Skip to main content

The Role of Radiofrequency Ablation in the Treatment of Stage 1 Non-Small Cell Lung Cancer

  • Chapter
  • First Online:
Advances in Radiation Oncology in Lung Cancer

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 1739 Accesses

Abstract

Currently, the standard of care for stage I non-small cell lung cancer (NSCLC) is surgical resection. Although this treatment modality has been demonstrated to have 5 year survival rates approaching 80%, there need to be effective alternative treatments for patients who are medically inoperable. Radiofrequency ablation (RFA) has emerged as a minimally-invasive therapy to fill this void. This modality has been found to be most effective for treatment of small (<3 cm), peripheral lesions that are located distal to vasculature, large airways, and the mediastinum. The most common complications after RFA include pneumothorax, pneumonia, and pleural effusion. To date, accurate assessment of the efficacy of RFA has been difficult to determine due to short follow-up times of current studies and the lack of standard definitions of local recurrence as well as toxicity. Current literature has suggested local progression rates ranging from 20 to 42%, but assessment by prospective trials with long-term follow-up and standardized definitions of toxicity and local control are needed to determine the true benefit of this procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AICD:

Automatic implantable cardioverter defibrillator

AZ:

Ablation zone

C:

Centigrade

CA:

Complete ablation

CN:

Complete necrosis

CR:

Complete response

CSS:

Cancer specific survival

CTCAE:

Common terminology criteria for adverse events

DFS:

Disease-free survival

DR:

Distal recurrence

EBUS:

Endobronchial ultrasound

EP:

Extrapulmonary recurrence

F/U:

Follow-up

GGA:

Ground-glass attenuation

H&E:

Hematoxylin and eosin staining

H&M nodes:

Hilar and mediastinal nodes

IA:

Incomplete ablation

IP:

Intrapulmonary recurrence

LC:

Local control

LR:

Local recurrence

MAM:

Monoclonal anti-mitochondrial antibodies

Mn:

Months

NS:

Not stated

NSCLC:

Non-small cell lung cancer

PFS:

Progression-free survival

PNB:

Percutaneous biopsy

Pneumo:

Pneumothorax

R:

Recurrence

RECIST:

Response evaluation criteria in solid tumors

RF:

Radiofrequency

RFA:

Radiofrequency ablation

RT:

External beam radiotherapy

RT-br:

Brachytherapy

RTOG:

Radiation therapy oncology group

S:

Survival

SBRT:

Stereotactic body radiation therapy

SVB:

Supravital blue staining

References

  • Ambrogi MC, Fontanini G, Cioni R et al (2006) Biologic effects of radiofrequency thermal ablation on non-small cell lung cancer: results of a pilot study. J Thorac Cardiovasc Surg 131:1002–1006

    Article  PubMed  Google Scholar 

  • Ambrogi MC, Dini P, Melfi F et al (2007) Radiofrequency ablation of inoperable non-small cell lung cancer. J Thorac Oncol 2:S2–S3

    Article  PubMed  Google Scholar 

  • Anderson E, Lees W, Gillams A (2009) Early indicators of treatment success after percutaneous radiofrequency of pulmonary tumors. Cardiovasc Intervent Radiol 32(3):478–483

    Article  PubMed  Google Scholar 

  • Beland MD, Wasser EJ, Mayo-Smith WW et al (2010) Primary non-small cell lung cancer: review of frequency, location, and time of recurrence after radiofrequency ablation. Radiology 254:301–307

    PubMed  Google Scholar 

  • Bojarski JD, Dupuy DE, Mayo-Smith WW (2005) CT imaging findings of pulmonary neoplasms after treatment with radiofrequency ablation: results in 32 tumors. Am J Roentgenol 185:466–471

    Article  Google Scholar 

  • Casal RF, Tam AL, Eapen GA (2010) Radiofrequency ablation of lung tumors. Clin Chest Med 31:151–163

    Article  PubMed  Google Scholar 

  • Detterbeck FC, Jantz MA, Wallace M et al (2007) Invasive mediastinal staging of lung cancer. Chest 132:202S–220S

    Article  PubMed  Google Scholar 

  • Dupuy DE, Zagoria RJ, Akerley W et al (2000) Percutaneous radiofrequency ablation of malignancies in the lung. Am J Roentgenol 174:5–9

    Article  Google Scholar 

  • Fietta AM, Morosini M, Passadore I et al (2009) Systemic inflammatory response and down modulation of peripheral CD25 + Foxp3 + T-regulatory cells in patients undergoing radiofrequency thermal ablation for lung cancer. Hum Immunol 70:47–86

    Article  Google Scholar 

  • Gilliams AR, Lees WR (2007) Analysis of the factors associated with radiofrequency ablation-induced pneumothorax. Clin Radiol 62:639–644

    Article  Google Scholar 

  • Giraud P, Antoine M, Larrouy A et al (2000) Evaluation of microscopic tumor extension in non-small cell lung cancer for three-dimensional conformal radiotherapy planning. Int J Radiat Oncol Biol Phys 48:1015–1024

    Article  PubMed  CAS  Google Scholar 

  • Higaki T, Okumura Y, Sato S et al (2008) Preliminary retrospective investigation of FDG-PET/CT timing in followup of ablated lung tumor. Ann of Nucl Med 22:125–163

    Google Scholar 

  • Hiraki T, Gobara H, Iishi T et al (2007) Percutaneous radiofrequency ablation for clinical stage I non-small cell lung cancer: results in 20 nonsurgical candidates. J Thorac Cardiovasc Surg 134:1306–1312

    Article  PubMed  Google Scholar 

  • Jin GY, Lee JM, Lee YC, Han YM, Lim YS (2004) Primary and secondary lung malignancies treated with percutaneous radiofrequency ablation: evaluation with follow-up helical CT. Am J Roentgenol 183:1013–1020

    Article  Google Scholar 

  • Koike T, Terashima M, Takizawa T, Watanabe T, Kurita Y, Yokoyama A (1998) Clinical analysis of small-sized peripheral lung cancer. J Thorac Cardiovasc Surg 115:1015–1019

    Article  PubMed  CAS  Google Scholar 

  • Lanuti M, Sharma A, Digumarthy SR et al (2009) Radiofrequency ablation for treatment of medically inoperable stage I non-small cell lung cancer. J Thorac Cardiovasc Surg 137:160–166

    Article  PubMed  Google Scholar 

  • Lee JM, Jin GY, Goldberg SN et al (2003) Percutaneous radiofrequency ablation for inoperable non-small cell lung cancer and metastases: preliminary report. Radiology 230:125–134

    Article  PubMed  Google Scholar 

  • Lencioni R, Crocetti L, Cioni R et al (2008) Response to radiofrequency ablation of pulmonary tumors: a prospective, intention-to-treat, multicentre clinical trial (the rapture study). Lancet Oncol 9:621–628

    Article  PubMed  Google Scholar 

  • Lilly MB, Brezovich IA, Atkinson W et al (1983) Hyperthermia with implanted electrodes: in vitro and in vivo correlations. Int J Radiat Oncol Biol Phys 9:373–382

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Ahmed H, Iishi T et al (2006) Characterization of the RF ablation-induced “oven effect”: the importance of background tissue thermal conductivity on tissue heating. Int J Hyperthermia 22:32–42

    CAS  Google Scholar 

  • Matsuoka T, Okuma T (2007) CT-guided radiofrequency ablation for lung cancer. Int J Clin Oncol 12(2):71–78

    Article  PubMed  Google Scholar 

  • McTaggart RA, Dupuy DE (2007) Thermal ablation of lung tumors. Tech Vasc Interv Radiol 10(2):102–113

    Article  PubMed  Google Scholar 

  • Nguyen CL, Scott WJ, Young NA et al (2005) Radiofrequency ablation of primary lung cancer. Chest 128:3507–3511

    Article  PubMed  Google Scholar 

  • Okuma T, Matsuoka T, Yamamoto A et al (2007) Factors contributing to cavitation after CT guided percutaneous radiofrequency ablation of lung tumors. J Vasc Interv Radiol 18(3):399–404

    Article  PubMed  Google Scholar 

  • Pennathur A, Luketich JD, Abbas G et al (2007) Radiofrequency ablation for the treatment of stage I non-small cell lung cancer in high-risk patients. J Thorac Cardiovasc Surg 134(4):857–864

    Article  PubMed  Google Scholar 

  • Pennathur A, Abbas G, Schuchert MJ et al (2010) Image-guided radiofrequency ablation for the treatment of early stage non-small cell lung neoplasms in high-risk patients. Semin Thorac Cardiovasc Surg 22:53–58

    Article  PubMed  Google Scholar 

  • Rose SC (2008) Radiofrequency ablation of pulmonary malignancies. Semin Respir Crit Care Med 29:361–383

    Article  PubMed  Google Scholar 

  • Rose SC, Thistlethwaite PA, Sewell PE, Vance RB (2006) Lung cancer and radiofrequency ablation. J Vasc Interv Radiol 17:927–951

    Article  PubMed  Google Scholar 

  • Rossi S, Dore R, Cascina A et al (2006) Percutaneous computed tomography-guided radiofrequency thermal ablation of small unresectable lung tumors. Eur Respir J 27:556–563

    Article  PubMed  CAS  Google Scholar 

  • Schneider T, Reuss D, Warth A et al (2011) The efficacy of bipolar and multipolar radiofrequency ablation of lung neoplasms-results of an ablate and resect study. Eur J Cardiothorac Surg in print

    Google Scholar 

  • Sharma A, Digumarthy SR, Kalra MK et al (2010) Reversible locoregional lymph node enlargement after radiofrequency ablation of lung tumors. Am J Roentgenol 194:1250–1256

    Article  Google Scholar 

  • Steinke K, King J, Glenn D, Morris DL (2003) Radiologic appearance and complications of percutaneous computed tomography-guided radiofrequency-ablated pulmonary metastases from colorectal carcinoma. J Comput Assist Tomogr 27:750–757

    Article  PubMed  Google Scholar 

  • Steinke K, Haghighi KS, Wulf S et al (2005) Effect of vessel diameter on the creation of ovine lung radiofrequency lesions in vivo: preliminary results. J Surg Res 124:85–91

    Article  PubMed  Google Scholar 

  • Timmerman R, McGarry R, Yiannoutsos C et al (2006) Excessive toxicity when treating central tumors in a phase II study of stereotactic body radiation therapy for medically inoperable early-stage lung cancer. J Clin Oncol 24:4833–4839

    Article  PubMed  Google Scholar 

  • Timmerman R, Paulus R, Galvin J et al (2010) Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA 303:1070–1076

    Article  PubMed  CAS  Google Scholar 

  • White DC, D’Amico TA (2008) Radiofrequency ablation for primary lung cancer and pulmonary metastases. Clin Lung Cancer 9(1):16–23

    Article  PubMed  Google Scholar 

  • Widenmeyer M, Shebzukhov Y, Haen SP et al (2010) Analysis of tumor antigen-specific T cells and antibodies in cancer patients treated with radiofrequency ablation. Int J Cancer, in print

    Google Scholar 

  • Yamamoto A, Nakamura K, Matsuoka T et al (2005) Radiofrequency ablation in a porcine lung model: correlation between CT and histopathologic findings. Am J Roentgenol 185:1299–1306

    Article  Google Scholar 

  • Yasui K, Kanazawa S, Sano Y et al (2004) Thoracic tumors treated with CT-guided radiofrequency ablation: initial experience. Radiology 231:850–857

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Varlotto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Varlotto, J.M., Shelkey, J.A., Mahraj, R.P. (2011). The Role of Radiofrequency Ablation in the Treatment of Stage 1 Non-Small Cell Lung Cancer. In: Jeremic, B. (eds) Advances in Radiation Oncology in Lung Cancer. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2011_230

Download citation

  • DOI: https://doi.org/10.1007/174_2011_230

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19924-0

  • Online ISBN: 978-3-642-19925-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics