Skip to main content

Kidney Stones

  • Chapter
  • First Online:
Dual Energy CT in Clinical Practice

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 2245 Accesses

Abstract

Although state-of-the-art CT provides accurate sub millimeter details of the size and location of renal stones, current routine clinical image analysis does not differentiate stone composition. This is particularly important in the case of uric acid (UA) stones (∼10% of cases), since urinary alkalinization can be prescribed to dissolve UA stones. Therefore, simple and reliable differentiation of UA vs. non-UA stone composition could potentially allow patients with UA stones to avoid invasive interventional urinary procedures for stone removal or external shock wave lithotripsy. This chapter describes a novel Dual-Energy CT (DECT) technique for renal stone differentiation, which is based on the difference in X-ray attenuation properties at high and low kV between UA- and non-UA-containing stones. The technique has been implemented on modern Dual-Source CT scanners which allow simultaneous Dual-Energy acquisition with high spatial resolution and immediate postprocessing using commercial algorithm available on the system. Principles of DECT imaging, acquisition parameters and postprocessing details are discussed. Diagnostic evaluation of three clinical cases is provided together with a summary of the results of all known validation studies performed both in vitro and in vivo. The reported accuracy and sensitivity of the UA vs. non-UA differentiation using DECT varied from 88 to 100%. Further improvement is expected with the second generation of Dual-Source scanners due to increased spectral separation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez RE, Macovski A (1976) Energy-selective reconstructions in X-ray computerized tomography. Phys Med Biol 21:733–744

    Article  PubMed  CAS  Google Scholar 

  • Behrendt FF, Schmidt B, Plumhans C et al (2009) Image fusion in dual energy computed tomography: effect on contrast enhancement, signal-to-noise ratio and image quality in computed tomography angiography. Invest Radiol 44:1–6

    Article  PubMed  Google Scholar 

  • Bellin MF, Renard-Penna R, Conort P et al (2004) Helical CT evaluation of the chemical composition of urinary tract calculi with a discriminant analysis of CT-attenuation values and density. Eur Radiol 14:2134–2140

    Article  PubMed  Google Scholar 

  • Boll DT, Patil NA, Paulson EK et al (2009) Renal stone assessment with dual-energy multidetector CT and advanced postprocessing techniques: improved characterization of renal stone composition–pilot study. Radiology 250:813–820

    Article  PubMed  Google Scholar 

  • Dillman JR, Caoili EM, Cohan RH (2007) Multi-detector CT urography: a one-stop renal and urinary tract imaging modality. Abdom Imaging 32:519–529

    Article  PubMed  Google Scholar 

  • Evan AP, Willis LR, Lingeman JE et al (1998) Renal trauma and the risk of long-term complications in shock wave lithotripsy. Nephron 78:1–8

    Article  PubMed  CAS  Google Scholar 

  • Graser A, Johnson TR, Bader M et al (2008) Dual energy CT characterization of urinary calculi: initial in vitro and clinical experience. Invest Radiol 43:112–119

    Article  PubMed  Google Scholar 

  • Grosjean R, Sauer B, Guerra RM et al (2008) Characterization of human renal stones with MDCT: advantage of dual energy and limitations due to respiratory motion. Am J Roentgenol 190:720–728

    Article  Google Scholar 

  • National Institutes of Health (1990) National Kidney and Urological Diseases Advisory Board long range plan: window on the 21st century. In: NIH Publication 90–583. United States Department of Health and Human Services, Washington

    Google Scholar 

  • Joseph P, Mandal AK, Singh SK et al (2002) Computerized tomography attenuation value of renal calculus: can it predict successful fragmentation of the calculus by extracorporeal shock wave lithotripsy? A preliminary study. J Urol 167:1968–1971

    Article  PubMed  Google Scholar 

  • Lemann J Jr, Taylor AJ, Collier BD et al (1991) Kidney hematoma due to extracorporeal shock wave lithotripsy causing transient renin mediated hypertension. J Urol 145:1238–1241

    PubMed  Google Scholar 

  • Lingeman JE, Woods JR, Toth PD (1990) Blood pressure changes following extracorporeal shock wave lithotripsy and other forms of treatment for nephrolithiasis. JAMA 263:1789–1794

    Article  PubMed  CAS  Google Scholar 

  • Matlaga BR, Kawamoto S, Fishman E (2008) Dual source computed tomography: a novel technique to determine stone composition. Urology 72:1164–1168

    Article  PubMed  Google Scholar 

  • Mitcheson HD, Zamenhof RG, Bankoff MS et al (1983) Determination of the chemical composition of urinary calculi by computerized tomography. J Urol 130:814–819

    PubMed  CAS  Google Scholar 

  • Mostafavi MR, Ernst RD, Saltzman B (1998) Accurate determination of chemical composition of urinary calculi by spiral computerized tomography. J Urol 159:673–675

    Article  PubMed  CAS  Google Scholar 

  • Motley G, Dalrymple N, Keesling C et al (2001) Hounsfield unit density in the determination of urinary stone composition. Urology 58:170–173

    Article  PubMed  CAS  Google Scholar 

  • Nakada SY, Hoff DG, Attai S et al (2000) Determination of stone composition by noncontrast spiral computed tomography in the clinical setting. Urology 55:816–819

    Article  PubMed  CAS  Google Scholar 

  • Pareek G, Armenakas NA, Fracchia JA (2003) Hounsfield units on computerized tomography predict stone-free rates after extracorporeal shock wave lithotripsy. J Urol 169:1679–1681

    Article  PubMed  Google Scholar 

  • Pearle MS, Calhoun EA, Curhan GC (2005) Urologic diseases in America project: urolithiasis. J Urol 173:848–857

    Article  PubMed  Google Scholar 

  • Primak AN, Fletcher JG, Vrtiska TJ et al (2007) Noninvasive differentiation of uric acid versus non-uric acid kidney stones using dual-energy CT. Acad Radiol 14:1441–1447

    Article  PubMed  Google Scholar 

  • Primak AN, Ramirez Giraldo JC, Liu X et al (2009) Improved dual-energy material discrimination for dual-source CT by means of additional spectral filtration. Med Phys 36:1359–1369

    Article  PubMed  CAS  Google Scholar 

  • Sheir KZ, Mansour O, Madbouly K et al (2005) Determination of the chemical composition of urinary calculi by noncontrast spiral computerized tomography. Urol Res 33:99–104

    Article  PubMed  Google Scholar 

  • Stolzmann P, Scheffel H, Rentsch K et al (2008) Dual-energy computed tomography for the differentiation of uric acid stones: ex vivo performance evaluation. Urol Res 36:133–138

    Article  PubMed  Google Scholar 

  • Stolzmann P, Kozomara M, Chuck N et al (2009) In vivo identification of uric acid stones with dual-energy CT: diagnostic performance evaluation in patients. Abdom Imaging. doi:10.1007/s00261-009-9569-9

    PubMed  Google Scholar 

  • Thomas C, Patschan O, Ketelsen D et al (2009) Dual-energy CT for the characterization of urinary calculi: In vitro and in vivo evaluation of a low-dose scanning protocol. Eur Radiol 19:1553–1559

    Article  PubMed  CAS  Google Scholar 

  • Vrtiska TJ (2005) Quantitation of stone burden: imaging advances. Urol Res 33:398–402

    Article  PubMed  Google Scholar 

  • Williams JC Jr, Saw KC, Monga AG et al (2001) Correction of helical CT attenuation values with wide beam collimation: in vitro test with urinary calculi. Acad Radiol 8:478–483

    Article  PubMed  Google Scholar 

  • Williams JC Jr, Paterson RF, Kopecky KK et al (2002) High resolution detection of internal structure of renal calculi by helical computerized tomography. J Urol 167:322–326

    Article  PubMed  Google Scholar 

  • Williams JC Jr, Kim SC, Zarse CA et al (2004) Progress in the use of helical CT for imaging urinary calculi. J Endourol 18:937–941

    Article  PubMed  Google Scholar 

  • Yu L, Primak AN, Liu X et al (2009) Image quality optimization and evaluation of linearly mixed images in dual-source, dual-energy CT. Med Phys 36:1019–1024

    Article  PubMed  Google Scholar 

  • Zarse CA, McAteer JA, Tann M et al (2004) Helical computed tomography accurately reports urinary stone composition using attenuation values: in vitro verification using high-resolution micro-computed tomography calibrated to Fourier transform infrared microspectroscopy. Urology 63:828–833

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew N. Primak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Primak, A.N., Vrtiska, T.J., Qu, M., McCollough, C.H. (2011). Kidney Stones. In: Johnson, T., Fink, C., Schönberg, S., Reiser, M. (eds) Dual Energy CT in Clinical Practice. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2010_33

Download citation

  • DOI: https://doi.org/10.1007/174_2010_33

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01739-1

  • Online ISBN: 978-3-642-01740-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics