Skip to main content

Novel Native and Engineered Botulinum Neurotoxins

  • Chapter
  • First Online:
Botulinum Toxin Therapy

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 263))

Abstract

Botulinum neurotoxins (BoNTs), produced by Clostridia and other bacteria, are the most potent toxins known. Their cleavage of the soluble N-ethylmaleimide-sensitive factor activating protein receptor (SNARE) proteins in neurons prevents the release of neurotransmitters, thus resulting in the muscle paralysis that is characteristic of botulism. This mechanism of action has been exploited for a variety of therapeutic and cosmetic applications of BoNTs. This chapter provides an overview of the native BoNTs, including the classical serotypes and their clinical use, mosaic BoNTs, and novel BoNTs that have been recently identified in clostridial and non-clostridial strains. In addition, the modular structure of native BoNTs, which are composed of a light chain and a heavy chain, is amenable to a multitude of novel fusions and mutations using molecular biology techniques. These novel recombinant BoNTs have been used or are being developed to further characterize the biology of toxins, to assist in vaccine production, to serve as delivery vehicles to neurons, and to be utilized as novel therapeutics for both neuronal and non-neuronal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albanese A (2011) Terminology for preparations of botulinum neurotoxins: what a difference a name makes. JAMA Dermatol 305:89–90

    CAS  Google Scholar 

  • Antharavally BS, DasGupta BR (1997) Covalent structure of botulinum neurotoxin type E: location of sulfhydryl groups, and disulfide bridges and identification of C-termini of light and heavy chains. J Protein Chem 16:787–799

    Article  CAS  PubMed  Google Scholar 

  • Bade S, Rummel A, Reisinger C, Karnath T, Ahnert-Hilger G, Bigalke H et al (2004) Botulinum neurotoxin type D enables cytosolic delivery of enzymatically active cargo proteins to neurones via unfolded translocation intermediates. J Neurochem 91:1461–1472

    Article  CAS  PubMed  Google Scholar 

  • Band PA, Blais S, Neubert TA, Cardozo TJ, Ichtchenko K (2010) Recombinant derivatives of botulinum neurotoxin A engineered for trafficking studies and neuronal delivery. Protein Expr Purif 71:62–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barash JR, Arnon SS (2014) A novel strain of Clostridium botulinum that produces type B and type H botulinum toxins. J Infect Dis 209:183–191

    Article  CAS  PubMed  Google Scholar 

  • Beard M, Burgin D, Hornby F, Donald S, Krupp J, Dong M et al (2018) Recombinant expression and characterization of a botulinum neurotoxin serotype X chimera. Toxicon 156 Suppl 1:S8

    Article  Google Scholar 

  • Binz T, Beard M, Sikorra S, Schwede S, Elliott M, Donald S et al (2018) Mutations in light chain of botulinum neurotoxin a enable cleavage of human SNAP-23. Toxicon 156 Suppl 1:S10

    Article  Google Scholar 

  • BOTOX Cosmetic® (onabotulinumtoxinA) [prescribing information] (2018) Irvine: Allergan Pharmaceuticals Ireland, a subsidiary of Allergan, Inc.

    Google Scholar 

  • BOTOX® (onabotulinumtoxinA) [prescribing information] (2019) Irvine: Allergan Pharmaceuticals Ireland, a subsidiary of Allergan, Inc.

    Google Scholar 

  • Bradshaw M, Tepp WH, Whitemarsh RC, Pellett S, Johnson EA (2014) Holotoxin activity of botulinum neurotoxin subtype A4 originating from a nontoxigenic Clostridium botulinum expression system. Appl Environ Microbiol 80:7415–7422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brin MF, Lew MF, Adler CH, Comella CL, Factor SA, Jankovic J et al (1999) Safety and efficacy of NeuroBloc (botulinum toxin type B) in type A–resistant cervical dystonia. Neurology 53:1431–1438

    Article  CAS  PubMed  Google Scholar 

  • Brin MF, James C, Maltman J (2014) Botulinum toxin type A products are not interchangeable: a review of the evidence. Biologics 8:227–241

    PubMed  PubMed Central  Google Scholar 

  • Brunt J, Carter AT, Stringer SC, Peck MW (2018) Identification of a novel botulinum neurotoxin gene cluster in Enterococcus. FEBS Lett 592:310–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgin D, Périer C, Elliot M, Hornby F, Mir I, Beard M (2018) New modified recombinant botulinum neurotoxin type F with enhanced potency. Toxicon 156(Suppl 1):S12–SS3

    Article  Google Scholar 

  • Burke GS (1919) Notes on bacillus botulinus. J Bacteriol 4:555–70.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carruthers J, Solish N, Humphrey S, Rosen N, Muhn C, Bertucci V et al (2017) Injectable daxibotulinumtoxinA for the treatment of glabellar lines: a phase 2, randomized, dose-ranging, double-blind, multicenter comparison with onabotulinumtoxinA and placebo. Dermatol Surg 43:1321–1331

    Article  CAS  PubMed  Google Scholar 

  • Centers for Disease Control and Prevention (CDC) (2011) Notice of CDC’s discontinuation of investigational pentavalent (ABCDE) botulinum toxoid vaccine for workers at risk for occupational exposure to botulinum toxins. MMWR Morb Mortal Wkly Rep 60:1454–1455

    Google Scholar 

  • Chaddock JA, Herbert MH, Ling RJ, Alexander FC, Fooks SJ, Revell DF et al (2002) Expression and purification of catalytically active, non-toxic endopeptidase derivatives of Clostridium botulinum toxin type A. Protein Expr Purif 25:219–228

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Barbieri JT (2009) Engineering botulinum neurotoxin to extend therapeutic intervention. Proc Natl Acad Sci U S A 106:9180–9184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Barbieri JT (2014) Protease activity of the botulinum neurotoxins. In: Foster KA (ed) Molecular aspects of botulinum neurotoxin – current topics in neurotoxicity, vol 4. Springer, New York, pp 171–189

    Chapter  Google Scholar 

  • Comella CL, Jankovic J, Shannon KM, Tsui J, Swenson M, Leurgans S et al (2005) Comparison of botulinum toxin serotypes A and B for the treatment of cervical dystonia. Neurology 65:1423–1429

    Article  CAS  PubMed  Google Scholar 

  • Contreras E, Masuyer G, Qureshi N, Chawla S, Dhillon HS, Lee HL et al (2019) A neurotoxin that specifically targets Anopheles mosquitoes. Nat Commun 10:2869

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Darios F, Niranjan D, Ferrari E, Zhang F, Soloviev M, Rummel A et al (2010) SNARE tagging allows stepwise assembly of a multimodular medicinal toxin. Proc Natl Acad Sci U S A 107:18197–18201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Paiva A, Poulain B, Lawrence GW, Shone CC, Tauc L, Dolly JO (1993) A role for the interchain disulfide or its participating thiols in the internalization of botulinum neurotoxin A revealed by a toxin derivative that binds to ecto-acceptors and inhibits transmitter release intracellularly. J Biol Chem 268:20838–20844

    PubMed  Google Scholar 

  • Dekleva ML, Dasgupta BR (1990) Purification and characterization of a protease from clostridium botulinum type A that nicks single-chain type A botulinum neurotoxin into the di-chain form. J Bacteriol 172:2498–2503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dolly O, Wang J (2015) Engineering of botulinum neurotoxins as novel therapeutic tools. In: Alouf J, Ladant D, Popoff MR (eds) The comprehensive sourcebook of bacterial protein toxins, 4th edn. Elsevier Ltd., Amsterdam, pp 995–1015

    Chapter  Google Scholar 

  • Dover N, Barash JR, Hill KK, Xie G, Arnon SS (2014) Molecular characterization of a novel botulinum neurotoxin type H gene. J Infect Dis 209:192–202

    Article  CAS  PubMed  Google Scholar 

  • Dressler D, Truong D, Comella C, Jankovic J, Brashear A, Patel A et al (2018) Immunogenicity of daxibotulinumtoxinA for injection in adults with cervical dystonia from a phase 2 dose-escalation multicenter study. Toxicon 156(Suppl 1):S26–SS7

    Google Scholar 

  • Duff JT, Wright GG, Yarinsky A (1956) Activation of Clostridium botulinum type E toxin by trypsin. J Bacteriol 72:455–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DYSPORT® (abobotulinumtoxinA) [prescribing information] (2018) Basking Ridge: Ipsen Biopharmaceuticals, Inc.

    Google Scholar 

  • Edupuganti OP, Ovsepian SV, Wang J, Zurawski TH, Schmidt JJ, Smith L et al (2012) Targeted delivery into motor nerve terminals of inhibitors for SNARE-cleaving proteases via liposomes coupled to an atoxic botulinum neurotoxin. FEBS J 279:2555–2567

    Article  CAS  PubMed  Google Scholar 

  • Eklund MW, Poysky FT (1972) Activation of a toxic component of Clostridium botulinum types C and D by trypsin. Appl Microbiol 24:108–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eleopra R, Tugnoli V, Rossetto O, Montecucco C, De Grandis D (1997) Botulinum neurotoxin serotype C: a novel effective botulinum toxin therapy in human. Neurosci Lett 224:91–94

    Article  CAS  PubMed  Google Scholar 

  • Eleopra R, Tugnoli V, Rossetto O, De Grandis D, Montecucco C (1998) Different time courses of recovery after poisoning with botulinum neurotoxin serotypes A and E in humans. Neurosci Lett 256:135–138

    Article  CAS  PubMed  Google Scholar 

  • Eleopra R, Tugnoli V, Quatrale R, Rossetto O, Montecucco C, Dressler D (2006) Clinical use of non-A botulinum toxins: botulinum toxin type C and botulinum toxin type F. Neurotox Res 9:127–131

    Article  CAS  PubMed  Google Scholar 

  • Elliott M, Maignel J, Liu SM, Favre-Guilmard C, Mir I, Farrow P et al (2017) Augmentation of VAMP-catalytic activity of botulinum neurotoxin serotype B does not result in increased potency in physiological systems. PLoS One 12:e0185628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elliott M, Favre-Guilmard C, Liu SM, Maignel J, Masuyer G, Beard M et al (2019) Engineered botulinum neurotoxin B with improved binding to human receptors has enhanced efficacy in preclinical models. Sci Adv 5:eaau7196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Erbguth FJ (2008) From poison to remedy: the chequered history of botulinum toxin. J Neural Transm 115:559–565

    Article  CAS  PubMed  Google Scholar 

  • Ferrari E, Maywood ES, Restani L, Caleo M, Pirazzini M, Rossetto O et al (2011) Re-assembled botulinum neurotoxin inhibits CNS functions without systemic toxicity. Toxins 3:345–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer A, Montal M (2007) Crucial role of the disulfide bridge between botulinum neurotoxin light and heavy chains in protease translocation across membranes. J Biol Chem 282:29604–29611

    Article  CAS  PubMed  Google Scholar 

  • Foster K, Blum T, Beard M, Chaddock J, Kupinski A, Harding A et al (2018) Phage-assisted continuous evolution of botulinum neurotoxin light chains generates novel light chains with modified snare cleavage specificity. Toxicon 156 Suppl 1:S35

    Google Scholar 

  • Frevert J, Ahn KY, Park MY, Sunga O (2018) Comparison of botulinum neurotoxin type A formulations in Asia. Clin Cosmet Investig Dermatol 11:327–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerwing J, Dolman CE, Ko A (1965) Mechanism of tryptic activation of Clostridium botulinum type E toxin. J Bacteriol 89:1176–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill DM (1982) Bacterial toxins: a table of lethal amounts. Microbiol Rev 46:86–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilmore MA, Sun S, Ordas JV, Arpawong HT, Okawa Y, Satorius A et al (2008) Fully active recombinant BoNT/E purified from E. coli in high yield. Toxicon 51 Suppl 1:11–12

    Article  Google Scholar 

  • Giménez DF, Ciccarelli AS (1970) Another type of Clostridium botulinum. Zentralbl Bakteriol Orig 215:221–224

    PubMed  Google Scholar 

  • Glogau R, Kane M, Beddingfield F, Somogyi C, Lei X, Caulkins C et al (2012) OnabotulinumtoxinA: a meta-analysis of duration of effect in the treatment of glabellar lines. Dermatol Surg 38:1794–1803

    Article  CAS  PubMed  Google Scholar 

  • Greene PE, Fahn S (1993) Use of botulinum toxin type F injections to treat torticollis in patients with immunity to botulinum toxin type A. Mov Disord 8:479–483

    Article  CAS  PubMed  Google Scholar 

  • Gu S, Rumpel S, Zhou J, Strotmeier J, Bigalke H, Perry K et al (2012) Botulinum neurotoxin is shielded by NTNHA in an interlocked complex. Science 335:977–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gustafsson C, Govindarajan S, Minshull J (2004) Codon bias and heterologous protein expression. Trends Biotechnol 22:346–353

    Article  CAS  PubMed  Google Scholar 

  • Gustafsson R, Berntsson RP, Martinez-Carranza M, El Tekle G, Odegrip R, Johnson EA et al (2017) Crystal structures of OrfX2 and P47 from a Botulinum neurotoxin OrfX-type gene cluster. FEBS Lett 591:3781–3792

    Article  CAS  PubMed  Google Scholar 

  • Hackett G, Moore K, Burgin D, Hornby F, Gray B, Elliott M et al (2018) Purification and characterization of recombinant botulinum neurotoxin serotype FA, also known as serotype H. Toxins 10:E195

    Article  PubMed  CAS  Google Scholar 

  • Höltje M, Schulze S, Strotmeier J, Mahrhold S, Richter K, Binz T et al (2013) Exchanging the minimal cell binding fragments of tetanus neurotoxin in botulinum neurotoxin A and B impacts their toxicity at the neuromuscular junction and central neurons. Toxicon 75:108–121

    Article  PubMed  CAS  Google Scholar 

  • Hosomi K, Sakaguchi Y, Kohda T, Gotoh K, Motooka D, Nakamura S et al (2014) Complete nucleotide sequence of a plasmid containing the botulinum neurotoxin gene in Clostridium botulinum type B strain 111 isolated from an infant patient in Japan. Mol Gen Genomics 289:1267–1274

    Article  CAS  Google Scholar 

  • Jankovic J, Hunter C, Dolimbek BZ, Dolimbek GS, Adler CH, Brashear A et al (2006) Clinico-immunologic aspects of botulinum toxin type B treatment of cervical dystonia. Neurology 67:2233–2235

    Article  CAS  PubMed  Google Scholar 

  • Jankovic J, Truong D, Patel AT, Brashear A, Evatt M, Rubio RG et al (2018) Injectable daxibotulinumtoxinaA in cervical dystonia: a phase 2 dose-escalation multicenter study. Mov Disord Clin Pract 5:273–282

    Article  PubMed  PubMed Central  Google Scholar 

  • JEUVEAU (prabotulinumtoxinA-xvfs) [prescribing information] (2019) Santa Barbara: Evolus Inc.

    Google Scholar 

  • Kakinuma H, Maruyama H, Takahashi H, Yamakawa K, Nakamura S (1996) The first case of type B infant botulism in Japan. Acta Paediatr Jpn 38:541–543

    Article  CAS  PubMed  Google Scholar 

  • Kalb SR, Baudys J, Raphael BH, Dykes JK, Lúquez C, Maslanka SE et al (2015) Functional characterization of botulinum neurotoxin serotype H as a hybrid of known serotypes F and A (BoNT F/A). Anal Chem 87:3911–3917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kauffman JA, Way JF Jr, Siegel LS, Sellin LC (1985) Comparison of the action of types A and F botulinum toxin at the rat neuromuscular junction. Toxicol Appl Pharmacol 79:211–217

    Article  CAS  PubMed  Google Scholar 

  • Kaufman-Janette JA, Solish N, Liu Y, Rubio RG, Gallagher CJ (2018) Pooled results from 2 phase 3 pivotal studies of daxibotulinumtoxinA for the treatment of glabellar lines. Toxicon 156 Suppl 1:S59

    Article  Google Scholar 

  • Kennelly M, Dmochowski R, Schulte-Baukloh H, Ethans K, Del Popolo G, Moore C et al (2017) Efficacy and safety of onabotulinumtoxinA therapy are sustained over 4 years of treatment in patients with neurogenic detrusor overactivity: final results of a long-term extension study. Neurourol Urodyn 36:368–375

    Article  CAS  PubMed  Google Scholar 

  • Kim JE, Song EJ, Choi GS, Lew BL, Sim WY, Kang H (2015) The efficacy and safety of liquid-type botulinum toxin type A for the management of moderate to severe glabellar frown lines. Plast Reconstr Surg 135:732–741

    Article  CAS  PubMed  Google Scholar 

  • Kiyatkin N, Maksymowych AB, Simpson LL (1997) Induction of an immune response by oral administration of recombinant botulinum toxin. Infect Immun 65:4586–4591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozaki S, Oga Y, Kamata Y, Sakaguchi G (1985) Activation of Clostridium botulinum type B and E derivative toxins with lysine-specific proteases. FEMS Microbiol Lett 27:149–154

    Article  CAS  Google Scholar 

  • Kukreja RV, Singh BR (2007) Comparative role of neurotoxin-associated proteins in the structural stability and endopeptidase activity of botulinum neurotoxin complex types A and E. Biochemistry 46:14316–14324

    Article  CAS  PubMed  Google Scholar 

  • Kumaran D, Eswaramoorthy S, Furey W, Navaza J, Sax M, Swaminathan S (2009) Domain organization in Clostridium botulinum neurotoxin type E is unique: its implication in faster translocation. J Mol Biol 386:233–245

    Article  CAS  PubMed  Google Scholar 

  • Kutschenko A, Reinert MC, Krez N, Liebetanz D, Rummel A (2017) BoNT/AB hybrid maintains similar duration of paresis as BoNT/A wild-type in murine running wheel assay. Neurotoxicology 59:1–8

    Article  CAS  PubMed  Google Scholar 

  • Kutschenko A, Weisemann J, Kollewe K, Fiedler T, Alvermann S, Boselt S et al (2019) Botulinum neurotoxin serotype D – a potential treatment alternative for BoNT/A and B non-responding patients. Clin Neurophysiol 130:1066–1073

    Article  PubMed  Google Scholar 

  • Lacy DB, Tepp W, Cohen AC, DasGupta BR, Stevens RC (1998) Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat Struct Biol 5:898–902

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Gu S, Jin L, Le TT, Cheng LW, Strotmeier J et al (2013) Structure of a bimodular botulinum neurotoxin complex provides insights into its oral toxicity. PLoS Pathog 9:e1003690

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee K, Zhong X, Gu S, Kruel AM, Dorner MB, Perry K et al (2014) Molecular basis for disruption of E-cadherin adhesion by botulinum neurotoxin A complex. Science 344:1405–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López de la Paz M, Scheps D, Jurk M, Hofmann F, Frevert J (2018) Rational design of botulinum neurotoxin A1 mutants with improved oxidative stability. Toxicon 147:54–57

    Google Scholar 

  • Ludlow CL, Hallett M, Rhew K, Cole R, Shimizu T, Sakaguchi G et al (1992) Therapeutic use of type F botulinum toxin. N Engl J Med 326:349–350

    Article  CAS  PubMed  Google Scholar 

  • Maffezzoni F, Formenti AM, Mazziotti G, Frara S, Giustina A (2016a) Current and future medical treatments for patients with acromegaly. Expert Opin Pharmacother 17:1631–1642

    Article  CAS  PubMed  Google Scholar 

  • Maffezzoni F, Frara S, Doga M, Mazziotti G, Giustina A (2016b) New medical therapies of acromegaly. Growth Hormon IGF Res 30-31:58–63

    Article  CAS  Google Scholar 

  • Maisey EA, Wadsworth JD, Poulain B, Shone CC, Melling J, Gibbs P et al (1988) Involvement of the constituent chains of botulinum neurotoxins A and B in the blockade of neurotransmitter release. Eur J Biochem 177:683–691

    Article  CAS  PubMed  Google Scholar 

  • Malmirchegini R, Too P, Oliyai C, Joshi A (2018) Revance’s novel peptide excipient, RTP004, and its role in stabilizing daxibotulinumtoxinA (DAXI) against aggregation. Toxicon 156:S72–S73

    Article  Google Scholar 

  • Mansfield MJ, Adams JB, Doxey AC (2015) Botulinum neurotoxin homologs in non-Clostridium species. FEBS Lett 589:342–348

    Article  CAS  PubMed  Google Scholar 

  • Mansfield MJ, Wentz TG, Zhang S, Lee EJ, Dong M, Sharma SK et al (2019) Bioinformatic discovery of a toxin family in Chryseobacterium piperi with sequence similarity to botulinum neurotoxins. Sci Rep 9:1634

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maslanka SE, Lúquez C, Dykes JK, Tepp WH, Pier CL, Pellett S et al (2016) A novel botulinum neurotoxin, previously reported as serotype H, has a hybrid-like structure with regions of similarity to the structures of serotypes A and F and is neutralized with serotype A antitoxin. J Infect Dis 213:379–385

    Article  CAS  PubMed  Google Scholar 

  • Masuyer G, Beard M, Cadd VA, Chaddock JA, Ravi AK (2011) Structure and activity of a functional derivative of Clostridium botulinum neurotoxin B. J Struct Biol 174:52–57

    Article  CAS  PubMed  Google Scholar 

  • Masuyer G, Davies JR, Moore K, Chaddock JA, Ravi AK (2015) Structural analysis of Clostridium botulinum neurotoxin type D as a platform for the development of targeted secretion inhibitors. Sci Rep 5:13397

    Article  PubMed  PubMed Central  Google Scholar 

  • Masuyer G, Zhang S, Barkho S, Shen Y, Henriksson L, Košenina S et al (2018) Structural characterisation of the catalytic domain of botulinum neurotoxin X – high activity and unique substrate specificity. Sci Rep 8:4518

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moriishi K, Koura M, Abe N, Fujii N, Fujinaga Y, Inoue K et al (1996) Mosaic structures of neurotoxins produced from Clostridium botulinum types C and D organisms. Biochim Biophys Acta 1307:123–126

    Article  PubMed  Google Scholar 

  • MYOBLOC® (rimabotulinumtoxinB) [prescribing information] (2009) South San Francisco: Solstice Neurosciences, Inc

    Google Scholar 

  • Nugent M, Wang J, Lawrence G, Zurawski T, Geoghegan JA, Dolly JO (2017) Conjugate of an IgG binding domain with botulinum neurotoxin A lacking the acceptor moiety targets its snare protease into TrkA-expressing cells when coupled to anti-TrkA IgG or Fc-betaNGF. Bioconjug Chem 28:1684–1692

    Article  CAS  PubMed  Google Scholar 

  • Nugent M, Yusef YR, Meng J, Wang J, Dolly JO (2018) A SNAP-25 cleaving chimera of botulinum neurotoxin /A and /E prevents TNFα-induced elevation of the activities of native TRP channels on early postnatal rat dorsal root ganglion neurons. Neuropharmacology 138:257–266

    Article  CAS  PubMed  Google Scholar 

  • Ohishi I, Sakaguchi G (1977) Activation of botulinum toxins in the absence of nicking. Infect Immun 17:402–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pellett S, Tepp WH, Stanker LH, Band PA, Johnson EA, Ichtchenko K (2011) Neuronal targeting, internalization, and biological activity of a recombinant atoxic derivative of botulinum neurotoxin A. Biochem Biophys Res Commun 405:673–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pellett S, Tepp WH, Scherf JM, Pier CL, Johnson EA (2015) Activity of botulinum neurotoxin type D (strain 1873) in human neurons. Toxicon 101:63–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pellett S, Tepp WH, Bradshaw M, Kalb SR, Dykes JK, Lin G et al (2016) Purification and characterization of botulinum neurotoxin FA from a genetically modified Clostridium botulinum strain. mSphere 1:e00100–e00115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pellett S, Bradshaw M, Tepp WH, Pier CL, Whitemarsh RCM, Chen C et al (2018a) The light chain defines the duration of action of botulinum toxin serotype A subtypes. MBio 9:e00089–e00018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pellett S, Tepp WH, Lin G, Johnson EA (2018b) Substrate cleavage and duration of action of botulinum neurotoxin type FA (“H, HA”). Toxicon 147:38–46

    Article  CAS  PubMed  Google Scholar 

  • Pier CL, Tepp WH, Bradshaw M, Johnson EA, Barbieri JT, Baldwin MR (2008) Recombinant holotoxoid vaccine against botulism. Infect Immun 76:437–442

    Article  CAS  PubMed  Google Scholar 

  • Pirazzini M, Rossetto O, Bolognese P, Shone CC, Montecucco C (2011) Double anchorage to the membrane and intact inter-chain disulfide bond are required for the low pH induced entry of tetanus and botulinum neurotoxins into neurons. Cell Microbiol 13:1731–1743

    Article  CAS  PubMed  Google Scholar 

  • Pirazzini M, Henke T, Rossetto O, Mahrhold S, Krez N, Rummel A et al (2013) Neutralisation of specific surface carboxylates speeds up translocation of botulinum neurotoxin type B enzymatic domain. FEBS Lett 587:3831–3836

    Article  CAS  PubMed  Google Scholar 

  • Pirazzini M, Rossetto O, Eleopra R, Montecucco C (2017) Botulinum neurotoxins: biology, pharmacology, and toxicology. Pharmacol Rev 69:200–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pons L, Vilain C, Picaut P (2018) Outcomes of the first-in-human study with a recombinant botulinum toxin type E (rBoNT-E): safety and pharmacodynamic profile of rBoNT-E compared with abobotulinumtoxinA (Dysport®). Toxicon. 156(Suppl 1):S93

    Google Scholar 

  • Przedpelski A, Tepp WH, Zuverink M, Johnson EA, Pellet S, Barbieri JT (2018) Enhancing toxin-based vaccines against botulism. Vaccine 36:827–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravichandran E, Janardhanan P, Patel K, Riding S, Cai S, Singh BR (2016) In vivo toxicity and immunological characterization of detoxified recombinant botulinum neurotoxin type A. Pharm Res 33:639–652

    Article  CAS  PubMed  Google Scholar 

  • Rummel A (2015) The long journey of botulinum neurotoxins into the synapse. Toxicon 107:9–24

    Article  CAS  PubMed  Google Scholar 

  • Saffarian P, Peerayeh SN, Amani J, Ebrahimi F, Sedighian H, Halabian R et al (2016a) TAT-BoNT/A(1-448), a novel fusion protein as a therapeutic agent: analysis of transcutaneous delivery and enzyme activity. Appl Microbiol Biotechnol 100:2785–2795

    Article  CAS  PubMed  Google Scholar 

  • Saffarian P, Peerayeh SN, Amani J, Ebrahimi F, Sedighianrad H, Halabian R et al (2016b) Expression and purification of recombinant TAT-BoNT/A(1-448) under denaturing and native conditions. Bioengineered 7:478–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakaguchi Y, Suzuki T, Yamamoto Y, Nishikawa A, Oguma K (2015) Genomics of Clostridium botulinum group III strains. Res Microbiol 166:318–325

    Article  CAS  PubMed  Google Scholar 

  • Scheps D, de la López Paz M, Jurk M, Hofmann F, Frevert J (2017) Design of modified botulinum neurotoxin A1 variants with a shorter persistence of paralysis and duration of action. Toxicon 139:101–108

    Article  CAS  PubMed  Google Scholar 

  • Schiavo G, Papini E, Genna G, Montecucco C (1990) An intact interchain disulfide bond is required for the neurotoxicity of tetanus toxin. Infect Immun 58:4136–4141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sikorra S, Litschko C, Müller C, Thiel N, Galli T, Eichner T et al (2016) Identification and characterization of botulinum neurotoxin A substrate binding pockets and their re-engineering for human SNAP-23. J Mol Biol 428:372–384

    Article  CAS  PubMed  Google Scholar 

  • Simpson LL, Maksymowych AB, Park JB, Bora RS (2004) The role of the interchain disulfide bond in governing the pharmacological actions of botulinum toxin. J Pharmacol Exp Ther 308:857–864

    Article  CAS  PubMed  Google Scholar 

  • Sloop RR, Cole BA, Escutin RO (1997) Human response to botulinum toxin injection: type B compared with type A. Neurology 49:189–194

    Article  CAS  PubMed  Google Scholar 

  • Smith TJ (2014) Clostridium botulinum genomes and genetic diversity. In: Foster KA (ed) Molecular aspects of botulinum neurotoxin. Springer, New York, pp 207–228

    Chapter  Google Scholar 

  • Smith TJ, Hill KK, Foley BT, Detter JC, Munk AC, Bruce DC et al (2007) Analysis of the neurotoxin complex genes in Clostridium botulinum A1-A4 and B1 strains: BoNT/A3, /Ba4 and /B1 clusters are located within plasmids. PLoS One 2:e1271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Somm E, Bonnet N, Martinez A, Marks PM, Cadd VA, Elliott M et al (2012) A botulinum toxin-derived targeted secretion inhibitor downregulates the GH/IGF1 axis. J Clin Invest 122:3295–3306

    Article  PubMed  PubMed Central  Google Scholar 

  • Somm E, Bonnet N, Zizzari P, Tolle V, Toulotte A, Jones R et al (2013) Comparative inhibition of the GH/IGF-I axis obtained with either the targeted secretion inhibitor SXN101959 or the somatostatin analog octreotide in growing male rats. Endocrinology 154:4237–4248

    Article  CAS  PubMed  Google Scholar 

  • Strahan BL, Failor KC, Batties AM, Hayes PS, Cicconi KM, Mason CT et al (2011) Chryseobacterium piperi sp. nov., isolated from a freshwater creek. Int J Syst Evol Microbiol 61:2162–2166

    Article  CAS  PubMed  Google Scholar 

  • Sugawara Y, Matsumura T, Takegahara Y, Jin Y, Tsukasaki Y, Takeichi M et al (2010) Botulinum hemagglutinin disrupts the intercellular epithelial barrier by directly binding E-cadherin. J Cell Biol 189:691–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swaminathan S, Eswaramoorthy S (2000) Structural analysis of the catalytic and binding sites of Clostridium botulinum neurotoxin B. Nat Struct Biol 7:693–699

    Article  CAS  PubMed  Google Scholar 

  • Takeda M, Tsukamoto K, Kohda T, Matsui M, Mukamoto M, Kozaki S (2005) Characterization of the neurotoxin produced by isolates associated with avian botulism. Avian Dis 49:376–381

    Article  PubMed  Google Scholar 

  • Tao L, Peng L, Berntsson RP, Liu SM, Park S, Yu F et al (2017) Engineered botulinum neurotoxin B with improved efficacy for targeting human receptors. Nat Commun 8:53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tehran DA, Pirazzini M (2018) Novel botulinum neurotoxins: exploring underneath the iceberg tip. Toxins 10:E190

    Article  PubMed  CAS  Google Scholar 

  • Vazquez-Cintron E, Tenezaca L, Angeles C, Syngkon A, Liublinska V, Ichtchenko K et al (2016) Pre-clinical study of a novel recombinant botulinum neurotoxin derivative engineered for improved safety. Sci Rep 6:30429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vazquez-Cintron EJ, Vakulenko M, Band PA, Stanker LH, Johnson EA, Ichtchenko K (2014) Atoxic derivative of botulinum neurotoxin A as a prototype molecular vehicle for targeted delivery to the neuronal cytoplasm. PLoS One 9:e85517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vazquez-Cintron EJ, Beske PH, Tenezaca L, Tran BQ, Oyler JM, Glotfelty EJ et al (2017) Engineering botulinum neurotoxin C1 as a molecular vehicle for intra-neuronal drug delivery. Sci Rep 7:42923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Meng J, Lawrence GW, Zurawski TH, Sasse A, Bodeker MO et al (2008) Novel chimeras of botulinum neurotoxins A and E unveil contributions from the binding, translocation, and protease domains to their functional characteristics. J Biol Chem 283:16993–17002

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Zurawski TH, Bodeker MO, Meng J, Boddul S, Aoki KR et al (2012a) Longer-acting and highly potent chimaeric inhibitors of excessive exocytosis created with domains from botulinum neurotoxin A and B. Biochem J 444:59–67

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Zurawski TH, Meng J, Lawrence GW, Aoki KR, Wheeler L et al (2012b) Novel chimeras of botulinum and tetanus neurotoxins yield insights into their distinct sites of neuroparalysis. FASEB J 26:5035–5048

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Casals-Diaz L, Zurawski T, Meng J, Moriarty O, Nealon J et al (2017) A novel therapeutic with two SNAP-25 inactivating proteases shows long-lasting anti-hyperalgesic activity in a rat model of neuropathic pain. Neuropharmacology 118:223–232

    Article  CAS  PubMed  Google Scholar 

  • Webb RP (2018) Engineering of botulinum neurotoxins for biomedical applications. Toxins 10:231

    Article  PubMed Central  CAS  Google Scholar 

  • Webb RP, Smith TJ, Wright P, Brown J, Smith LA (2009) Production of catalytically inactive BoNT/A1 holoprotein and comparison with BoNT/A1 subunit vaccines against toxin subtypes A1, A2, and A3. Vaccine 27:4490–4497

    Article  CAS  PubMed  Google Scholar 

  • Webb RP, Smith TJ, Smith LA, Wright PM, Guernieri RL, Brown JL et al (2017) Recombinant botulinum neurotoxin Hc subunit (BoNT Hc) and catalytically inactive Clostridium botulinum holoproteins (ciBoNT HPs) as vaccine candidates for the prevention of botulism. Toxins 9:269

    Article  PubMed Central  CAS  Google Scholar 

  • Weisemann J, Krez N, Fiebig U, Worbs S, Skiba M, Endermann T et al (2015) Generation and characterization of six recombinant botulinum neurotoxins as reference material to serve in an international proficiency test. Toxins 7:5035–5054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wentz TG, Muruvanda T, Lomonaco S, Thirunavukkarasu N, Hoffmann M, Allard MW et al (2017) Closed genome sequence of Chryseobacterium piperi strain CTMT/ATCC BAA-1782, a gram-negative bacterium with clostridial neurotoxin-like coding sequences. Genome Announc 5:e01296–e01217

    Article  PubMed  PubMed Central  Google Scholar 

  • Whitemarsh RC, Tepp WH, Johnson EA, Pellett S (2014) Persistence of botulinum neurotoxin A subtypes 1-5 in primary rat spinal cord cells. PLoS One 9:e90252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Woudstra C, Le Maréchal C, Souillard R, Anniballi F, Auricchio B, Bano L et al (2018) Investigation of Clostridium botulinum group III’s mobilome content. Anaerobe 49:71–77

    Article  PubMed  Google Scholar 

  • Wuchao L, Ya F, Junhui S, Zheng Z, Lizhen P, Libin Z et al (2018) An experimental study about neurotoxic potency of a novel botulinum toxin type A free of neurotoxin-associated proteins based on muscle strength measurement. Toxicon 156 Suppl 1:S117

    Article  Google Scholar 

  • XEOMIN® (incobotulinumtoxinA) [prescribing information] (2019) Raleigh: Merz Pharmaceuticals, LLC

    Google Scholar 

  • Yang N, Liu SM, Marlin S, Lewandowska A, Heyang M, Voisin T et al (2018) Chimeras of anthrax toxin and botulinum neurotoxin as novel analgesic proteins. Toxicon 156 Suppl 1:S118

    Article  Google Scholar 

  • Yoelin SG, Dhawan SS, Vitarella D, Ahmad W, Hasan F, Abushakra S (2018) Safety and efficacy of EB-001, a novel type E botulinum toxin, in subjects with glabellar frown lines: results of a phase 2, randomized, placebo-controlled, ascending-dose study. Plast Reconstr Surg 142:847e–855e

    Article  CAS  PubMed  Google Scholar 

  • Zanetti G, Sikorra S, Rummel A, Krez N, Duregotti E, Negro S et al (2017) Botulinum neurotoxin C mutants reveal different effects of syntaxin or SNAP-25 proteolysis on neuromuscular transmission. PLoS Pathog 13:e1006567

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang S, Masuyer G, Zhang J, Shen Y, Lundin D, Henriksson L et al (2017) Identification and characterization of a novel botulinum neurotoxin. Nat Commun 8:14130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Lebreton F, Mansfield MJ, Miyashita SI, Zhang J, Schwartzman JA et al (2018) Identification of a botulinum neurotoxin-like toxin in a commensal strain of Enterococcus faecium. Cell Host Microbe 23:169–176.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou L, de Paiva A, Liu D, Aoki R, Dolly JO (1995) Expression and purification of the light chain of botulinum neurotoxin A: a single mutation abolishes its cleavage of SNAP-25 and neurotoxicity after reconstitution with the heavy chain. Biochemistry 34:15175–15181

    Article  CAS  PubMed  Google Scholar 

  • Zornetta I, Azarnia Tehran D, Arrigoni G, Anniballi F, Bano L, Leka O et al (2016) The first non Clostridial botulinum-like toxin cleaves VAMP within the juxtamembrane domain. Sci Rep 6:30257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Dina Anderson, Birgitte Jacky, Mariana Nelson, and Edwin Vazquez-Cintron (Allergan plc) for reviewing the chapter and Maria Rivero (Allergan plc) for the graphics. Medical writing and editorial assistance was provided by Jennifer L. Giel, PhD, on behalf of Evidence Scientific Solutions, Inc, Philadelphia, PA, and was funded by Allergan plc, Dublin, Ireland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy Brideau-Andersen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Steward, L., Brin, M.F., Brideau-Andersen, A. (2020). Novel Native and Engineered Botulinum Neurotoxins. In: Whitcup, S.M., Hallett, M. (eds) Botulinum Toxin Therapy. Handbook of Experimental Pharmacology, vol 263. Springer, Cham. https://doi.org/10.1007/164_2020_351

Download citation

Publish with us

Policies and ethics