiation on transplanted C3H mouse tumors. Br J Radiol 42:441–447

    Article  PubMed  CAS  Google Scholar 

  • Jain RK (1989) Delivery of novel therapeutic agents in tumors: physiological barriers and strategies. J Nat Cancer Inst 81:570–576

    Article  PubMed  CAS  Google Scholar 

  • Jain RK (2003) Molecular regulation of vessel maturation. Nat Med 9:685–693

    Article  PubMed  CAS  Google Scholar 

  • Kallman RF (1972) The phenomenon of reoxygenation and its implication for fractionated radiotherapy. Radiology 105:135

    PubMed  CAS  Google Scholar 

  • Kavanagh B (2008) Clinical experience shows that catastrophic late effects associated with ablative fractionation can be avoided by technological innovation. Semin Radiat Oncol 18:223–228

    Article  PubMed  Google Scholar 

  • Kim YJ, Cho KH, Kim JY et al (2010) Single-dose versus fractionated stereotatic radiotherapy for brain metastases. Int J Radiat Oncol Biol Phys. doi:10.1016/j.ijrobp.2010.05.033 (in press)

  • Kioi M, Vogel H, Schultz G et al (2010) Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J Clin Invest 120:694–705

    Article  PubMed  CAS  Google Scholar 

  • Kirkpatrick JP, Meyer JJ, Marks LB (2008) The linear-quadratic model is appropriate to model high dose per fraction effects in radiosurgery. Semin Radiat Oncol 18:240–243

    Article  PubMed  Google Scholar 

  • Kocher M, Treuer H, Voges J et al (2000) Computer simulation of cytotoxic and vascular effects of radiosurgery in solid and necrotic brain metastases. Radiother Oncol 54:149–156

    Article  PubMed  CAS  Google Scholar 

  • Konerding MA, Ackern CV, Fait E et al (1998) Morphological aspcets of tumor angiogenesis and microcirculation. In: Molls M, Vaupel P (eds) Blood perfusion and microenvironment of human tumors, implications for clinical radiooncology. Springer, Berlin, pp 5–17

    Chapter  Google Scholar 

  • Lee HS, Park HJ, Lyons JC et al (1997) Radiation-induced apoptosis in different pH environment in vitro. Int J Radiat Oncol Biol Phys 38:1079–1087

    Article  PubMed  CAS  Google Scholar 

  • Leksell L (1951) The stereotactic method and radiosurgery of the brain. Acta Chirurg Scand 102:316–319

    CAS  Google Scholar 

  • Leksell L (1983) Stereotactic radiosurgery. J Neurol Neurosurg Psychiatry 46:797–804

    Article  PubMed  CAS  Google Scholar 

  • Levitt SH, Perez CA, Hui S et al (2008) Evolution of computerized radiotherapy in radiation oncology. Int J Radiat Oncol Biol Phys 70:978–986

    Article  PubMed  Google Scholar 

  • Ling CC, Yorke E, Fuks Z (2006) From IMRT to IGRT: frontierland or neverland? Radiother Oncol 78:119–122

    Article  PubMed  Google Scholar 

  • Ling CC, Gerweck LE, Zaider M, Yorke E (2010) Dose-rate effects in external beam radiotherapy redux. Radiat Oncol 95:261–268

    Article  Google Scholar 

  • Mäntylä MJ, Toivanen JT, Pitkänen MA et al (1982) Radiation-induced changes in regional blood flow in human tumors. Int J Radiat Oncol Biol Phys 8:1711–1718

    Article  PubMed  Google Scholar 

  • Marry NA, Yuh WTC, Magnotta VA et al (1996) Tumor perfusion studies using fast magnetic resonance imaging technique in advanced cervical cancer: a new noninvasive predictive assay. Int J Radiat Oncol Biol Phys 36:623–633

    Article  Google Scholar 

  • Milano MT, Constine LS, Okunieff P (2008) Normal tissue toxicity after small field hypofractionated stereotactic body radiation. Radiat Oncol 3:1–10

    Article  Google Scholar 

  • Mottram JC (1936) A factor of importance in the radiosensitivity of tumors. Brit J Radiol 9:606–614

    Article  Google Scholar 

  • Nedzi L (2008) The implementation of ablative hypofracationated radiotherapy for stereotactic treatments in the brain and body: observations on efficacy and toxicity in clinical practice. Semin Radiat Oncol 18:265–272

    Article  PubMed  Google Scholar 

  • Ng QS, Goh V, Milner J et al (2007) Acute tumor vascular effects following fractionated radiotherapy in human lung cancer: in vivo whole tumor assessment using volumetric perfusion computed tomography. Int J Radiat Oncol Biol Phys 67:417–424

    Article  PubMed  Google Scholar 

  • Park H, Lyon JC, Griffin RJ et al (2000) Apoptosis and cell cycle progression in an acidic environment after irradiation. Radiat Res 153:295–304

    Article  PubMed  CAS  Google Scholar 

  • Park C, Papiez L, Zhang S et al (2008) Universal survival curve and single fraction equivalent dose: useful tools in understanding potency of ablative radiotherapy. Int J Radiat Oncol Biol Phys 70:847–852

    Article  PubMed  Google Scholar 

  • Pawlicki T, Cotrutz C, Christopher K (2007) Prostate cancer therapy with stereotactic body radiation therapy. In: Meyer JL (ed) IMRT, IGRT, SBRT-advances in the treatment planning and delivery of radiotherapy. Front Radiat Ther Oncol. Karger, Basel, pp 5395–5406

    Google Scholar 

  • Pirhonen JP, Grenman SA, Bredbacka Ã…N et al (1995) Effects of external radiotherapy on uterine blood flow in patients with advanced cervical carcinoma assessed by color Doppler ultrasonography. Cancer 76:67–71

    Article  PubMed  CAS  Google Scholar 

  • Potters L, Steinberg M, Rose C et al (2004) American Society for Therapeutic Radiology and Oncology and American College of Radiology practice guideline for the performance of stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys 60:1026–1032

    Article  PubMed  Google Scholar 

  • Ritter M (2008) Rationale, conduct, and outcome using hypofractionated radiotherapy in prostate cancer. Semin Radiat Oncol 18:249–256

    Article  PubMed  Google Scholar 

  • Shiau CY, Smeed PK, Shu HK et al (1997) Radiosurgery for brain metastases: relationship of dose and pattern of enhancement to local control. Int J Radiat Oncol Biol Phys 37:375–383

    Article  PubMed  CAS  Google Scholar 

  • Song CW (1998) Modification of blood flow. In: Molls M, Vaupel P (eds) Blood perfusion and microenvironment of human tumors, implications for clinical radiooncology. Springer, Berlin, pp 194–207

    Google Scholar 

  • Song CW, Levitt SH (1971a) Vascular changes in walker 256 carcinoma of rats following x irradiation. Radiology 100:397–407

    PubMed  CAS  Google Scholar 

  • Song CW, Levitt SH (1971b) Quatitative study of vascularity in Walker carcinoma 256. Cancer Res 31:587–589

    PubMed  CAS  Google Scholar 

  • Song CW, Payne T, Levitt SH (1972) Vascularity and blood flow in x-irradiated Walker carcinoma 256 of rats. Radiology 104:693–697

    PubMed  CAS  Google Scholar 

  • Song CW, Sung JH, Clement JJ et al (1974) Vascular changes in neuroblastoma of mice following x-irradiation. Cancer Res 34:2344–2350

    PubMed  CAS  Google Scholar 

  • Story M, Kodym R, Saha D (2008) Exploring the possibility of unique molecular, biological, and tissue effects with hypofractionated radiotherapy. Semin Radiat Oncol 18:244–248

    Article  PubMed  Google Scholar 

  • Timmerman RD (2008) An overview of hypofractionation and introduction to this issue of seminars in radiation oncology. Semin Radiat Oncol 18:215–222

    Article  PubMed  Google Scholar 

  • Timmerman RD, Kavanagh BD, Cho LC et al (2007) Stereotactic body radiation therapy in multiple organ sites. J Clin Oncol 25:947–952

    Article  PubMed  Google Scholar 

  • Timmerman R, Paulus R, Galvin J et al (2010) RTOG 0236: stereo-tactic body radiotherapy to treat medically inoperable early stage lung cancer patients. J Am Med Assoc 303(11):1070–1076

    Article  CAS  Google Scholar 

  • Van Putten LM (1968) Tumor reoxygenation during fractionated radiotherapy: Studies with a transplantable osteosarcoma. Eur J Cancer 4:173–182

    Article  Google Scholar 

  • Vaupel P (1996) Oxygenation transport in tumors: characteristics and clinical implications. Adv Exp Med Biol 388:341–351

    Article  PubMed  CAS  Google Scholar 

  • Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygenation and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49:6449–6465

    PubMed  CAS  Google Scholar 

  • Vogelbaum MA, Angelov L, Lee SY et al (2006) Local control of brain metastases by stereotactic radiosurgery in relation to dose to the tumor margin. J Neurosurge 104:907–912

    Article  Google Scholar 

  • Wang JZ, Huang Z, Lo SS et al (2010) A generalized linear quadratic model for radioseurgery, streotactice body radiation therapy and high dose rate brachytherapy. Sci Transl Med 2: 39ra48

    Google Scholar 

  • Whelan T, Kim D, Sussman J (2008) Clinical experience using hypofractionated radiation schedules in breast cancer. Semin Radiat Oncol 18:257–264

    Article  PubMed  Google Scholar 

  • Withers HR (1975) The four R’s of radiotherapy. Adv Radiat Bio 5:241–247

    Google Scholar 

  • Wong HH, Song CW, Levitt SH (1973) Early changes in the functional vasculature of Walker carcinoma 256 following irradiation. Radiology 108:429–434

    PubMed  CAS  Google Scholar 

  • Yamada Y, Bilsky MH, Lovelock M et al (2008) High-dose, single-fraction image-guided intensity-modulated radiotherapy for metastatic spinal lesions. Int J Radiat Oncol Biol Phys 71:484–490

    Article  PubMed  Google Scholar 

  • Yancopoulos GD, Klagsbrun M, Folkman J (1998) Vasculogenesis, angiogenesis, and growth factors: ephrins enter the fray at the border. Cell 93:661–664

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang W. Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Song, C.W., Park, H., Griffin, R.J., Levitt, S.H. (2011). Radiobiology of Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy. In: Levitt, S., Purdy, J., Perez, C., Poortmans, P. (eds) Technical Basis of Radiation Therapy. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2011_264

Download citation

  • DOI: https://doi.org/10.1007/174_2011_264

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11571-4

  • Online ISBN: 978-3-642-11572-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics