Skip to main content

Fetal MRI at Higher Field Strength

  • Chapter
  • First Online:
Fetal MRI

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 2598 Accesses

Abstract

While fetal MRI has become a routine method at field strengths up to 1.5 T, the use of higher field strength is at an early stage. A higher signal-to-noise ratio is accompanied by a higher energy deposition. In addition, parameters of sequences have to be adjusted to achieve useful contrasts. Susceptibility effects and certain artifacts that increase with higher field strength have to be considered. The same is true for certain artifacts that maybe negligible at lower field strength. Special measures have to be taken to grant maternal and fetal safety. Due to the high resolution, MR imaging at 3 T is currently the method of choice in postmortem fetal imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amartur S, Haacke EM (1991) Modified iterative model based on data extrapolation method to reduce Gibbs ringing. J Magn Reson Imaging 1:307–317

    Article  PubMed  CAS  Google Scholar 

  • Barfuss H, Fischer H, Hentschel D, Ladebeck R, Oppelt A, Wittig R, Duerr W, Oppelt R (1990) In vivo magnetic resonance imaging and spectroscopy of humans with a 4 T whole-body magnet. NMR Biomed 3:31–45

    Article  PubMed  CAS  Google Scholar 

  • Bernstein MA, Huston J III, Ward HA (2006) Imaging artifacts at 3.0T. J Magn Reson Imaging 24:735–746

    Article  PubMed  Google Scholar 

  • Bohlscheid A, Nuss D, Lieser S, Busch HP (2008) Tumor search with diffusion-weighted imaging–first experience. Rofo 180:302–309

    Article  PubMed  CAS  Google Scholar 

  • Bottomley PA, Foster TH, Argersinger RE, Pfeifer LM (1984) A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1-100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age. Med Phys 11:425–448

    Article  PubMed  CAS  Google Scholar 

  • Butts K, Pauly JM, Gold GE (2005) Reduction of blurring in view angle tilting MRI. Magn Reson Med 53:418–424

    Article  PubMed  Google Scholar 

  • Cho ZH, Kim DJ, Kim YK (1988) Total inhomogeneity correction including chemical shifts and susceptibility by view angle tilting. Med Phys 15:7–11

    Article  PubMed  CAS  Google Scholar 

  • Collins CM, Liu W, Schreiber W, Yang QX, Smith MB (2005) Central brightening due to constructive interference with, without, and despite dielectric resonance. J Magn Reson Imaging 21:192–196

    Article  PubMed  Google Scholar 

  • Cruz LC Jr, Sorensen AG (2006) Diffusion tensor magnetic resonance imaging of brain tumors. Magn Reson Imaging Clin N Am 14:183–202

    Article  PubMed  Google Scholar 

  • de Bazelaire CM, Duhamel GD, Rofsky NM, Alsop DC (2004) MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology 230:652–659

    Article  PubMed  Google Scholar 

  • Dietrich O, Reiser MF, Schoenberg SO (2008) Artifacts in 3-T MRI: physical background and reduction strategies. Eur J Radiol 65:29–35

    Article  PubMed  Google Scholar 

  • Duewell S, Wolff SD, Wen H, Balaban RS, Jezzard P (1996) MR imaging contrast in human brain tissue: assessment and optimization at 4 T. Radiology 199:780–786

    PubMed  CAS  Google Scholar 

  • Edelstein WA, Glover GH, Hardy CJ, Redington RW (1986) The intrinsic signal-to-noise ratio in NMR imaging. Magn Reson Med 3:604–618

    Article  PubMed  CAS  Google Scholar 

  • Foster JR, Hall DA, Summerfield AQ, Palmer AR, Bowtell RW (2000) Sound-level measurements and calculations of safe noise dosage during EPI at 3 T. J Magn Reson Imaging 12:157–163

    Article  PubMed  CAS  Google Scholar 

  • Franklin KM, Dale BM, Merkle EM (2008) Improvement in B1-inhomogeneity artifacts in the abdomen at 3T MR imaging using a radiofrequency cushion. J Magn Reson Imaging 27:1443–1447

    Article  PubMed  Google Scholar 

  • Frayne R, Goodyear BG, Dickhoff P, Lauzon ML, Sevick RJ (2003) Magnetic resonance imaging at 3.0 Tesla: challenges and advantages in clinical neurological imaging. Invest Radiol 38:385–402

    PubMed  Google Scholar 

  • Fujii Y, Nakayama N, Nakada T (1998) High-resolution T2-reversed magnetic resonance imaging on a high magnetic field system. Technical note. J Neurosurg 89:492–495

    Article  PubMed  CAS  Google Scholar 

  • Gabriel C, Gabriel S, Corthout E (1996a) The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol 41:2231–2249

    Article  PubMed  CAS  Google Scholar 

  • Gabriel S, Lau RW, Gabriel C (1996b) The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys Med Biol 41:2271–2293

    Article  PubMed  CAS  Google Scholar 

  • Gabriel S, Lau RW, Gabriel C (1996c) The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 41:2251–2269

    Article  PubMed  CAS  Google Scholar 

  • Gold GE, Han E, Stainsby J, Wright G, Brittain J, Beaulieu C (2004) Musculoskeletal MRI at 3.0 T: relaxation times and image contrast. AJR Am J Roentgenol 183:343–351

    Article  PubMed  Google Scholar 

  • Gomori JM, Grossman RI, Yu-Ip C, Asakura T (1987) NMR relaxation times of blood: dependence on field strength, oxidation state, and cell integrity. J Comput Assist Tomogr 11:684–690

    Article  PubMed  CAS  Google Scholar 

  • Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210

    Article  PubMed  Google Scholar 

  • Haacke EM, Tkach JA, Parrish TB (1989) Reduction of T2* dephasing in gradient field-echo imaging. Radiology 170:457–462

    PubMed  CAS  Google Scholar 

  • Haacke EM, Brown RW, Thompson MR, Venkatesan R (1999) Magnetic resonance imaging - physical principles and sequence design, 1st edn. Wiley, New York

    Google Scholar 

  • Hand JW, Li Y, Thomas EL, Rutherford MA, Hajnal JV (2006) Prediction of specific absorption rate in mother and fetus associated with MRI examinations during pregnancy. Magn Reson Med 55:883–893

    Article  PubMed  CAS  Google Scholar 

  • Hennig J, Scheffler K (2001) Hyperechoes. Magn Reson Med 46:6–12

    Article  PubMed  CAS  Google Scholar 

  • Hennig J, Weigel M, Scheffler K (2003) Multiecho sequences with variable refocusing flip angles: optimization of signal behavior using smooth transitions between pseudo steady states (TRAPS). Magn Reson Med 49:527–535

    Article  PubMed  Google Scholar 

  • Hetherington H, Kuzniecky R, Pan J, Mason G, Morawetz R, Harris C, Faught E, Vaughan T, Pohost G (1995) Proton nuclear magnetic resonance spectroscopic imaging of human temporal lobe epilepsy at 4.1 T. Ann Neurol 38:396–404

    Article  PubMed  CAS  Google Scholar 

  • Hoogenraad FG, Reichenbach JR, Haacke EM, Lai S, Kuppusamy K, Sprenger M (1998) In vivo measurement of changes in venous blood-oxygenation with high resolution functional MRI at 0.95 tesla by measuring changes in susceptibility and velocity. Magn Reson Med 39:97–107

    Article  PubMed  CAS  Google Scholar 

  • Hoult DI, Phil D (2000) Sensitivity and power deposition in a high-field imaging experiment. J Magn Reson Imaging 12:46–67

    Article  PubMed  CAS  Google Scholar 

  • Huang H, Zhang J, Wakana S, Zhang W, Ren T, Richards LJ, Yarowsky P, Donohue P, Graham E, van Zijl PC, Mori S (2006) White and gray matter development in human fetal, newborn and pediatric brains. Neuroimage 33:27–38

    Article  PubMed  Google Scholar 

  • Hussain SM, Wielopolski PA, Martin DR (2005) Abdominal magnetic resonance imaging at 3.0 T: problem or a promise for the future? Top Magn Reson Imaging 16:325–335

    Article  PubMed  Google Scholar 

  • Jesmanowicz A, Bandettini PA, Hyde JS (1998) Single-shot half k-space high-resolution gradient-recalled EPI for fMRI at 3 Tesla. Magn Reson Med 40:754–762

    Article  PubMed  CAS  Google Scholar 

  • Katscher U, Bornert P, Leussler C, van den Brink JS (2003) Transmit SENSE. Magn Reson Med 49:144–150

    Article  PubMed  Google Scholar 

  • Komori T, Narabayashi I, Matsumura K, Matsuki M, Akagi H, Ogura Y, Aga F, Adachi I (2007) 2-[Fluorine-18]-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography versus whole-body diffusion-weighted MRI for detection of malignant lesions: initial experience. Ann Nucl Med 21:209–215

    Article  PubMed  Google Scholar 

  • Kruger G, Kastrup A, Glover GH (2001) Neuroimaging at 1.5 T and 3.0 T: comparison of oxygenation-sensitive magnetic resonance imaging. Magn Reson Med 45:595–604

    Article  PubMed  CAS  Google Scholar 

  • Kuhl CK, Traber F, Schild HH (2008) Whole-body high-field-strength (3.0-T) MR imaging in clinical practice. Part I. Technical considerations and clinical applications. Radiology 246:675–696

    Article  PubMed  Google Scholar 

  • Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13:534–546

    Article  PubMed  Google Scholar 

  • Le Bihan D, Poupon C, Amadon A, Lethimonnier F (2006) Artifacts and pitfalls in diffusion MRI. J Magn Reson Imaging 24:478–488

    Article  PubMed  Google Scholar 

  • Li D, Waight DJ, Wang Y (1998) In vivo correlation between blood T2* and oxygen saturation. J Magn Reson Imaging 8:1236–1239

    Article  PubMed  CAS  Google Scholar 

  • Menon RS, Ogawa S, Hu X, Strupp JP, Anderson P, Ugurbil K (1995) BOLD based functional MRI at 4 Tesla includes a capillary bed contribution: echo-planar imaging correlates with previous optical imaging using intrinsic signals. Magn Reson Med 33:453–459

    Article  PubMed  CAS  Google Scholar 

  • Merboldt KD, Finsterbusch J, Frahm J (2000) Reducing inhomogeneity artifacts in functional MRI of human brain activation-thin sections vs gradient compensation. J Magn Reson 145:184–191

    Article  PubMed  CAS  Google Scholar 

  • Merkle EM, Dale BM (2006) Abdominal MRI at 3.0 T: the basics revisited. AJR Am J Roentgenol 186:1524–1532

    Article  PubMed  Google Scholar 

  • Merkle EM, Dale BM, Paulson EK (2006) Abdominal MR imaging at 3T. Magn Reson Imaging Clin N Am 14:17–26

    Article  PubMed  Google Scholar 

  • Morakkabati-Spitz N, Schild HH, Kuhl CK, Lutterbey G, von Falkenhausen M, Traber F, Gieseke J (2006) Female pelvis: MR imaging at 3.0 T with sensitivity encoding and flip-angle sweep technique. Radiology 241:538–545

    Article  PubMed  Google Scholar 

  • Murtz P, Krautmacher C, Traber F, Gieseke J, Schild HH, Willinek WA (2007) Diffusion-weighted whole-body MR imaging with background body signal suppression: a feasibility study at 3.0 Tesla. Eur Radiol 17:3031–3037

    Article  PubMed  Google Scholar 

  • Narayana PA, Brey WW, Kulkarni MV, Sievenpiper CL (1988) Compensation for surface coil sensitivity variation in magnetic resonance imaging. Magn Reson Imaging 6:271–274

    Article  PubMed  CAS  Google Scholar 

  • Ogawa S, Lee TM (1990) Magnetic resonance imaging of blood vessels at high fields: in vivo and in vitro measurements and image simulation. Magn Reson Med 16:9–18

    Article  PubMed  CAS  Google Scholar 

  • Ojemann JG, Akbudak E, Snyder AZ, McKinstry RC, Raichle ME, Conturo TE (1997) Anatomic localization and quantitative analysis of gradient refocused echo-planar fMRI susceptibility artifacts. Neuroimage 6:156–167

    Article  PubMed  CAS  Google Scholar 

  • Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962

    Article  PubMed  CAS  Google Scholar 

  • Reichenbach JR, Venkatesan R, Schillinger DJ, Kido DK, Haacke EM (1997) Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic contrast agent. Radiology 204:272–277

    PubMed  CAS  Google Scholar 

  • Reichenbach JR, Essig M, Haacke EM, Lee BC, Przetak C, Kaiser WA, Schad LR (1998) High-resolution venography of the brain using magnetic resonance imaging. MAGMA 6:62–69

    PubMed  CAS  Google Scholar 

  • Ren T, Anderson A, Shen WB, Huang H, Plachez C, Zhang J, Mori S, Kinsman SL, Richards LJ (2006) Imaging, anatomical, and molecular analysis of callosal formation in the developing human fetal brain. Anat Rec A Discov Mol Cell Evol Biol 288:191–204

    PubMed  Google Scholar 

  • Sbarbati A, Pizzini F, Fabene PF, Nicolato E, Marzola P, Calderan L, Simonati A, Longo L, Osculati A, Beltramello A (2004) Cerebral cortex three-dimensional profiling in human fetuses by magnetic resonance imaging. J Anat 204:465–474

    Article  PubMed  Google Scholar 

  • Soher BJ, Dale BM, Merkle EM (2007) A review of MR physics: 3T versus 1.5T. Magn Reson Imaging Clin N Am 15:277–290, v

    Article  PubMed  Google Scholar 

  • Stadlbauer A, Bernt R, Gruber S, Bogner W, Pinker K, van der Riet W, Haller J, Salomonowitz E (2009) Diffusion-weighted MR imaging with background body signal suppression (DWIBS) for the diagnosis of malignant and benign breast lesions. Eur Radiol 19:2349–2356

    Article  PubMed  Google Scholar 

  • Stanisz GJ, Odrobina EE, Pun J, Escaravage M, Graham SJ, Bronskill MJ, Henkelman RM (2005) T1, T2 relaxation and magnetization transfer in tissue at 3T. Magn Reson Med 54:507–512

    Article  PubMed  Google Scholar 

  • Takahara T, Imai Y, Yamashita T, Yasuda S, Nasu S, Van Cauteren M (2004) Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med 22:275–282

    PubMed  Google Scholar 

  • Takahara T, Hendrikse J, Yamashita T, Mali WP, Kwee TC, Imai Y, Luijten PR (2008) Diffusion-weighted MR neurography of the brachial plexus: feasibility study. Radiology 249:653–660

    Article  PubMed  Google Scholar 

  • Tanenbaum LN (2006) Clinical 3T MR imaging: mastering the challenges. Magn Reson Imaging Clin N Am 14:1–15

    Article  PubMed  Google Scholar 

  • Thulborn KR (1999) Clinical rationale for very-high-field (3.0 Tesla) functional magnetic resonance imaging. Top Magn Reson Imaging 10:37–50

    Article  PubMed  CAS  Google Scholar 

  • Thulborn KR, Waterton JC, Matthews PM, Radda GK (1982) Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochim Biophys Acta 714:265–270

    Article  PubMed  CAS  Google Scholar 

  • Turner R, Jezzard P, Wen H, Kwong KK, Le Bihan D, Zeffiro T, Balaban RS (1993) Functional mapping of the human visual cortex at 4 and 1.5 tesla using deoxygenation contrast EPI. Magn Reson Med 29:277–279

    Article  PubMed  CAS  Google Scholar 

  • Ugurbil K, Garwood M, Ellermann J, Hendrich K, Hinke R, Hu X, Kim SG, Menon R, Merkle H, Ogawa S et al (1993) Imaging at high magnetic fields: initial experiences at 4 T. Magn Reson Q 9:259–277

    PubMed  CAS  Google Scholar 

  • Ullmann P, Junge S, Wick M, Seifert F, Ruhm W, Hennig J (2005) Experimental analysis of parallel excitation using dedicated coil setups and simultaneous RF transmission on multiple channels. Magn Reson Med 54:994–1001

    Article  PubMed  Google Scholar 

  • Vernickel P, Roschmann P, Findeklee C, Ludeke KM, Leussler C, Overweg J, Katscher U, Grasslin I, Schunemann K (2007) Eight-channel transmit/receive body MRI coil at 3T. Magn Reson Med 58:381–389

    Article  PubMed  CAS  Google Scholar 

  • Vinitski S, Griffey RH (1991) MR image contrast at high field strength. J Magn Reson Imaging 1:451–456

    Article  PubMed  CAS  Google Scholar 

  • Weigel M, Hennig J (2006) Contrast behavior and relaxation effects of conventional and hyperecho-turbo spin echo sequences at 1.5 and 3 T. Magn Reson Med 55:826–835

    Article  PubMed  Google Scholar 

  • Wen H, Denison TJ, Singerman RW, Balaban RS (1997) The intrinsic signal-to-noise ratio in human cardiac imaging at 1.5, 3, and 4 T. J Magn Reson 125:65–71

    Article  PubMed  CAS  Google Scholar 

  • Wieben O, Francois C, Reeder SB (2008) Cardiac MRI of ischemic heart disease at 3 T: potential and challenges. Eur J Radiol 65:15–28

    Article  PubMed  Google Scholar 

  • Yablonskiy DA, Haacke EM (1994) Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magn Reson Med 32:749–763

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y (2004) Parallel excitation with an array of transmit coils. Magn Reson Med 51:775–784

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Stadlbauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stadlbauer, A., Prayer, D. (2010). Fetal MRI at Higher Field Strength. In: Prayer, D. (eds) Fetal MRI. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2010_27

Download citation

  • DOI: https://doi.org/10.1007/174_2010_27

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73270-9

  • Online ISBN: 978-3-540-73271-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics