Skip to main content

Pharmacologic Modulation of Bile Acid-FXR-FGF15/FGF19 Pathway for the Treatment of Nonalcoholic Steatohepatitis

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 256))

Abstract

Nonalcoholic steatohepatitis (NASH) is within the spectrum of nonalcoholic fatty liver disease (NAFLD) and can progress to fibrosis, cirrhosis, and even hepatocellular carcinoma (HCC). The prevalence of NASH is rising and has become a large burden to the medical system worldwide. Unfortunately, despite its high prevalence and severe health consequences, there is currently no therapeutic agent approved to treat NASH. Therefore, the development of efficacious therapies is of utmost urgency and importance. Many molecular targets are currently under investigation for their ability to halt NASH progression. One of the most promising and well-studied targets is the bile acid (BA)-activated nuclear receptor, farnesoid X receptor (FXR). In this chapter, the characteristics, etiology, and prevalence of NASH will be discussed. A brief introduction to FXR regulation of BA homeostasis will be described. However, for more details regarding FXR in BA homeostasis, please refer to previous chapters. In this chapter, the mechanisms by which tissue and cell type-specific FXR regulates NASH development will be discussed in detail. Several FXR agonists have reached later phase clinical trials for treatment of NASH. The progress of these compounds and summary of released data will be provided. Lastly, this chapter will address safety liabilities specific to the development of FXR agonists.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

αSMA:

Alpha smooth muscle actin

βKL:

Beta KLOTHO

AGRP:

Agouti-related peptide

ALP:

Alkaline phosphatase

ALT:

Alanine aminotransferase

AP-1:

Activator protein 1

ApoA-IV:

Apolipoprotein A-IV

ApoC-III:

Apolipoprotein C-III

ApoE:

Apolipoprotein E

ASBT:

Apical sodium-dependent bile acid transporter

BA:

Bile acid

BBB:

Blood-brain barrier

bFKB1:

Bi-specific activating antibody of FGFR1 and β-Klotho

BSH:

Bile salt hydrolase

C4:

7α-hydroxy-4-cholesten-3-one

CA:

Cholic acid

CAPE:

Caffeic acid phenethyl ester

CCl4 :

Carbon tetrachloride

CDCA:

Chenodeoxycholic acid

COL1α1:

Collagen type 1, α1

CREB:

cAMP response element-binding protein

CRP:

C-reactive protein

CTGF:

Connective tissue growth factor

CYP27A1:

Cytochrome P450 27A1

CYP7A1:

Cytochrome P450 7A1

CYP8B1:

Cytochrome P450 8B1

DCA:

Deoxycholic acid

DDAH2:

Dimethylarginine dimethylaminohydrolase 2

EETs:

Epoxyeicosatrienoic acids

eNOS:

Endothelial nitric oxide synthase

ERK:

Extracellular signal-regulated kinases

ET-1:

Endothelin-1

FGF15:

Fibroblast growth factor 15

FGF19:

Fibroblast growth factor 19

FGF21:

Fibroblast growth factor 21

FGFR1:

Fibroblast growth factor receptor 1

FGFR4:

Fibroblast growth factor receptor 4

FXR:

Farnesoid X receptor

FXRRE:

Farnesoid X receptor response element

G6Pase:

Glucose 6-phosphatase

GGT:

γ-Glutamyltransferase

GLP1:

Glucagon-like peptide-1

Gly-MCA:

Glycine-conjugated muricholic acid

HCC:

Hepatocellular carcinoma

HCV:

Hepatitis C virus

HDL:

High-density lipoprotein

HFD:

High-fat diet

HOMA-IR:

Homeostatic model assessment of β-cell function and insulin resistance

IκBα:

Nuclear factor of kappa light polypeptide gene enhancer in B-cell inhibitor, alpha

ICV:

Intracerebral-ventricular injection

IKKβ:

Inhibitor of nuclear factor kappa-B kinase subunit beta

JNK:

c-Jun N-terminal kinase

LCA:

Lithocholic acid

LDL:

Low-density lipoprotein

LDLR:

Low-density lipoprotein receptor

LPS:

Lipopolysaccharide

MCA:

Muricholic acid

MCD:

Methacholine-deficient diet

MCP-1:

Macrophage chemoattractant protein 1

MMP2:

Matrix metalloprotease 2

NAFLD:

Nonalcoholic fatty liver disease

NAS:

NAFLD activity score

NASH:

Nonalcoholic steatohepatitis

NFκB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NKT:

Natural killer T cell

NPY:

Neuropeptide Y

OCA:

Obeticholic acid

PBC:

Primary biliary cirrhosis

PDC:

Pyruvate dehydrogenase complex

PDK4:

Pyruvate dehydrogenase kinase 4

PEPCK:

Phosphoenolpyruvate carboxykinase

PGC1α:

Peroxisome proliferator-activated receptor gamma coactivator 1-alpha

PIIINP:

N-terminal propeptide of type III collagen

PNPLA3:

Patatin-like phospholipase domain-containing protein 3

PPARα:

Peroxisome proliferator-activated receptor alpha

PPARγ:

Peroxisome proliferator-activated receptor gamma

Pro-C3:

N-terminal type III collagen propeptide

RXR:

Retinoid X receptor

SAA3:

Serum amyloid A3

SAF:

Steatosis, activity, and fibrosis scoring system

SAP:

Serum amyloid P

SHP:

Small heterodimer partner

SRB1:

Scavenger receptor class B type 1

SREBP1c:

Sterol regulatory element-binding protein 1c

TβMCA:

Taurine-conjugated beta-muricholic acid

TCA:

Taurocholic acid

TGFβ:

Transforming growth factor beta

TGFβR2:

Transforming growth factor beta receptor 2

TGR5:

Takeda G-protein receptor 5

TIMP1:

Tissue inhibitor of metalloproteases 1

TNFα:

Tumor necrosis factor alpha

UCP1:

Uncoupling protein 1

UDCA:

Ursodeoxycholic acid

VLDL:

Very low-density lipoprotein

References

  • Alvarez-Sola G et al (2017) Fibroblast growth factor 15/19 (FGF15/19) protects from diet-induced hepatic steatosis: development of an FGF19-based chimeric molecule to promote fatty liver regeneration. Gut 66:1818–1828

    Article  CAS  PubMed  Google Scholar 

  • Armstrong L et al (2017) Effects of acute-phase proteins in mediating hepatic FXR’s protection of mice from NASH development. In: AASLD 2017 liver meeting abstract 643

    Google Scholar 

  • Badman MK et al (2007) Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab 5:426–437

    Article  CAS  PubMed  Google Scholar 

  • Bedossa P (2014) Utility and appropriateness of the fatty liver inhibition of progression (FLIP) algorithm and steatosis, activity, and fibrosis (SAF) score in the evaluation of biopsies of nonalcoholic fatty liver disease. Hepatology 60:565–575

    Article  CAS  PubMed  Google Scholar 

  • Benedict M, Zhang X (2017) Non-alcoholic fatty liver disease: an expanded review. World J Hepatol 9:715–732

    Article  PubMed  PubMed Central  Google Scholar 

  • Benoit B et al (2017) Fibroblast growth factor 19 regulates skeletal muscle mass and ameliorates muscle wasting in mice. Nat Med 23:990–996

    Article  CAS  PubMed  Google Scholar 

  • Brunt EM, Janney CG, di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR (1999) Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol 94:2467–2474

    Article  CAS  PubMed  Google Scholar 

  • Bullitt E (1990) Expression of c-fos-like protein as a marker for neuronal activity following noxious stimulation in the rat. J Comp Neurol 296:517–530

    Article  CAS  PubMed  Google Scholar 

  • Caldwell SH et al (2009) NASH and cryptogenic cirrhosis: a histological analysis. Ann Hepatol 8:346–352

    Article  PubMed  PubMed Central  Google Scholar 

  • Carino A et al (2018) Disruption of TFGbeta-SMAD3 pathway by the nuclear receptor SHP mediates the antifibrotic activities of BAR704, a novel highly selective FXR ligand. Pharmacol Res 131:17–31

    Article  CAS  PubMed  Google Scholar 

  • Cariou B et al (2005) Transient impairment of the adaptive response to fasting in FXR-deficient mice. FEBS Lett 579:4076–4080

    Article  CAS  PubMed  Google Scholar 

  • Chalasani N et al (2018) The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology 67:328–357

    Article  PubMed  Google Scholar 

  • Chen MZ et al (2017) FGF21 mimetic antibody stimulates UCP1-independent brown fat thermogenesis via FGFR1/betaKlotho complex in non-adipocytes. Mol Metab 6:1454–1467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang JY (2009) Bile acids: regulation of synthesis. J Lipid Res 50:1955–1966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang JY (2017) Recent advances in understanding bile acid homeostasis. F1000Res 6:2029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cray C, Zaias J, Altman NH (2009) Acute phase response in animals: a review. Comp Med 59:517–526

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cyphert HA et al (2012) Activation of the farnesoid X receptor induces hepatic expression and secretion of fibroblast growth factor 21. J Biol Chem 287:25123–25138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai M et al (2015) Epoxyeicosatrienoic acids regulate macrophage polarization and prevent LPS-induced cardiac dysfunction. J Cell Physiol 230:2108–2119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Day CP, James OF (1998) Steatohepatitis: a tale of two “hits”? Gastroenterology 114:842–845

    Article  CAS  PubMed  Google Scholar 

  • de Boer JF et al (2017) Intestinal farnesoid X receptor controls transintestinal cholesterol excretion in mice. Gastroenterology 152:1126–1138.e6

    Article  PubMed  CAS  Google Scholar 

  • Deshmane SL, Kremlev S, Amini S, Sawaya BE (2009) Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interf Cytokine Res 29:313–326

    Article  CAS  Google Scholar 

  • Dongiovanni P, Anstee QM, Valenti L (2013) Genetic predisposition in NAFLD and NASH: impact on severity of liver disease and response to treatment. Curr Pharm Des 19:5219–5238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drafahl KA, McAndrew CW, Meyer AN, Haas M, Donoghue DJ (2010) The receptor tyrosine kinase FGFR4 negatively regulates NF-kappaB signaling. PLoS One 5:e14412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enanta Pharmaceuticals (2018) A study to assess the safety, tolerability, pharmacokinetics and efficacy of EDP-305 in subjects with non-alcoholic steatohepatitis. ClinicalTrials.gov Identifier: NCT03421431

  • Evans MJ et al (2009) A synthetic farnesoid X receptor (FXR) agonist promotes cholesterol lowering in models of dyslipidemia. Am J Physiol Gastrointest Liver Physiol 296:G543–G552

    Article  CAS  PubMed  Google Scholar 

  • Fang S et al (2015) Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat Med 21:159–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faouzi M et al (2007) Differential accessibility of circulating leptin to individual hypothalamic sites. Endocrinology 148:5414–5423

    Article  CAS  PubMed  Google Scholar 

  • FDA approval letter – Ocaliva (2016) NDA 207999

    Google Scholar 

  • FDA (2018) Drug safety communication – Ocaliva (obeticholic acid): drug safety communication – boxed warning added to highlight correct dosing

    Google Scholar 

  • Fickert P et al (2009) Farnesoid X receptor critically determines the fibrotic response in mice but is expressed to a low extent in human hepatic stellate cells and periductal myofibroblasts. Am J Pathol 175:2392–2405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiorucci S et al (2004) The nuclear receptor SHP mediates inhibition of hepatic stellate cells by FXR and protects against liver fibrosis. Gastroenterology 127:1497–1512

    Article  CAS  PubMed  Google Scholar 

  • Fiorucci S et al (2005a) A farnesoid x receptor-small heterodimer partner regulatory cascade modulates tissue metalloproteinase inhibitor-1 and matrix metalloprotease expression in hepatic stellate cells and promotes resolution of liver fibrosis. J Pharmacol Exp Ther 314:584–595

    Article  CAS  PubMed  Google Scholar 

  • Fiorucci S et al (2005b) Cross-talk between farnesoid-X-receptor (FXR) and peroxisome proliferator-activated receptor gamma contributes to the antifibrotic activity of FXR ligands in rodent models of liver cirrhosis. J Pharmacol Exp Ther 315:58–68

    Article  CAS  PubMed  Google Scholar 

  • Fisher FM et al (2014) Fibroblast growth factor 21 limits lipotoxicity by promoting hepatic fatty acid activation in mice on methionine and choline-deficient diets. Gastroenterology 147:1073–83.e6

    Article  CAS  PubMed  Google Scholar 

  • Fon Tacer K et al (2010) Research resource: comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol Endocrinol 24:2050–2064

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fu L et al (2004) Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes. Endocrinology 145:2594–2603

    Article  CAS  PubMed  Google Scholar 

  • Fu T et al (2016) FXR primes the liver for intestinal FGF15 signaling by transient induction of beta-Klotho. Mol Endocrinol 30:92–103

    Article  CAS  PubMed  Google Scholar 

  • Gai Z et al (2018) The effects of farnesoid X receptor activation on arachidonic acid metabolism, NF-kB signaling and hepatic inflammation. Mol Pharmacol 94:802–811

    Article  CAS  PubMed  Google Scholar 

  • Gilead Sciences (2018a) Evaluating the safety, tolerability, and efficacy of GS-9674 in participants with nonalcoholic steatohepatitis (NASH). ClinicalTrials.gov Identifier: NCT02854605

  • Gilead Sciences (2018b) Safety, tolerability, and efficacy of selonsertib, GS-0976, and GS-9674 in adults with nonalcoholic steatohepatitis (NASH). ClinicalTrials.gov Identifier: NCT02781584

    Google Scholar 

  • Gilead Sciences (2018c) Safety and efficacy of selonsertib, GS-0976, GS-9674, and combinations in participants with bridging fibrosis or compensated cirrhosis due to nonalcoholic steatohepatitis (NASH) (ATLAS). ClinicalTrials.gov Identifier: NCT03449446

    Google Scholar 

  • Gimeno L, Brulet P, Martinez S (2003) Study of Fgf15 gene expression in developing mouse brain. Gene Expr Patterns 3:473–481

    Article  CAS  PubMed  Google Scholar 

  • Goetz R et al (2007) Molecular insights into the klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members. Mol Cell Biol 27:3417–3428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodwin B et al (2000) A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol Cell 6:517–526

    Article  CAS  PubMed  Google Scholar 

  • Grundy SM et al (2005) Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 112:2735–2752

    Article  PubMed  Google Scholar 

  • Guan D, Zhao L, Chen D, Yu B, Yu J (2016) Regulation of fibroblast growth factor 15/19 and 21 on metabolism: in the fed or fasted state. J Transl Med 14:63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hambruch E et al (2012) Synthetic farnesoid X receptor agonists induce high-density lipoprotein-mediated transhepatic cholesterol efflux in mice and monkeys and prevent atherosclerosis in cholesteryl ester transfer protein transgenic low-density lipoprotein receptor (−/−) mice. J Pharmacol Exp Ther 343:556–567

    Article  CAS  PubMed  Google Scholar 

  • Harrison SA et al (2018a) NGM282 for treatment of non-alcoholic steatohepatitis: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 391:1174–1185

    Article  CAS  PubMed  Google Scholar 

  • Harrison S et al (2018b) NGM282 improves fibrosis and NASH-related histology in 12 weeks in patients with biopsy-confirmed NASH, which is preceded by significant decreases in hepatic steatosis, liver transaminases and fibrosis markers at 6 weeks. J Hepatol 68:S65–S66

    Article  Google Scholar 

  • Hashimoto E, Taniai M, Tokushige K (2013) Characteristics and diagnosis of NAFLD/NASH. J Gastroenterol Hepatol 28(Suppl 4):64–70

    Article  CAS  PubMed  Google Scholar 

  • Hsuchou H, Pan W, Kastin AJ (2013) Fibroblast growth factor 19 entry into brain. Fluids Barriers CNS 10:32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Inagaki T et al (2005) Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab 2:217–225

    Article  CAS  PubMed  Google Scholar 

  • Intercept Pharmaceuticals (2018a) Study evaluating the efficacy and safety of obeticholic acid in subjects with compensated cirrhosis due to nonalcoholic steatohepatitis (REVERSE). ClinicalTrials.gov Identifier: NCT03439254

    Google Scholar 

  • Intercept Pharmaceuticals (2018b) Randomized global phase 3 study to evaluate the impact on NASH with fibrosis of obeticholic acid treatment (REGENERATE). ClinicalTrials.gov Identifier: NCT02548351

    Google Scholar 

  • Jiang C et al (2015a) Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease. J Clin Invest 125:386–402

    Article  PubMed  Google Scholar 

  • Jiang C et al (2015b) Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction. Nat Commun 6:10166

    Article  CAS  PubMed  Google Scholar 

  • Jung D et al (2014) FXR-induced secretion of FGF15/19 inhibits CYP27 expression in cholangiocytes through p38 kinase pathway. Pflugers Arch 466:1011–1019

    Article  CAS  PubMed  Google Scholar 

  • Kawamata Y et al (2003) A G protein-coupled receptor responsive to bile acids. J Biol Chem 278:9435–9440

    Article  CAS  PubMed  Google Scholar 

  • Kim I et al (2007) Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine. J Lipid Res 48:2664–2672

    Article  CAS  PubMed  Google Scholar 

  • Kim DH et al (2015) A dysregulated acetyl/SUMO switch of FXR promotes hepatic inflammation in obesity. EMBO J 34:184–199

    Article  PubMed  CAS  Google Scholar 

  • Kir S et al (2011) FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science 331:1621–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleiner DE et al (2005) Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41:1313–1321

    Article  PubMed  Google Scholar 

  • Kolumam G et al (2015) Sustained brown fat stimulation and insulin sensitization by a humanized bispecific antibody agonist for fibroblast growth factor receptor 1/betaKlotho complex. EBioMedicine 2:730–743

    Article  PubMed  PubMed Central  Google Scholar 

  • Kong B, Luyendyk JP, Tawfik O, Guo GL (2009) Farnesoid X receptor deficiency induces nonalcoholic steatohepatitis in low-density lipoprotein receptor-knockout mice fed a high-fat diet. J Pharmacol Exp Ther 328:116–122

    Article  CAS  PubMed  Google Scholar 

  • Kong B et al (2012) Mechanism of tissue-specific farnesoid X receptor in suppressing the expression of genes in bile-acid synthesis in mice. Hepatology 56:1034–1043

    Article  CAS  PubMed  Google Scholar 

  • Kurosu H et al (2007) Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J Biol Chem 282:26687–26695

    Article  CAS  PubMed  Google Scholar 

  • Lambert G et al (2003) The farnesoid X-receptor is an essential regulator of cholesterol homeostasis. J Biol Chem 278:2563–2570

    Article  CAS  PubMed  Google Scholar 

  • Lee JH et al (2016) An engineered FGF21 variant, LY2405319, can prevent non-alcoholic steatohepatitis by enhancing hepatic mitochondrial function. Am J Transl Res 8:4750–4763

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lew JL et al (2004) The farnesoid X receptor controls gene expression in a ligand- and promoter-selective fashion. J Biol Chem 279:8856–8861

    Article  CAS  PubMed  Google Scholar 

  • Li J et al (2010) Inhibition of endothelin-1-mediated contraction of hepatic stellate cells by FXR ligand. PLoS One 5:e13955

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li J et al (2011) Roles of microRNA-29a in the antifibrotic effect of farnesoid X receptor in hepatic stellate cells. Mol Pharmacol 80:191–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F et al (2013) Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nat Commun 4:2384

    Article  PubMed  CAS  Google Scholar 

  • Li L et al (2015) Activation of farnesoid X receptor downregulates monocyte chemoattractant protein-1 in murine macrophage. Biochem Biophys Res Commun 467:841–846

    Article  CAS  PubMed  Google Scholar 

  • Liu X et al (2016) Lack of fibroblast growth factor 21 accelerates metabolic liver injury characterized by steatohepatities in mice. Am J Cancer Res 6:1011–1025

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S et al (2018) A gut-brain axis regulating glucose metabolism mediated by bile acids and competitive fibroblast growth factor actions at the hypothalamus. Mol Metab 8:37–50

    Article  CAS  PubMed  Google Scholar 

  • Lu TT et al (2000) Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol Cell 6:507–515

    Article  CAS  PubMed  Google Scholar 

  • Luo J et al (2014) A nontumorigenic variant of FGF19 treats cholestatic liver diseases. Sci Transl Med 6:247ra100

    Article  PubMed  CAS  Google Scholar 

  • Ma K, Saha PK, Chan L, Moore DD (2006) Farnesoid X receptor is essential for normal glucose homeostasis. J Clin Invest 116:1102–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Y, Huang Y, Yan L, Gao M, Liu D (2013) Synthetic FXR agonist GW4064 prevents diet-induced hepatic steatosis and insulin resistance. Pharm Res 30:1447–1457

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Makishima M et al (1999) Identification of a nuclear receptor for bile acids. Science 284:1362–1365

    Article  CAS  PubMed  Google Scholar 

  • Marcelin G et al (2014) Central action of FGF19 reduces hypothalamic AGRP/NPY neuron activity and improves glucose metabolism. Mol Metab 3:19–28

    Article  CAS  PubMed  Google Scholar 

  • Markan KR, Potthoff MJ (2016) Metabolic fibroblast growth factors (FGFs): mediators of energy homeostasis. Semin Cell Dev Biol 53:85–93

    Article  CAS  PubMed  Google Scholar 

  • Maruyama T et al (2002) Identification of membrane-type receptor for bile acids (M-BAR). Biochem Biophys Res Commun 298:714–719

    Article  CAS  PubMed  Google Scholar 

  • Mencarelli A et al (2009) The bile acid sensor farnesoid X receptor is a modulator of liver immunity in a rodent model of acute hepatitis. J Immunol 183:6657–6666

    Article  CAS  PubMed  Google Scholar 

  • Michelotti GA, Machado MV, Diehl AM (2013) NAFLD, NASH and liver cancer. Nat Rev. Gastroenterol Hepatol 10:656–665

    Article  CAS  PubMed  Google Scholar 

  • Mittal S et al (2016) Hepatocellular carcinoma in the absence of cirrhosis in United States veterans is associated with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 14:124–31.e1

    Article  CAS  PubMed  Google Scholar 

  • Mudaliar S et al (2013) Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease. Gastroenterology 145:574–82.e1

    Article  CAS  PubMed  Google Scholar 

  • Mueller M et al (2015) Ursodeoxycholic acid exerts farnesoid X receptor-antagonistic effects on bile acid and lipid metabolism in morbid obesity. J Hepatol 62:1398–1404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neuschwander-Tetri BA et al (2015) Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet 385:956–965

    Article  CAS  PubMed  Google Scholar 

  • NGM Biopharmaceuticals (2013) Phase 1 SAD and MAD study of NGM282 in healthy adult participants. ClinicalTrials.gov Identifier: NCT01776528

    Google Scholar 

  • NGM Biopharmaceuticals (2017a) Phase 1 study of NGM313 in healthy adult participants. ClinicalTrials.gov Identifier: NCT02708576

    Google Scholar 

  • NGM Biopharmaceuticals (2017b) Study of NGM313 in obese participants. ClinicalTrials.gov Identifier: NCT03298464

    Google Scholar 

  • Nies VJ et al (2015) Fibroblast growth factor signaling in metabolic regulation. Front Endocrinol (Lausanne) 6:193

    Google Scholar 

  • Nishimura T, Utsunomiya Y, Hoshikawa M, Ohuchi H, Itoh N (1999) Structure and expression of a novel human FGF, FGF-19, expressed in the fetal brain. Biochim Biophys Acta 1444:148–151

    Article  CAS  PubMed  Google Scholar 

  • Novartis Pharmaceuticals (2018a) Study of safety and efficacy of tropifexor (LJN452) in patients with non-alcoholic steatohepatitis (NASH) (FLIGHT-FXR). ClinicalTrials.gov Identifier: NCT02855164

    Google Scholar 

  • Novartis Pharmaceuticals (2018b) Safety, tolerability, and efficacy of a combination treatment of tropifexor (LJN452) and cenicriviroc (CVC) in adult patients with nonalcoholic steatohepatitis (NASH) and liver fibrosis (TANDEM). ClinicalTrials.gov Identifier: NCT03517540

    Google Scholar 

  • Novartis Pharmaceuticals (2018c) Safety, tolerability, pharmacokinetics and efficacy of LMB763 in patients with NASH. ClinicalTrials.gov Identifier: NCT02913105

    Google Scholar 

  • Ocaliva (obeticholic acid) (2018) Intercept Pharmaceuticals, New York

    Google Scholar 

  • Organ Procurement and Transplantation Network (n.d.) National data - Waiting List Additions Listing Year by Diagnosis; January, 1995–May 31, 2018

    Google Scholar 

  • Parks DJ et al (1999) Bile acids: natural ligands for an orphan nuclear receptor. Science 284:1365–1368

    Article  CAS  PubMed  Google Scholar 

  • Pathak P et al (2017) Farnesoid X receptor induces Takeda G-protein receptor 5 cross-talk to regulate bile acid synthesis and hepatic metabolism. J Biol Chem 292:11055–11069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pathak P et al (2018) Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism. Hepatology 68:1574–1588

    Article  CAS  PubMed  Google Scholar 

  • Pharmaceuticals W (2008) Study evaluating the safety of FXR-450 in healthy subjects. ClinicalTrials.gov Identifier: NCT00499629

    Google Scholar 

  • Pineda Torra I et al (2003) Bile acids induce the expression of the human peroxisome proliferator-activated receptor alpha gene via activation of the farnesoid X receptor. Mol Endocrinol 17:259–272

    Article  PubMed  CAS  Google Scholar 

  • Plyte SE, Hughes K, Nikolakaki E, Pulverer BJ, Woodgett JR (1992) Glycogen synthase kinase-3: functions in oncogenesis and development. Biochim Biophys Acta 1114:147–162

    CAS  PubMed  Google Scholar 

  • Porez G et al (2013) The hepatic orosomucoid/alpha1-acid glycoprotein gene cluster is regulated by the nuclear bile acid receptor FXR. Endocrinology 154:3690–3701

    Article  CAS  PubMed  Google Scholar 

  • Potthoff MJ (2017) FGF21 and metabolic disease in 2016: a new frontier in FGF21 biology. Nat Rev Endocrinol 13:74–76

    Article  CAS  PubMed  Google Scholar 

  • Potthoff MJ et al (2011) FGF15/19 regulates hepatic glucose metabolism by inhibiting the CREB-PGC-1alpha pathway. Cell Metab 13:729–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renga B et al (2011) SHP-dependent and -independent induction of peroxisome proliferator-activated receptor-gamma by the bile acid sensor farnesoid X receptor counter-regulates the pro-inflammatory phenotype of liver myofibroblasts. Inflamm Res 60:577–587

    Article  CAS  PubMed  Google Scholar 

  • Renga B et al (2012) Glucocorticoid receptor mediates the gluconeogenic activity of the farnesoid X receptor in the fasting condition. FASEB J 26:3021–3031

    Article  CAS  PubMed  Google Scholar 

  • Renga B et al (2013) FXR mediates a chromatin looping in the GR promoter thus promoting the resolution of colitis in rodents. Pharmacol Res 77:1–10

    Article  CAS  PubMed  Google Scholar 

  • Rizzo G et al (2010) Functional characterization of the semisynthetic bile acid derivative INT-767, a dual farnesoid X receptor and TGR5 agonist. Mol Pharmacol 78:617–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romeo S et al (2008) Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 40:1461–1465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan KK et al (2013) Fibroblast growth factor-19 action in the brain reduces food intake and body weight and improves glucose tolerance in male rats. Endocrinology 154:9–15

    Article  CAS  PubMed  Google Scholar 

  • Savkur RS, Bramlett KS, Michael LF, Burris TP (2005) Regulation of pyruvate dehydrogenase kinase expression by the farnesoid X receptor. Biochem Biophys Res Commun 329:391–396

    Article  CAS  PubMed  Google Scholar 

  • Sayin SI et al (2013) Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab 17:225–235

    Article  CAS  PubMed  Google Scholar 

  • Schaap FG, van der Gaag NA, Gouma DJ, Jansen PL (2009) High expression of the bile salt-homeostatic hormone fibroblast growth factor 19 in the liver of patients with extrahepatic cholestasis. Hepatology 49:1228–1235

    Article  CAS  PubMed  Google Scholar 

  • Schmitt J et al (2015) Protective effects of farnesoid X receptor (FXR) on hepatic lipid accumulation are mediated by hepatic FXR and independent of intestinal FGF15 signal. Liver Int 35:1133–1144

    Article  CAS  PubMed  Google Scholar 

  • Schumacher JD et al (2017) The effect of fibroblast growth factor 15 deficiency on the development of high fat diet induced non-alcoholic steatohepatitis. Toxicol Appl Pharmacol 330:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selwyn FP, Csanaky IL, Zhang Y, Klaassen CD (2015) Importance of large intestine in regulating bile acids and glucagon-like peptide-1 in germ-free mice. Drug Metab Dispos 43:1544–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh S et al (2015) Fibrosis progression in nonalcoholic fatty liver vs nonalcoholic steatohepatitis: a systematic review and meta-analysis of paired-biopsy studies. Clin Gastroenterol Hepatol 13:643–54.e1–9.; quiz e39–40

    Article  PubMed  Google Scholar 

  • Song KH, Li T, Owsley E, Strom S, Chiang JY (2009) Bile acids activate fibroblast growth factor 19 signaling in human hepatocytes to inhibit cholesterol 7alpha-hydroxylase gene expression. Hepatology 49:297–305

    Article  CAS  PubMed  Google Scholar 

  • Staiger H, Keuper M, Berti L, Hrabe de Angelis M, Haring HU (2017) Fibroblast growth factor 21-metabolic role in mice and men. Endocr Rev 38:468–488

    Article  PubMed  Google Scholar 

  • Sun W, Liu Q, Leng J, Zheng Y, Li J (2015) The role of Pyruvate Dehydrogenase Complex in cardiovascular diseases. Life Sci 121:97–103

    Article  CAS  PubMed  Google Scholar 

  • Takahashi S et al (2016) Cyp2c70 is responsible for the species difference in bile acid metabolism between mice and humans. J Lipid Res 57:2130–2137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomlinson E et al (2002) Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity. Endocrinology 143:1741–1747

    Article  CAS  PubMed  Google Scholar 

  • U.S. Census Bureau (2017) QuickFacts

    Google Scholar 

  • U.S. Food and Drug Administration (2017) Drug safety communication: FDA drug safety communication: FDA warns about serious liver injury with Ocaliva (obeticholic acid) for rare chronic liver disease

    Google Scholar 

  • Uriarte I et al (2015) Ileal FGF15 contributes to fibrosis-associated hepatocellular carcinoma development. Int J Cancer 136:2469–2475

    Article  CAS  PubMed  Google Scholar 

  • Vallance P, Leone A, Calver A, Collier J, Moncada S (1992) Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet 339:572–575

    Article  CAS  PubMed  Google Scholar 

  • Verbeke L et al (2014) Obeticholic acid, a farnesoid X receptor agonist, improves portal hypertension by two distinct pathways in cirrhotic rats. Hepatology 59:2286–2298

    Article  CAS  PubMed  Google Scholar 

  • Verbeke L et al (2016) FXR agonist obeticholic acid reduces hepatic inflammation and fibrosis in a rat model of toxic cirrhosis. Sci Rep 6:33453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vilar-Gomez E, Chalasani N (2018) Non-invasive assessment of non-alcoholic fatty liver disease: clinical prediction rules and blood-based biomarkers. J Hepatol 68:305–315

    Article  CAS  PubMed  Google Scholar 

  • Wang KX, Denhardt DT (2008) Osteopontin: role in immune regulation and stress responses. Cytokine Growth Factor Rev 19:333–345

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Chen J, Hollister K, Sowers LC, Forman BM (1999) Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell 3:543–553

    Article  CAS  PubMed  Google Scholar 

  • Wang YD et al (2008) Farnesoid X receptor antagonizes nuclear factor kappaB in hepatic inflammatory response. Hepatology 48:1632–1643

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M et al (2004) Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest 113:1408–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X et al (2010) FGF19-induced hepatocyte proliferation is mediated through FGFR4 activation. J Biol Chem 285:5165–5170

    Article  CAS  PubMed  Google Scholar 

  • Wu W et al (2014) Bile acids override steatosis in farnesoid X receptor deficient mice in a model of non-alcoholic steatohepatitis. Biochem Biophys Res Commun 448:50–55

    Article  CAS  PubMed  Google Scholar 

  • Wunsch E et al (2015) Expression of hepatic fibroblast growth factor 19 is enhanced in primary biliary cirrhosis and correlates with severity of the disease. Sci Rep 5:13462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie MH et al (1999) FGF-19, a novel fibroblast growth factor with unique specificity for FGFR4. Cytokine 11:729–735

    Article  CAS  PubMed  Google Scholar 

  • Xie C et al (2017) An intestinal farnesoid X receptor-ceramide signaling axis modulates hepatic gluconeogenesis in mice. Diabetes 66:613–626

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Lu C, Zhang F, Shao J, Zheng S (2016) Dihydroartemisinin restricts hepatic stellate cell contraction via an FXR-S1PR2-dependent mechanism. IUBMB Life 68:376–387

    Article  CAS  PubMed  Google Scholar 

  • Younossi ZM et al (2016) Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64:73–84

    Article  PubMed  Google Scholar 

  • Younossi Z et al (2018) Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 15:11–20

    Article  PubMed  Google Scholar 

  • Yu C, Wang F, Jin C, Huang X, McKeehan WL (2005) Independent repression of bile acid synthesis and activation of c-Jun N-terminal kinase (JNK) by activated hepatocyte fibroblast growth factor receptor 4 (FGFR4) and bile acids. J Biol Chem 280:17707–17714

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y et al (2006) Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci U S A 103:1006–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Wang J, Liu Q, Harnish DC (2009a) Farnesoid X receptor agonist WAY-362450 attenuates liver inflammation and fibrosis in murine model of non-alcoholic steatohepatitis. J Hepatol 51:380–388

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Liu Q, Wang J, Harnish DC (2009b) Suppression of interleukin-6-induced C-reactive protein expression by FXR agonists. Biochem Biophys Res Commun 379:476–479

    Article  CAS  PubMed  Google Scholar 

  • Zhang F et al (2015) Minireview: roles of fibroblast growth factors 19 and 21 in metabolic regulation and chronic diseases. Mol Endocrinol 29:1400–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou M et al (2014) Separating tumorigenicity from bile acid regulatory activity for endocrine hormone FGF19. Cancer Res 74:3306–3316

    Article  CAS  PubMed  Google Scholar 

  • Zhou M et al (2017a) Engineered FGF19 eliminates bile acid toxicity and lipotoxicity leading to resolution of steatohepatitis and fibrosis in mice. Hepatol Commun 1:1024–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou M et al (2017b) Mouse species-specific control of hepatocarcinogenesis and metabolism by FGF19/FGF15. J Hepatol 66:1182–1192

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grace L. Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schumacher, J.D., Guo, G.L. (2019). Pharmacologic Modulation of Bile Acid-FXR-FGF15/FGF19 Pathway for the Treatment of Nonalcoholic Steatohepatitis. In: Fiorucci, S., Distrutti, E. (eds) Bile Acids and Their Receptors. Handbook of Experimental Pharmacology, vol 256. Springer, Cham. https://doi.org/10.1007/164_2019_228

Download citation

Publish with us

Policies and ethics