Skip to main content

Bile Acid-Activated Receptors: A Review on FXR and Other Nuclear Receptors

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 256))

Abstract

Nuclear receptors (NRs) are ligand-dependent transcription factors that are involved in various biological processes including metabolism, reproduction, and development. Upon activation by their ligands, NRs bind to their specific DNA elements, exerting their biological functions by regulating their target gene expression. Bile acids are detergent-like molecules that are synthesized in the liver. They not only function as a facilitator for the digestion of lipids and fat-soluble vitamins but also serve as signaling molecules for several nuclear receptors to regulate diverse biological processes including lipid, glucose, and energy metabolism, detoxification and drug metabolism, liver regeneration, and cancer. The nuclear receptors including farnesoid X receptor (FXR), pregnane X receptor (PXR), constitutive androstane receptor (CAR), vitamin D receptor (VDR), and small heterodimer partner (SHP) constitute an integral part of the bile acid signaling. This chapter reviews the role of the NRs in bile acid homeostasis, highlighting the regulatory functions of the NRs in lipid and glucose metabolism in addition to bile acid metabolism.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adachi R, Honma Y, Masuno H, Kawana K, Shimomura I, Yamada S, Makishima M (2005) Selective activation of vitamin D receptor by lithocholic acid acetate, a bile acid derivative. J Lipid Res 46:46–57

    Article  CAS  PubMed  Google Scholar 

  • Adorini L, Pruzanski M, Shapiro D (2012) Farnesoid X receptor targeting to treat nonalcoholic steatohepatitis. Drug Discov Today 17:988–997

    Article  CAS  PubMed  Google Scholar 

  • Ananthanarayanan M, Balasubramanian N, Makishima M, Mangelsdorf DJ, Suchy FJ (2001) Human bile salt export pump promoter is transactivated by the farnesoid X receptor/bile acid receptor. J Biol Chem 276:28857–28865

    Article  CAS  PubMed  Google Scholar 

  • Argaud D, Halimi S, Catelloni F, Leverve XM (1991) Inhibition of gluconeogenesis in isolated rat hepatocytes after chronic treatment with phenobarbital. Biochem J 280(Pt 3):663–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baes M, Gulick T, Choi HS, Martinoli MG, Simha D, Moore DD (1994) A new orphan member of the nuclear hormone receptor superfamily that interacts with a subset of retinoic acid response elements. Mol Cell Biol 14:1544–1552

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baker AR et al (1988) Cloning and expression of full-length cDNA encoding human vitamin D receptor. Proc Natl Acad Sci U S A 85:3294–3298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balasubramaniyan N, Luo Y, Sun AQ, Suchy FJ (2013) SUMOylation of the farnesoid X receptor (FXR) regulates the expression of FXR target genes. J Biol Chem 288:13850–13862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bateson MC, Maclean D, Evans JR, Bouchier IA (1978) Chenodeoxycholic acid therapy for hypertriglyceridaemia in men. Br J Clin Pharmacol 5:249–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berrabah W et al (2014) Glucose sensing O-GlcNAcylation pathway regulates the nuclear bile acid receptor farnesoid X receptor (FXR). Hepatology 59:2022–2033

    Article  CAS  PubMed  Google Scholar 

  • Bertilsson G et al (1998) Identification of a human nuclear receptor defines a new signaling pathway for CYP3A induction. Proc Natl Acad Sci U S A 95:12208–12213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhalla S, Ozalp C, Fang S, Xiang L, Kemper JK (2004) Ligand-activated pregnane X receptor interferes with HNF-4 signaling by targeting a common coactivator PGC-1alpha. Functional implications in hepatic cholesterol and glucose metabolism. J Biol Chem 279:45139–45147

    Article  CAS  PubMed  Google Scholar 

  • Blumberg B, Sabbagh W Jr, Juguilon H, Bolado J Jr, van Meter CM, Ong ES, Evans RM (1998) SXR, a novel steroid and xenobiotic-sensing nuclear receptor. Genes Dev 12:3195–3205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bookout AL, Jeong Y, Downes M, Yu RT, Evans RM, Mangelsdorf DJ (2006) Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell 126:789–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borgius LJ, Steffensen KR, Gustafsson JA, Treuter E (2002) Glucocorticoid signaling is perturbed by the atypical orphan receptor and corepressor SHP. J Biol Chem 277:49761–49766

    Article  CAS  PubMed  Google Scholar 

  • Boulias K, Katrakili N, Bamberg K, Underhill P, Greenfield A, Talianidis I (2005) Regulation of hepatic metabolic pathways by the orphan nuclear receptor SHP. EMBO J 24:2624–2633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyer JL et al (2006) Upregulation of a basolateral FXR-dependent bile acid efflux transporter OSTalpha-OSTbeta in cholestasis in humans and rodents. Am J Physiol Gastrointest Liver Physiol 290:G1124–G1130

    Article  CAS  PubMed  Google Scholar 

  • Brumbaugh PF, Haussler MR (1974) 1 Alpha,25-dihydroxycholecalciferol receptors in intestine. II. Temperature-dependent transfer of the hormone to chromatin via a specific cytosol receptor. J Biol Chem 249:1258–1262

    Article  CAS  PubMed  Google Scholar 

  • Chanda D, Park JH, Choi HS (2008) Molecular basis of endocrine regulation by orphan nuclear receptor small heterodimer partner. Endocr J 55:253–268

    Article  CAS  PubMed  Google Scholar 

  • Chavez-Talavera O, Tailleux A, Lefebvre P, Staels B (2017) Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Gastroenterology 152:1679–1694 e1673

    Article  CAS  PubMed  Google Scholar 

  • Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ (2001) Nuclear receptors and lipid physiology: opening the X-files. Science 294:1866–1870

    Article  CAS  PubMed  Google Scholar 

  • Chen F et al (2003) Liver receptor homologue-1 mediates species- and cell line-specific bile acid-dependent negative feedback regulation of the apical sodium-dependent bile acid transporter. J Biol Chem 278:19909–19916

    Article  CAS  PubMed  Google Scholar 

  • Cheng J, Fang ZZ, Kim JH, Krausz KW, Tanaka N, Chiang JY, Gonzalez FJ (2014) Intestinal CYP3A4 protects against lithocholic acid-induced hepatotoxicity in intestine-specific VDR-deficient mice. J Lipid Res 55:455–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi HS, Chung M, Tzameli I, Simha D, Lee YK, Seol W, Moore DD (1997) Differential transactivation by two isoforms of the orphan nuclear hormone receptor CAR. J Biol Chem 272:23565–23571

    Article  CAS  PubMed  Google Scholar 

  • Claudel T et al (2003) Farnesoid X receptor agonists suppress hepatic apolipoprotein CIII expression. Gastroenterology 125:544–555

    Article  CAS  PubMed  Google Scholar 

  • Cyphert HA, Ge X, Kohan AB, Salati LM, Zhang Y, Hillgartner FB (2012) Activation of the farnesoid X receptor induces hepatic expression and secretion of fibroblast growth factor 21. J Biol Chem 287:25123–25138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denson LA, Sturm E, Echevarria W, Zimmerman TL, Makishima M, Mangelsdorf DJ, Karpen SJ (2001) The orphan nuclear receptor, shp, mediates bile acid-induced inhibition of the rat bile acid transporter, ntcp. Gastroenterology 121:140–147

    Article  CAS  PubMed  Google Scholar 

  • Forman BM et al (1995) Identification of a nuclear receptor that is activated by farnesol metabolites. Cell 81:687–693

    Article  CAS  PubMed  Google Scholar 

  • Forman BM et al (1998) Androstane metabolites bind to and deactivate the nuclear receptor CAR-beta. Nature 395:612–615

    Article  CAS  PubMed  Google Scholar 

  • Gao J, He J, Zhai Y, Wada T, Xie W (2009) The constitutive androstane receptor is an anti-obesity nuclear receptor that improves insulin sensitivity. J Biol Chem 284:25984–25992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gascon-Barre M, Demers C, Mirshahi A, Neron S, Zalzal S, Nanci A (2003) The normal liver harbors the vitamin D nuclear receptor in nonparenchymal and biliary epithelial cells. Hepatology 37:1034–1042

    Article  CAS  PubMed  Google Scholar 

  • Ge X, Yin L, Ma H, Li T, Chiang JY, Zhang Y (2011) Aldo-keto reductase 1B7 is a target gene of FXR and regulates lipid and glucose homeostasis. J Lipid Res 52:1561–1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gineste R et al (2008) Phosphorylation of farnesoid X receptor by protein kinase C promotes its transcriptional activity. Mol Endocrinol 22:2433–2447

    Article  CAS  PubMed  Google Scholar 

  • Goodwin B et al (2000) A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol Cell 6:517–526

    Article  CAS  PubMed  Google Scholar 

  • Grober J et al (1999) Identification of a bile acid-responsive element in the human ileal bile acid-binding protein gene. Involvement of the farnesoid X receptor/9-cis-retinoic acid receptor heterodimer. J Biol Chem 274:29749–29754

    Article  CAS  PubMed  Google Scholar 

  • Hirschfield GM et al (2015) Efficacy of obeticholic acid in patients with primary biliary cirrhosis and inadequate response to ursodeoxycholic acid. Gastroenterology 148:751–761 e758

    Article  CAS  PubMed  Google Scholar 

  • Honkakoski P, Zelko I, Sueyoshi T, Negishi M (1998) The nuclear orphan receptor CAR-retinoid X receptor heterodimer activates the phenobarbital-responsive enhancer module of the CYP2B gene. Mol Cell Biol 18:5652–5658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J et al (2007) Molecular characterization of the role of orphan receptor small heterodimer partner in development of fatty liver. Hepatology 46:147–157

    Article  CAS  PubMed  Google Scholar 

  • Huber RM et al (2002) Generation of multiple farnesoid-X-receptor isoforms through the use of alternative promoters. Gene 290:35–43

    Article  CAS  PubMed  Google Scholar 

  • Inagaki T et al (2005) Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab 2:217–225

    Article  CAS  PubMed  Google Scholar 

  • Ishizawa M et al (2008) Lithocholic acid derivatives act as selective vitamin D receptor modulators without inducing hypercalcemia. J Lipid Res 49:763–772

    Article  CAS  PubMed  Google Scholar 

  • Jung D, Kullak-Ublick GA (2003) Hepatocyte nuclear factor 1 alpha: a key mediator of the effect of bile acids on gene expression. Hepatology 37:622–631

    Article  CAS  PubMed  Google Scholar 

  • Kakizaki S, Yamazaki Y, Takizawa D, Negishi M (2008) New insights on the xenobiotic-sensing nuclear receptors in liver diseases--CAR and PXR. Curr Drug Metab 9:614–621

    Article  CAS  PubMed  Google Scholar 

  • Kast HR et al (2001) Farnesoid X-activated receptor induces apolipoprotein C-II transcription: a molecular mechanism linking plasma triglyceride levels to bile acids. Mol Endocrinol 15:1720–1728

    Article  CAS  PubMed  Google Scholar 

  • Kast HR et al (2002) Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor, farnesoid X-activated receptor, and constitutive androstane receptor. J Biol Chem 277:2908–2915

    Article  CAS  PubMed  Google Scholar 

  • Kemper JK et al (2009) FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states. Cell Metab 10:392–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerr TA et al (2002) Loss of nuclear receptor SHP impairs but does not eliminate negative feedback regulation of bile acid synthesis. Dev Cell 2:713–720

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khorasanizadeh S, Rastinejad F (2001) Nuclear-receptor interactions on DNA-response elements. Trends Biochem Sci 26:384–390

    Article  CAS  PubMed  Google Scholar 

  • Kim JY et al (2004) Orphan nuclear receptor small heterodimer partner represses hepatocyte nuclear factor 3/Foxa transactivation via inhibition of its DNA binding. Mol Endocrinol 18:2880–2894

    Article  CAS  PubMed  Google Scholar 

  • Kim KH et al (2017) Hepatic FXR/SHP axis modulates systemic glucose and fatty acid homeostasis in aged mice. Hepatology 66:498–509

    Article  CAS  PubMed  Google Scholar 

  • Kir S et al (2011) FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science 331:1621–1624

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kliewer SA (2015) Nuclear receptor PXR: discovery of a pharmaceutical anti-target. J Clin Invest 125:1388–1389

    Article  PubMed  PubMed Central  Google Scholar 

  • Kliewer SA et al (1998) An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway. Cell 92:73–82

    Article  CAS  PubMed  Google Scholar 

  • Kodama S, Koike C, Negishi M, Yamamoto Y (2004) Nuclear receptors CAR and PXR cross talk with FOXO1 to regulate genes that encode drug-metabolizing and gluconeogenic enzymes. Mol Cell Biol 24:7931–7940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kodama S, Moore R, Yamamoto Y, Negishi M (2007) Human nuclear pregnane X receptor cross-talk with CREB to repress cAMP activation of the glucose-6-phosphatase gene. Biochem J 407:373–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lahtela JT, Arranto AJ, Sotaniemi EA (1985) Enzyme inducers improve insulin sensitivity in non-insulin-dependent diabetic subjects. Diabetes 34:911–916

    Article  CAS  PubMed  Google Scholar 

  • Lambert G, Amar MJ, Guo G, Brewer HB Jr, Gonzalez FJ, Sinal CJ (2003) The farnesoid X-receptor is an essential regulator of cholesterol homeostasis. J Biol Chem 278:2563–2570

    Article  CAS  PubMed  Google Scholar 

  • Landrier JF, Eloranta JJ, Vavricka SR, Kullak-Ublick GA (2006) The nuclear receptor for bile acids, FXR, transactivates human organic solute transporter-alpha and -beta genes. Am J Physiol Gastrointest Liver Physiol 290:G476–G485

    Article  CAS  PubMed  Google Scholar 

  • Lee YK, Parker KL, Choi HS, Moore DD (1999) Activation of the promoter of the orphan receptor SHP by orphan receptors that bind DNA as monomers. J Biol Chem 274:20869–20873

    Article  CAS  PubMed  Google Scholar 

  • Lee FY, Lee H, Hubbert ML, Edwards PA, Zhang Y (2006) FXR, a multipurpose nuclear receptor. Trends Biochem Sci 31:572–580

    Article  CAS  PubMed  Google Scholar 

  • Lee SM, Zhang Y, Tsuchiya H, Smalling R, Jetten AM, Wang L (2015) Small heterodimer partner/neuronal PAS domain protein 2 axis regulates the oscillation of liver lipid metabolism. Hepatology 61:497–505

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B (2009) Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev 89:147–191

    Article  CAS  PubMed  Google Scholar 

  • Leiss O, von Bergmann K (1982) Different effects of chenodeoxycholic acid and ursodeoxycholic acid on serum lipoprotein concentrations in patients with radiolucent gallstones. Scand J Gastroenterol 17:587–592

    Article  CAS  PubMed  Google Scholar 

  • Li T, Chiang JY (2014) Bile acid signaling in metabolic disease and drug therapy. Pharmacol Rev 66:948–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y et al (2003) Hepatoprotection by the farnesoid X receptor agonist GW4064 in rat models of intra- and extrahepatic cholestasis. J Clin Invest 112:1678–1687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu TT, Makishima M, Repa JJ, Schoonjans K, Kerr TA, Auwerx J, Mangelsdorf DJ (2000) Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol Cell 6:507–515

    Article  CAS  PubMed  Google Scholar 

  • Ma K, Saha PK, Chan L, Moore DD (2006) Farnesoid X receptor is essential for normal glucose homeostasis. J Clin Invest 116:1102–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maglich JM, Lobe DC, Moore JT (2009) The nuclear receptor CAR (NR1I3) regulates serum triglyceride levels under conditions of metabolic stress. J Lipid Res 50:439–445

    Article  CAS  PubMed  Google Scholar 

  • Mak PA, Kast-Woelbern HR, Anisfeld AM, Edwards PA (2002) Identification of PLTP as an LXR target gene and apoE as an FXR target gene reveals overlapping targets for the two nuclear receptors. J Lipid Res 43:2037–2041

    Article  CAS  PubMed  Google Scholar 

  • Makishima M et al (1999) Identification of a nuclear receptor for bile acids. Science 284:1362–1365

    Article  CAS  PubMed  Google Scholar 

  • Makishima M et al (2002) Vitamin D receptor as an intestinal bile acid sensor. Science 296:1313–1316

    Article  CAS  PubMed  Google Scholar 

  • Manenti G, Dragani TA, Della Porta G (1987) Effects of phenobarbital and 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene on differentiated functions in mouse liver. Chem Biol Interact 64:83–92

    Article  CAS  PubMed  Google Scholar 

  • Marmugi A et al (2016) Activation of the constitutive androstane receptor induces hepatic lipogenesis and regulates Pnpla3 gene expression in a LXR-independent way. Toxicol Appl Pharmacol 303:90–100

    Article  CAS  PubMed  Google Scholar 

  • McCarthy TC, Li X, Sinal CJ (2005) Vitamin D receptor-dependent regulation of colon multidrug resistance-associated protein 3 gene expression by bile acids. J Biol Chem 280:23232–23242

    Article  CAS  PubMed  Google Scholar 

  • McKenna NJ, Lanz RB, O’Malley BW (1999) Nuclear receptor coregulators: cellular and molecular biology. Endocr Rev 20:321–344

    CAS  PubMed  Google Scholar 

  • Mudaliar S et al (2013) Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease. Gastroenterology 145:574–582 e571

    Article  CAS  PubMed  Google Scholar 

  • Nakamura K, Moore R, Negishi M, Sueyoshi T (2007) Nuclear pregnane X receptor cross-talk with FoxA2 to mediate drug-induced regulation of lipid metabolism in fasting mouse liver. J Biol Chem 282:9768–9776

    Article  CAS  PubMed  Google Scholar 

  • Neimark E, Chen F, Li X, Shneider BL (2004) Bile acid-induced negative feedback regulation of the human ileal bile acid transporter. Hepatology 40:149–156

    Article  CAS  PubMed  Google Scholar 

  • Oiwa A et al (2007) Synergistic regulation of the mouse orphan nuclear receptor SHP gene promoter by CLOCK-BMAL1 and LRH-1. Biochem Biophys Res Commun 353:895–901

    Article  CAS  PubMed  Google Scholar 

  • Orans J, Teotico DG, Redinbo MR (2005) The nuclear xenobiotic receptor pregnane X receptor: recent insights and new challenges. Mol Endocrinol 19:2891–2900

    Article  CAS  PubMed  Google Scholar 

  • Otte K et al (2003) Identification of farnesoid X receptor beta as a novel mammalian nuclear receptor sensing lanosterol. Mol Cell Biol 23:864–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan X, Zhang Y, Wang L, Hussain MM (2010) Diurnal regulation of MTP and plasma triglyceride by CLOCK is mediated by SHP. Cell Metab 12:174–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park MJ, Kong HJ, Kim HY, Kim HH, Kim JH, Cheong JH (2007) Transcriptional repression of the gluconeogenic gene PEPCK by the orphan nuclear receptor SHP through inhibitory interaction with C/EBPalpha. Biochem J 402:567–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parks DJ et al (1999) Bile acids: natural ligands for an orphan nuclear receptor. Science 284:1365–1368

    Article  CAS  PubMed  Google Scholar 

  • Pathak P et al (2018) Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism. Hepatology. 68:1574–1588

    Article  CAS  PubMed  Google Scholar 

  • Pellicciari R et al (2002) 6alpha-ethyl-chenodeoxycholic acid (6-ECDCA), a potent and selective FXR agonist endowed with anticholestatic activity. J Med Chem 45:3569–3572

    Article  CAS  PubMed  Google Scholar 

  • Pineda Torra I, Claudel T, Duval C, Kosykh V, Fruchart JC, Staels B (2003) Bile acids induce the expression of the human peroxisome proliferator-activated receptor alpha gene via activation of the farnesoid X receptor. Mol Endocrinol 17:259–272

    Article  PubMed  CAS  Google Scholar 

  • Pircher PC, Kitto JL, Petrowski ML, Tangirala RK, Bischoff ED, Schulman IG, Westin SK (2003) Farnesoid X receptor regulates bile acid-amino acid conjugation. J Biol Chem 278:27703–27711

    Article  CAS  PubMed  Google Scholar 

  • Popowski K, Eloranta JJ, Saborowski M, Fried M, Meier PJ, Kullak-Ublick GA (2005) The human organic anion transporter 2 gene is transactivated by hepatocyte nuclear factor-4 alpha and suppressed by bile acids. Mol Pharmacol 67:1629–1638

    Article  CAS  PubMed  Google Scholar 

  • Prawitt J et al (2011) Farnesoid X receptor deficiency improves glucose homeostasis in mouse models of obesity. Diabetes 60:1861–1871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roth A et al (2008) Regulatory cross-talk between drug metabolism and lipid homeostasis: constitutive androstane receptor and pregnane X receptor increase Insig-1 expression. Mol Pharmacol 73:1282–1289

    Article  CAS  PubMed  Google Scholar 

  • Saini SP et al (2004) A novel constitutive androstane receptor-mediated and CYP3A-independent pathway of bile acid detoxification. Mol Pharmacol 65:292–300

    Article  CAS  PubMed  Google Scholar 

  • Seol W, Choi HS, Moore DD (1995) Isolation of proteins that interact specifically with the retinoid X receptor: two novel orphan receptors. Mol Endocrinol 9:72–85

    CAS  PubMed  Google Scholar 

  • Seol W, Choi HS, Moore DD (1996) An orphan nuclear hormone receptor that lacks a DNA binding domain and heterodimerizes with other receptors. Science 272:1336–1339

    Article  CAS  PubMed  Google Scholar 

  • Seol W, Chung M, Moore DD (1997) Novel receptor interaction and repression domains in the orphan receptor SHP. Mol Cell Biol 17:7126–7131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sepe V, Distrutti E, Fiorucci S, Zampella A (2018) Farnesoid X receptor modulators 2014-present: a patent review. Expert Opin Ther Pat 28:351–364

    Article  CAS  PubMed  Google Scholar 

  • Sinal CJ, Tohkin M, Miyata M, Ward JM, Lambert G, Gonzalez FJ (2000) Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell 102:731–744

    Article  CAS  PubMed  Google Scholar 

  • Sirvent A et al (2004) The farnesoid X receptor induces very low density lipoprotein receptor gene expression. FEBS Lett 566:173–177

    Article  CAS  PubMed  Google Scholar 

  • Smushkin G et al (2013) The effect of a bile acid sequestrant on glucose metabolism in subjects with type 2 diabetes. Diabetes 62:1094–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song CS, Echchgadda I, Baek BS, Ahn SC, Oh T, Roy AK, Chatterjee B (2001) Dehydroepiandrosterone sulfotransferase gene induction by bile acid activated farnesoid X receptor. J Biol Chem 276:42549–42556

    Article  CAS  PubMed  Google Scholar 

  • Staudinger JL et al (2001) The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc Natl Acad Sci U S A 98:3369–3374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stayrook KR et al (2005) Regulation of carbohydrate metabolism by the farnesoid X receptor. Endocrinology 146:984–991

    Article  CAS  PubMed  Google Scholar 

  • Stedman CA et al (2005) Nuclear receptors constitutive androstane receptor and pregnane X receptor ameliorate cholestatic liver injury. Proc Natl Acad Sci U S A 102:2063–2068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teodoro JS, Rolo AP, Palmeira CM (2011) Hepatic FXR: key regulator of whole-body energy metabolism. Trends Endocrinol Metab 22:458–466

    Article  CAS  PubMed  Google Scholar 

  • van Dijk TH, Grefhorst A, Oosterveer MH, Bloks VW, Staels B, Reijngoud DJ, Kuipers F (2009) An increased flux through the glucose 6-phosphate pool in enterocytes delays glucose absorption in Fxr-/- mice. J Biol Chem 284:10315–10323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verbeke L et al (2016) FXR agonist obeticholic acid reduces hepatic inflammation and fibrosis in a rat model of toxic cirrhosis. Sci Rep 6:33453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wahlstrom A, Sayin SI, Marschall HU, Backhed F (2016) Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab 24:41–50

    Article  PubMed  CAS  Google Scholar 

  • Wang L et al (2002) Redundant pathways for negative feedback regulation of bile acid production. Dev Cell 2:721–731

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M et al (2004) Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest 113:1408–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watkins RE et al (2001) The human nuclear xenobiotic receptor PXR: structural determinants of directed promiscuity. Science 292:2329–2333

    Article  CAS  PubMed  Google Scholar 

  • Xie W et al (2000) Reciprocal activation of xenobiotic response genes by nuclear receptors SXR/PXR and CAR. Genes Dev 14:3014–3023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie W et al (2001) An essential role for nuclear receptors SXR/PXR in detoxification of cholestatic bile acids. Proc Natl Acad Sci U S A 98:3375–3380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie W et al (2003) Control of steroid, heme, and carcinogen metabolism by nuclear pregnane X receptor and constitutive androstane receptor. Proc Natl Acad Sci U S A 100:4150–4155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamagata K, Daitoku H, Shimamoto Y, Matsuzaki H, Hirota K, Ishida J, Fukamizu A (2004) Bile acids regulate gluconeogenic gene expression via small heterodimer partner-mediated repression of hepatocyte nuclear factor 4 and Foxo1. J Biol Chem 279:23158–23165

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Chiang JY (2001) Transcriptional regulation of the human sterol 12alpha-hydroxylase gene (CYP8B1): roles of heaptocyte nuclear factor 4alpha in mediating bile acid repression. J Biol Chem 276:41690–41699

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, LeCulyse E, Liu L, Hu M, Matoney L, Zhu W, Yan B (1999) Rat pregnane X receptor: molecular cloning, tissue distribution, and xenobiotic regulation. Arch Biochem Biophys 368:14–22

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Kast-Woelbern HR, Edwards PA (2003) Natural structural variants of the nuclear receptor farnesoid X receptor affect transcriptional activation. J Biol Chem 278:104–110

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Huang W, Qatanani M, Evans RM, Moore DD (2004) The constitutive androstane receptor and pregnane X receptor function coordinately to prevent bile acid-induced hepatotoxicity. J Biol Chem 279:49517–49522

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y et al (2006) Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci U S A 103:1006–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Hagedorn CH, Wang L (2011) Role of nuclear receptor SHP in metabolism and cancer. Biochim Biophys Acta 1812:893–908

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y et al (2016) Bcl2 is a critical regulator of bile acid homeostasis by dictating Shp and lncRNA H19 function. Sci Rep 6:20559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Yang Z, Trottier J, Barbier O, Wang L (2017) Long noncoding RNA MEG3 induces cholestatic liver injury by interaction with PTBP1 to facilitate shp mRNA decay. Hepatology 65:604–615

    Article  CAS  PubMed  Google Scholar 

  • Zhou J et al (2006) A novel pregnane X receptor-mediated and sterol regulatory element-binding protein-independent lipogenic pathway. J Biol Chem 281:15013–15020

    Article  CAS  PubMed  Google Scholar 

  • Zollner G et al (2002) Induction of short heterodimer partner 1 precedes downregulation of Ntcp in bile duct-ligated mice. Am J Physiol Gastrointest Liver Physiol 282:G184–G191

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Ju Shin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shin, DJ., Wang, L. (2019). Bile Acid-Activated Receptors: A Review on FXR and Other Nuclear Receptors. In: Fiorucci, S., Distrutti, E. (eds) Bile Acids and Their Receptors. Handbook of Experimental Pharmacology, vol 256. Springer, Cham. https://doi.org/10.1007/164_2019_236

Download citation

Publish with us

Policies and ethics