Skip to main content

Regulation of Inositol Biosynthesis: Balancing Health and Pathophysiology

  • Chapter
  • First Online:
Lipid Signaling in Human Diseases

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 259))

Abstract

Inositol is the precursor for all inositol compounds and is essential for viability of eukaryotic cells. Numerous cellular processes and signaling functions are dependent on inositol compounds, and perturbation of their synthesis leads to a wide range of human diseases. Although considerable research has been directed at understanding the function of inositol compounds, especially phosphoinositides and inositol phosphates, a focus on regulatory and homeostatic mechanisms controlling inositol biosynthesis has been largely neglected. Consequently, little is known about how synthesis of inositol is regulated in human cells. Identifying physiological regulators of inositol synthesis and elucidating the molecular mechanisms that regulate inositol synthesis will contribute fundamental insight into cellular processes that are mediated by inositol compounds and will provide a foundation to understand numerous disease processes that result from perturbation of inositol homeostasis. In addition, elucidating the mechanisms of action of inositol-depleting drugs may suggest new strategies for the design of second-generation pharmaceuticals to treat psychiatric disorders and other illnesses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agam G, Bersudsky Y, Berry GT, Moechars D, Lavi-Avnon Y, Belmaker RH (2009) Knockout mice in understanding the mechanism of action of lithium. Biochem Soc Trans 37:1121–1125

    Article  CAS  PubMed  Google Scholar 

  • Ahmed S, Brickner DG, Light WH, Cajigas I, McDonough M, Froyshteter AB, Volpe T, Brickner JH (2010) DNA zip codes control an ancient mechanism for gene targeting to the nuclear periphery. Nat Cell Biol 12:111–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aires CC, Soveral G, Luis PB, ten Brink HJ, de Almeida IT, Duran M, Wanders RJ, Silva MF (2008) Pyruvate uptake is inhibited by valproic acid and metabolites in mitochondrial membranes. FEBS Lett 582:3359–3366

    Article  CAS  PubMed  Google Scholar 

  • Aldinger F, Schulze TG (2017) Environmental factors, life events, and trauma in the course of bipolar disorder. Psychiatry Clin Neurosci 71:6–17

    Article  PubMed  Google Scholar 

  • Ambroziak J, Henry SA (1994) INO2 and INO4 gene products, positive regulators of phospholipid biosynthesis in Saccharomyces cerevisiae, form a complex that binds to the INO1 promoter. J Biol Chem 269:15344–15349

    Article  CAS  PubMed  Google Scholar 

  • Artini PG, Di Berardino OM, Papini F, Genazzani AD, Simi G, Ruggiero M, Cela V (2013) Endocrine and clinical effects of myo-inositol administration in polycystic ovary syndrome. A randomized study. Gynecol Endocrinol 29:375–379

    Article  CAS  PubMed  Google Scholar 

  • Ashburner BP, Lopes JM (1995) Autoregulated expression of the yeast INO2 and INO4 helix-loop-helix activator genes effects cooperative regulation on their target genes. Mol Cell Biol 15:1709–1715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atack JR, Cook SM, Watt AP, Fletcher SR, Ragan CI (1993) In vitro and in vivo inhibition of inositol monophosphatase by the bisphosphonate L-690,330. J Neurochem 60:652–658

    Article  CAS  PubMed  Google Scholar 

  • Avery LB, Bumpus NN (2014) Valproic acid is a novel activator of AMP-activated protein kinase and decreases liver mass, hepatic fat accumulation, and serum glucose in obese mice. Mol Pharmacol 85:1–10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Azab AN, He Q, Ju S, Li G, Greenberg ML (2007) Glycogen synthase kinase-3 is required for optimal de novo synthesis of inositol. Mol Microbiol 63:1248–1258

    Article  CAS  PubMed  Google Scholar 

  • Azab A, Agam G, Kaplanski J, Delbar V, Greenberg ML (2008) Inositol depletion: a good or bad outcome of valproate treatment? Future Neurol 3:275–286

    Article  CAS  Google Scholar 

  • Bachhawat N, Ouyang Q, Henry SA (1995) Functional characterization of an inositol-sensitive upstream activation sequence in yeast. A cis-regulatory element responsible for inositol-choline mediated regulation of phospholipid biosynthesis. J Biol Chem 270:25087–25095

    Article  CAS  PubMed  Google Scholar 

  • Bailis AM, Poole MA, Carman GM, Henry SA (1987) The membrane-associated enzyme phosphatidylserine synthase is regulated at the level of mRNA abundance. Mol Cell Biol 7:167–176

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baillargeon JP, Diamanti-Kandarakis E, Ostlund RE Jr, Apridonidze T, Iuorno MJ, Nestler JE (2006) Altered D-chiro-inositol urinary clearance in women with polycystic ovary syndrome. Diabetes Care 29:300–305

    Article  CAS  PubMed  Google Scholar 

  • Baillargeon JP, Iuorno MJ, Apridonidze T, Nestler JE (2010) Uncoupling between insulin and release of a D-chiro-inositol-containing inositolphosphoglycan mediator of insulin action in obese women with polycystic ovary syndrome. Metab Syndr Relat Disord 8:127–136

    Article  CAS  PubMed  Google Scholar 

  • Beaulieu JM, Sotnikova TD, Yao WD, Kockeritz L, Woodgett JR, Gainetdinov RR, Caron MG (2004) Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proc Natl Acad Sci U S A 101:5099–5104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belmaker RH, Bersudsky Y, Agam G, Levine J, Kofman O (1996) How does lithium work on manic depression? Clinical and psychological correlates of the inositol theory. Annu Rev Med 47:47–56

    Article  CAS  PubMed  Google Scholar 

  • Benelli E, Del Ghianda S, Di Cosmo C, Tonacchera M (2016) A combined therapy with myo-inositol and D-chiro-inositol improves endocrine parameters and insulin resistance in PCOS young overweight women. Int J Endocrinol 2016:3204083

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bergeron R, Ren JM, Cadman KS, Moore IK, Perret P, Pypaert M, Young LH, Semenkovich CF, Shulman GI (2001) Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis. Am J Physiol Endocrinol Metab 281:E1340–E1346

    Article  CAS  PubMed  Google Scholar 

  • Berridge MJ (2014) Calcium signalling and psychiatric disease: bipolar disorder and schizophrenia. Cell Tissue Res 357:477–492

    Article  CAS  PubMed  Google Scholar 

  • Berridge MJ, Irvine RF (1989) Inositol phosphates and cell signalling. Nature 341:197–205

    Article  CAS  PubMed  Google Scholar 

  • Berridge MJ, Downes CP, Hanley MR (1982) Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem J 206:587–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berry GT, Wu S, Buccafusca R, Ren J, Gonzales LW, Ballard PL, Golden JA, Stevens MJ, Greer JJ (2003) Loss of murine Na+/myo-inositol cotransporter leads to brain myo-inositol depletion and central apnea. J Biol Chem 278:18297–18302

    Article  CAS  PubMed  Google Scholar 

  • Berry GT, Buccafusca R, Greer JJ, Eccleston E (2004) Phosphoinositide deficiency due to inositol depletion is not a mechanism of lithium action in brain. Mol Genet Metab 82:87–92

    Article  CAS  PubMed  Google Scholar 

  • Bizzarri M, Fuso A, Dinicola S, Cucina A, Bevilacqua A (2016) Pharmacodynamics and pharmacokinetics of inositol(s) in health and disease. Expert Opin Drug Metab Toxicol 12:1181–1196

    Article  CAS  PubMed  Google Scholar 

  • Blanco C, Compton WM, Saha TD, Goldstein BI, Ruan WJ, Huang B, Grant BF (2017) Epidemiology of DSM-5 bipolar I disorder: results from the National Epidemiologic Survey on alcohol and related conditions-III. J Psychiatr Res 84:310–317

    Article  PubMed  Google Scholar 

  • Blazer DG, Kessler RC, McGonagle KA, Swartz MS (1994) The prevalence and distribution of major depression in a national community sample: the National Comorbidity Survey. Am J Psychiatry 151:979–986

    Article  CAS  PubMed  Google Scholar 

  • Bosch F, Rodriguez-Gil JE, Hatzoglou M, Gomez-Foix AM, Hanson RW (1992) Lithium inhibits hepatic gluconeogenesis and phosphoenolpyruvate carboxykinase gene expression. J Biol Chem 267:2888–2893

    Article  CAS  PubMed  Google Scholar 

  • Bourgeois F, Coady MJ, Lapointe JY (2005) Determination of transport stoichiometry for two cation-coupled myo-inositol cotransporters: SMIT2 and HMIT. J Physiol 563:333–343

    Article  CAS  PubMed  Google Scholar 

  • Bown CD, Wang JF, Chen B, Young LT (2002) Regulation of ER stress proteins by valproate: therapeutic implications. Bipolar Disord 4:145–151

    Article  CAS  PubMed  Google Scholar 

  • Brand A, Richter-Landsberg C, Leibfritz D (1993) Multinuclear NMR studies on the energy metabolism of glial and neuronal cells. Dev Neurosci 15:289–298

    Article  CAS  PubMed  Google Scholar 

  • Brickner JH, Walter P (2004) Gene recruitment of the activated INO1 locus to the nuclear membrane. PLoS Biol 2:e342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brown AS, Mallinger AG, Renbaum LC (1993) Elevated platelet membrane phosphatidylinositol-4,5-bisphosphate in bipolar mania. Am J Psychiatry 150:1252–1254

    Article  CAS  PubMed  Google Scholar 

  • Burton LE, Ray RE, Bradford JR, Orr JP, Nickerson JA, Wells WW (1976) Myo-inositol metabolism in the neonatal and developing rat fed a myo-inositol-free diet. J Nutr 106:1610–1616

    Article  CAS  PubMed  Google Scholar 

  • Burton A, Azevedo C, Andreassi C, Riccio A, Saiardi A (2013) Inositol pyrophosphates regulate JMJD2C-dependent histone demethylation. Proc Natl Acad Sci U S A 110:18970–18975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caetano SC, Fonseca M, Olvera RL, Nicoletti M, Hatch JP, Stanley JA, Hunter K, Lafer B, Pliszka SR, Soares JC (2005) Proton spectroscopy study of the left dorsolateral prefrontal cortex in pediatric depressed patients. Neurosci Lett 384:321–326

    Article  CAS  PubMed  Google Scholar 

  • Can A, Dao DT, Arad M, Terrillion CE, Piantadosi SC, Gould TD (2012) The mouse forced swim test. J Vis Exp 59:e3638

    Google Scholar 

  • Cardenas C, Miller RA, Smith I, Bui T, Molgo J, Muller M, Vais H, Cheung KH, Yang J, Parker I, Thompson CB, Birnbaum MJ, Hallows KR, Foskett JK (2010) Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 142:270–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlomagno G, Nordio M, Chiu TT, Unfer V (2011) Contribution of myo-inositol and melatonin to human reproduction. Eur J Obstet Gynecol Reprod Biol 159:267–272

    Article  CAS  PubMed  Google Scholar 

  • Carman GM, Han G-S (2011) Regulation of phospholipid synthesis in the yeast Saccharomyces cerevisiae. Annu Rev Biochem 80:859–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cataldo AM, McPhie DL, Lange NT, Punzell S, Elmiligy S, Ye NZ, Froimowitz MP, Hassinger LC, Menesale EB, Sargent LW, Logan DJ, Carpenter AE, Cohen BM (2010) Abnormalities in mitochondrial structure in cells from patients with bipolar disorder. Am J Pathol 177:575–585

    Article  PubMed  PubMed Central  Google Scholar 

  • Celik C, Tasdemir N, Abali R, Bastu E, Yilmaz M (2014) Progression to impaired glucose tolerance or type 2 diabetes mellitus in polycystic ovary syndrome: a controlled follow-up study. Fertil Steril 101:1123–1128.e1

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty A, Koldobskiy MA, Bello NT, Maxwell M, Potter JJ, Juluri KR, Maag D, Kim S, Huang AS, Dailey MJ, Saleh M, Snowman AM, Moran TH, Mezey E, Snyder SH (2010) Inositol pyrophosphates inhibit Akt signaling, thereby regulating insulin sensitivity and weight gain. Cell 143:897–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty A, Latapy C, Xu J, Snyder SH, Beaulieu JM (2014) Inositol hexakisphosphate kinase-1 regulates behavioral responses via GSK3 signaling pathways. Mol Psychiatry 19:284–293

    Article  CAS  PubMed  Google Scholar 

  • Chaube B, Malvi P, Singh SV, Mohammad N, Viollet B, Bhat MK (2015) AMPK maintains energy homeostasis and survival in cancer cells via regulating p38/PGC-1alpha-mediated mitochondrial biogenesis. Cell Death Discovery 1:15063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen I-W, Charalampous FC (1966) Biochemical studies on inositol IX. D-inositol 1-phosphate as intermediate in the biosynthesis of inositol from glucose 6-phosphate, and characteristics of two reactions in this biosynthesis. J Biol Chem 241:2194–2199

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Huang LD, Jiang YM, Manji HK (1999) The mood-stabilizing agent valproate inhibits the activity of glycogen synthase kinase-3. J Neurochem 72:1327–1330

    Article  CAS  PubMed  Google Scholar 

  • Chen LP, Dai HY, Dai ZZ, Xu CT, Wu RH (2014) Anterior cingulate cortex and cerebellar hemisphere neurometabolite changes in depression treatment: a 1H magnetic resonance spectroscopy study. Psychiatry Clin Neurosci 68:357–364

    Article  CAS  PubMed  Google Scholar 

  • Chesney E, Goodwin GM, Fazel S (2014) Risks of all-cause and suicide mortality in mental disorders: a meta-review. World Psychiatry 13:153–160

    Article  PubMed  PubMed Central  Google Scholar 

  • Chiappelli J, Rowland LM, Wijtenburg SA, Muellerklein F, Tagamets M, McMahon RP, Gaston F, Kochunov P, Hong LE (2015) Evaluation of myo-inositol as a potential biomarker for depression in schizophrenia. Neuropsychopharmacology 40:2157–2164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinta SJ, Andersen JK (2005) Dopaminergic neurons. Int J Biochem Cell Biol 37:942–946

    Article  CAS  PubMed  Google Scholar 

  • Chiu TT, Rogers MS, Law EL, Briton-Jones CM, Cheung LP, Haines CJ (2002) Follicular fluid and serum concentrations of myo-inositol in patients undergoing IVF: relationship with oocyte quality. Hum Reprod 17:1591–1596

    Article  CAS  PubMed  Google Scholar 

  • Choi K, Mollapour E, Choi JH, Shears SB (2008) Cellular energetic status supervises the synthesis of bis-diphosphoinositol tetrakisphosphate independently of AMP-activated protein kinase. Mol Pharmacol 74:527–536

    Article  CAS  PubMed  Google Scholar 

  • Ciani L, Salinas PC (2005) WNTs in the vertebrate nervous system: from patterning to neuronal connectivity. Nat Rev Neurosci 6:351–362

    Article  CAS  PubMed  Google Scholar 

  • Clark JB (1998) N-acetyl aspartate: a marker for neuronal loss or mitochondrial dysfunction. Dev Neurosci 20:271–276

    Article  CAS  PubMed  Google Scholar 

  • Coupland NJ, Ogilvie CJ, Hegadoren KM, Seres P, Hanstock CC, Allen PS (2005) Decreased prefrontal myo-inositol in major depressive disorder. Biol Psychiatry 57:1526–1534

    Article  CAS  PubMed  Google Scholar 

  • Cox JS, Walter P (1996) A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell 87:391–404

    Article  CAS  PubMed  Google Scholar 

  • Cox JS, Chapman RE, Walter P (1997) The unfolded protein response coordinates the production of endoplasmic reticulum protein and endoplasmic reticulum membrane. Mol Biol Cell 8:1805–1814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craddock N, Sklar P (2013) Genetics of bipolar disorder. Lancet 381:1654–1662

    Article  CAS  PubMed  Google Scholar 

  • Criollo A, Maiuri MC, Tasdemir E, Vitale I, Fiebig AA, Andrews D, Molgo J, Diaz J, Lavandero S, Harper F, Pierron G, di Stefano D, Rizzuto R, Szabadkai G, Kroemer G (2007) Regulation of autophagy by the inositol trisphosphate receptor. Cell Death Differ 14:1029–1039

    Article  CAS  PubMed  Google Scholar 

  • Croze ML, Soulage CO (2013) Potential role and therapeutic interests of myo-inositol in metabolic diseases. Biochimie 95:1811–1827

    Article  CAS  PubMed  Google Scholar 

  • Cryan JF, Markou A, Lucki I (2002) Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol Sci 23:238–245

    Article  CAS  PubMed  Google Scholar 

  • Czech MP (2003) Dynamics of phosphoinositides in membrane retrieval and insertion. Annu Rev Physiol 65:791–815

    Article  CAS  PubMed  Google Scholar 

  • Dager SR, Friedman SD, Parow A, Demopulos C, Stoll AL, Lyoo IK, Dunner DL, Renshaw PF (2004) Brain metabolic alterations in medication-free patients with bipolar disorder. Arch Gen Psychiatry 61:450–458

    Article  CAS  PubMed  Google Scholar 

  • Dasgupta A, Juedes SA, Sprouse RO, Auble DT (2005) Mot1-mediated control of transcription complex assembly and activity. EMBO J 24:1717–1729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dayalu P, Albin RL (2015) Huntington disease: pathogenesis and treatment. Neurol Clin 33:101–114

    Article  PubMed  Google Scholar 

  • De Stefano N, Matthews PM, Arnold DL (1995) Reversible decreases in N-acetylaspartate after acute brain injury. Magn Reson Med 34:721–727

    Article  PubMed  Google Scholar 

  • Deranieh RM, Greenberg ML (2009) Cellular consequences of inositol depletion. Biochem Soc Trans 37:1099–1103

    Article  CAS  PubMed  Google Scholar 

  • Deranieh RM, He Q, Caruso JA, Greenberg ML (2013) Phosphorylation regulates myo-inositol-3-phosphate synthase: a novel regulatory mechanism of inositol biosynthesis. J Biol Chem 288:26822–26833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dey NB, Bounelis P, Fritz TA, Bedwell DM, Marchase RB (1994) The glycosylation of phosphoglucomutase is modulated by carbon source and heat shock in Saccharomyces cerevisiae. J Biol Chem 269:27143–27148

    Article  CAS  PubMed  Google Scholar 

  • Di Paolo G, De Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443:651–657

    Article  PubMed  CAS  Google Scholar 

  • Dietz M, Heyken WT, Hoppen J, Geburtig S, Schuller HJ (2003) TFIIB and subunits of the SAGA complex are involved in transcriptional activation of phospholipid biosynthetic genes by the regulatory protein Ino2 in the yeast Saccharomyces cerevisiae. Mol Microbiol 48:1119–1130

    Article  CAS  PubMed  Google Scholar 

  • Dinicola S, Chiu TT, Unfer V, Carlomagno G, Bizzarri M (2014) The rationale of the myo-inositol and D-chiro-inositol combined treatment for polycystic ovary syndrome. J Clin Pharmacol 54:1079–1092

    Article  CAS  PubMed  Google Scholar 

  • Doble BW, Woodgett JR (2003) GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci 116:1175–1186

    Article  CAS  PubMed  Google Scholar 

  • Donahue TF, Henry SA (1981) Myo-inositol-1-phosphate synthase. Characteristics of the enzyme and identification of its structural gene in yeast. J Biol Chem 256:7077–7085

    Article  CAS  PubMed  Google Scholar 

  • Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, Vasquez DS, Joshi A, Gwinn DM, Taylor R, Asara JM, Fitzpatrick J, Dillin A, Viollet B, Kundu M, Hansen M, Shaw RJ (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331:456–461

    Article  CAS  PubMed  Google Scholar 

  • Facchinetti F, Bizzarri M, Benvenga S, D’Anna R, Lanzone A, Soulage C, Di Renzo GC, Hod M, Cavalli P, Chiu TT, Kamenov ZA, Bevilacqua A, Carlomagno G, Gerli S, Oliva MM, Devroey P (2015) Results from the international consensus conference on myo-inositol and D-chiro-inositol in obstetrics and gynecology: the link between metabolic syndrome and PCOS. Eur J Obstet Gynecol Reprod Biol 195:72–76

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Marcos PJ, Auwerx J (2011) Regulation of PGC-1alpha, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr 93:884S–890S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher SK, Novak JE, Agranoff BW (2002) Inositol and higher inositol phosphates in neural tissues: homeostasis, metabolism and functional significance. J Neurochem 82:736–754

    Article  CAS  PubMed  Google Scholar 

  • Ford J, Odeyale O, Eskandar A, Kouba N, Shen C-H (2007) A SWI/SNF-and INO80-dependent nucleosome movement at the INO1 promoter. Biochem Biophys Res Commun 361:974–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ford J, Odeyale O, Shen C-H (2008) Activator-dependent recruitment of SWI/SNF and INO80 during INO1 activation. Biochem Biophys Res Commun 373:602–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frey R, Metzler D, Fischer P, Heiden A, Scharfetter J, Moser E, Kasper S (1998) Myo-inositol in depressive and healthy subjects determined by frontal 1H-magnetic resonance spectroscopy at 1.5 tesla. J Psychiatr Res 32:411–420

    Article  CAS  PubMed  Google Scholar 

  • Fu H, Li B, Hertz L, Peng L (2012) Contributions in astrocytes of SMIT1/2 and HMIT to myo-inositol uptake at different concentrations and pH. Neurochem Int 61:187–194

    Article  CAS  PubMed  Google Scholar 

  • Gaspar ML, Chang Y-F, Jesch SA, Aregullin M, Henry SA (2017) Interaction between repressor Opi1p and ER membrane protein Scs2p facilitates transit of phosphatidic acid from the ER to mitochondria and is essential for INO1 gene expression in the presence of choline. J Biol Chem M117:809970

    Google Scholar 

  • Geiger JH, Jin X (2006) The structure and mechanism of myo-inositol-1-phosphate synthase. Subcell Biochem 39:157

    Article  PubMed  Google Scholar 

  • Gelbart ME, Bachman N, Delrow J, Boeke JD, Tsukiyama T (2005) Genome-wide identification of Isw2 chromatin-remodeling targets by localization of a catalytically inactive mutant. Genes Dev 19:942–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Genazzani AD (2016) Inositol as putative integrative treatment for PCOS. Reprod Biomed Online 33:770–780

    Article  CAS  PubMed  Google Scholar 

  • Genazzani AD, Lanzoni C, Ricchieri F, Jasonni VM (2008) Myo-inositol administration positively affects hyperinsulinemia and hormonal parameters in overweight patients with polycystic ovary syndrome. Gynecol Endocrinol 24:139–144

    Article  CAS  PubMed  Google Scholar 

  • Genazzani AD, Prati A, Santagni S, Ricchieri F, Chierchia E, Rattighieri E, Campedelli A, Simoncini T, Artini PG (2012) Differential insulin response to myo-inositol administration in obese polycystic ovary syndrome patients. Gynecol Endocrinol 28:969–973

    Article  CAS  PubMed  Google Scholar 

  • Genazzani AD, Santagni S, Rattighieri E, Chierchia E, Despini G, Marini G, Prati A, Simoncini T (2014) Modulatory role of D-chiro-inositol (DCI) on LH and insulin secretion in obese PCOS patients. Gynecol Endocrinol 30:438–443

    Article  CAS  PubMed  Google Scholar 

  • Gerli S, Mignosa M, Di Renzo GC (2003) Effects of inositol on ovarian function and metabolic factors in women with PCOS: a randomized double blind placebo-controlled trial. Eur Rev Med Pharmacol Sci 7:151–159

    CAS  PubMed  Google Scholar 

  • Gerli S, Papaleo E, Ferrari A, Di Renzo GC (2007) Randomized, double blind placebo-controlled trial: effects of myo-inositol on ovarian function and metabolic factors in women with PCOS. Eur Rev Med Pharmacol Sci 11:347–354

    CAS  PubMed  Google Scholar 

  • Goldmark JP, Fazzio TG, Estep PW, Church GM, Tsukiyama T (2000) The Isw2 chromatin remodeling complex represses early meiotic genes upon recruitment by Ume6p. Cell 103:423–433

    Article  CAS  PubMed  Google Scholar 

  • Gould TD, Einat H, Bhat R, Manji HK (2004) AR-A014418, a selective GSK-3 inhibitor, produces antidepressant-like effects in the forced swim test. Int J Neuropsychopharmacol 7:387–390

    Article  CAS  PubMed  Google Scholar 

  • Gould TD, Einat H, O’Donnell KC, Picchini AM, Schloesser RJ, Manji HK (2007) Beta-catenin overexpression in the mouse brain phenocopies lithium-sensitive behaviors. Neuropsychopharmacology 32:2173–2183

    Article  CAS  PubMed  Google Scholar 

  • Graves JA, Henry SA (2000) Regulation of the yeast INO1 gene. The products of the INO2, INO4 and OPI1 regulatory genes are not required for repression in response to inositol. Genetics 154:1485–1495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenberg ML, Lopes JM (1996) Genetic regulation of phospholipid biosynthesis in Saccharomyces cerevisiae. Microbiol Rev 60:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenberg ML, Goldwasser P, Henry SA (1982) Characterization of a yeast regulatory mutant constitutive for synthesis of inositol-1-phosphate synthase. Mol Gen Genet 186:157–163

    Article  CAS  PubMed  Google Scholar 

  • Griffin JL, Bollard M, Nicholson JK, Bhakoo K (2002) Spectral profiles of cultured neuronal and glial cells derived from HRMAS (1)H NMR spectroscopy. NMR Biomed 15:375–384

    Article  CAS  PubMed  Google Scholar 

  • Groger A, Kolb R, Schafer R, Klose U (2014) Dopamine reduction in the substantia nigra of Parkinson’s disease patients confirmed by in vivo magnetic resonance spectroscopic imaging. PLoS One 9:e84081

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hager K, Hazama A, Kwon HM, Loo DD, Handler JS, Wright EM (1995) Kinetics and specificity of the renal Na+/myo-inositol cotransporter expressed in Xenopus oocytes. J Membr Biol 143:103–113

    Article  CAS  PubMed  Google Scholar 

  • Hajek T, Carrey N, Alda M (2005) Neuroanatomical abnormalities as risk factors for bipolar disorder. Bipolar Disord 7:393–403

    Article  PubMed  Google Scholar 

  • Hall AC, Brennan A, Goold RG, Cleverley K, Lucas FR, Gordon-Weeks PR, Salinas PC (2002) Valproate regulates GSK-3-mediated axonal remodeling and synapsin I clustering in developing neurons. Mol Cell Neurosci 20:257–270

    Article  CAS  PubMed  Google Scholar 

  • Hamakawa H, Murashita J, Yamada N, Inubushi T, Kato N, Kato T (2004) Reduced intracellular pH in the basal ganglia and whole brain measured by 31P-MRS in bipolar disorder. Psychiatry Clin Neurosci 58:82–88

    Article  CAS  PubMed  Google Scholar 

  • Haneda M, Kikkawa R, Arimura T, Ebata K, Togawa M, Maeda S, Sawada T, Horide N, Shigeta Y (1990) Glucose inhibits myo-inositol uptake and reduces myo-inositol content in cultured rat glomerular mesangial cells. Metabolism 39:40–45

    Article  CAS  PubMed  Google Scholar 

  • Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889

    Article  CAS  PubMed  Google Scholar 

  • Hayashi A, Kasahara T, Kametani M, Toyota T, Yoshikawa T, Kato T (2009) Aberrant endoplasmic reticulum stress response in lymphoblastoid cells from patients with bipolar disorder. Int J Neuropsychopharmacol 12:33–43

    Article  CAS  PubMed  Google Scholar 

  • Hayes JF, Miles J, Walters K, King M, Osborn DP (2015) A systematic review and meta-analysis of premature mortality in bipolar affective disorder. Acta Psychiatr Scand 131:417–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heyken WT, Repenning A, Kumme J, Schuller HJ (2005) Constitutive expression of yeast phospholipid biosynthetic genes by variants of Ino2 activator defective for interaction with Opi1 repressor. Mol Microbiol 56:696–707

    Article  CAS  PubMed  Google Scholar 

  • Hirata Y, Andoh T, Asahara T, Kikuchi A (2003) Yeast glycogen synthase kinase-3 activates Msn2p-dependent transcription of stress responsive genes. Mol Biol Cell 14:302–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofbauer HF, Schopf FH, Schleifer H, Knittelfelder OL, Pieber B, Rechberger GN, Wolinski H, Gaspar ML, Kappe CO, Stadlmann J, Mechtler K, Zenz A, Lohner K, Tehlivets O, Henry SA, Kohlwein SD (2014) Regulation of gene expression through a transcriptional repressor that senses acyl-chain length in membrane phospholipids. Dev Cell 29:729–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoshizaki DK, Hill JE, Henry SA (1990) The Saccharomyces cerevisiae INO4 gene encodes a small, highly basic protein required for derepression of phospholipid biosynthetic enzymes. J Biol Chem 265:4736–4745

    Article  CAS  PubMed  Google Scholar 

  • Huang LC, Fonteles MC, Houston DB, Zhang C, Larner J (1993) Chiroinositol deficiency and insulin resistance. III. Acute glycogenic and hypoglycemic effects of two inositol phosphoglycan insulin mediators in normal and streptozotocin-diabetic rats in vivo. Endocrinology 132:652–657

    Article  CAS  PubMed  Google Scholar 

  • Hudecova M, Holte J, Olovsson M, Larsson A, Berne C, Poromaa IS (2011) Diabetes and impaired glucose tolerance in patients with polycystic ovary syndrome – a long term follow-up. Hum Reprod 26:1462–1468

    Article  CAS  PubMed  Google Scholar 

  • Hur EM, Zhou FQ (2010) GSK3 signalling in neural development. Nat Rev Neurosci 11:539–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibsen L, Strange K (1996) In situ localization and osmotic regulation of the Na(+)-myo-inositol cotransporter in rat brain. Am J Phys 271:F877–F885

    CAS  Google Scholar 

  • Iuorno MJ, Jakubowicz DJ, Baillargeon JP, Dillon P, Gunn RD, Allan G, Nestler JE (2002) Effects of D-chiro-inositol in lean women with the polycystic ovary syndrome. Endocr Pract 8:417–423

    Article  PubMed  Google Scholar 

  • Jadhav S, Russo S, Cottier S, Schneiter R, Cowart A, Greenberg ML (2016) Valproate induces the unfolded protein response by increasing ceramide levels. J Biol Chem 291:22253–22261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jager S, Handschin C, St-Pierre J, Spiegelman BM (2007) AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci U S A 104:12017–12022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jaschke Y, Schwarz J, Clausnitzer D, Muller C, Schuller HJ (2011) Pleiotropic corepressors Sin3 and Ssn6 interact with repressor Opi1 and negatively regulate transcription of genes required for phospholipid biosynthesis in the yeast Saccharomyces cerevisiae. Mol Gen Genomics 285:91–100

    Article  CAS  Google Scholar 

  • Jenkins R, Lewis G, Bebbington P, Brugha T, Farrell M, Gill B, Meltzer H (1997) The National Psychiatric Morbidity surveys of Great Britain – initial findings from the household survey. Psychol Med 27:775–789

    Article  CAS  PubMed  Google Scholar 

  • Jesch SA, Zhao X, Wells MT, Henry SA (2005) Genome-wide analysis reveals inositol, not choline, as the major effector of Ino2p-Ino4p and unfolded protein response target gene expression in yeast. J Biol Chem 280:9106–9118

    Article  CAS  PubMed  Google Scholar 

  • Jonathan Ryves W, Dalton EC, Harwood AJ, Williams RS (2005) GSK-3 activity in neocortical cells is inhibited by lithium but not carbamazepine or valproic acid. Bipolar Disord 7:260–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jope RS (2003) Lithium and GSK-3: one inhibitor, two inhibitory actions, multiple outcomes. Trends Pharmacol Sci 24:441–443

    Article  CAS  PubMed  Google Scholar 

  • Jope RS, Johnson GV (2004) The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci 29:95–102

    Article  CAS  PubMed  Google Scholar 

  • Jope RS, Song L, Li PP, Young LT, Kish SJ, Pacheco MA, Warsh JJ (1996) The phosphoinositide signal transduction system is impaired in bipolar affective disorder brain. J Neurochem 66:2402–2409

    Article  CAS  PubMed  Google Scholar 

  • Ju S, Greenberg ML (2003) Valproate disrupts regulation of inositol responsive genes and alters regulation of phospholipid biosynthesis. Mol Microbiol 49:1595–1603

    Article  CAS  PubMed  Google Scholar 

  • Kadosh D, Struhl K (1997) Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell 89:365–371

    Article  CAS  PubMed  Google Scholar 

  • Kaidanovich-Beilin O, Milman A, Weizman A, Pick CG, Eldar-Finkelman H (2004) Rapid antidepressive-like activity of specific glycogen synthase kinase-3 inhibitor and its effect on beta-catenin in mouse hippocampus. Biol Psychiatry 55:781–784

    Article  CAS  PubMed  Google Scholar 

  • Kakiuchi C, Iwamoto K, Ishiwata M, Bundo M, Kasahara T, Kusumi I, Tsujita T, Okazaki Y, Nanko S, Kunugi H, Sasaki T, Kato T (2003) Impaired feedback regulation of XBP1 as a genetic risk factor for bipolar disorder. Nat Genet 35:171–175

    Article  CAS  PubMed  Google Scholar 

  • Kato T (2008) Role of mitochondrial DNA in calcium signaling abnormality in bipolar disorder. Cell Calcium 44:92–102

    Article  CAS  PubMed  Google Scholar 

  • Kato T, Kato N (2000) Mitochondrial dysfunction in bipolar disorder. Bipolar Disord 2:180–190

    Article  CAS  PubMed  Google Scholar 

  • Kato T, Shioiri T, Murashita J, Hamakawa H, Inubushi T, Takahashi S (1994) Phosphorus-31 magnetic resonance spectroscopy and ventricular enlargement in bipolar disorder. Psychiatry Res 55:41–50

    Article  CAS  PubMed  Google Scholar 

  • Kato T, Shioiri T, Murashita J, Hamakawa H, Takahashi Y, Inubushi T, Takahashi S (1995) Lateralized abnormality of high energy phosphate metabolism in the frontal lobes of patients with bipolar disorder detected by phase-encoded 31P-MRS. Psychol Med 25:557–566

    Article  CAS  PubMed  Google Scholar 

  • Kato T, Murashita J, Kamiya A, Shioiri T, Kato N, Inubushi T (1998) Decreased brain intracellular pH measured by 31P-MRS in bipolar disorder: a confirmation in drug-free patients and correlation with white matter hyperintensity. Eur Arch Psychiatry Clin Neurosci 248:301–306

    Article  CAS  PubMed  Google Scholar 

  • Kato T, Kunugi H, Nanko S, Kato N (2000) Association of bipolar disorder with the 5178 polymorphism in mitochondrial DNA. Am J Med Genet 96:182–186

    Article  CAS  PubMed  Google Scholar 

  • Kato T, Kunugi H, Nanko S, Kato N (2001) Mitochondrial DNA polymorphisms in bipolar disorder. J Affect Disord 62:151–164

    Article  CAS  PubMed  Google Scholar 

  • Kennington AS, Hill CR, Craig J, Bogardus C, Raz I, Ortmeyer HK, Hansen BC, Romero G, Larner J (1990) Low urinary chiro-inositol excretion in non-insulin-dependent diabetes mellitus. N Engl J Med 323:373–378

    Article  CAS  PubMed  Google Scholar 

  • Kim AJ, Shi Y, Austin RC, Werstuck GH (2005) Valproate protects cells from ER stress-induced lipid accumulation and apoptosis by inhibiting glycogen synthase kinase-3. J Cell Sci 118:89–99

    Article  CAS  PubMed  Google Scholar 

  • Klein PS, Melton DA (1996) A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci U S A 93:8455–8459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klig LS, Henry SA (1984) Isolation of the yeast INO1 gene: located on an autonomously replicating plasmid, the gene is fully regulated. Proc Natl Acad Sci U S A 81:3816–3820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klig LS, Homann MJ, Carman GM, Henry SA (1985) Coordinate regulation of phospholipid biosynthesis in Saccharomyces cerevisiae: pleiotropically constitutive opi1 mutant. J Bacteriol 162:1135–1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch-Weser J, O’Malley K, O’Brien E (1980) Drug therapy: management of hypertension in the elderly. N Engl J Med 302:1397–1401

    Article  CAS  PubMed  Google Scholar 

  • Kofman O, Belmaker RH (1990) Intracerebroventricular myo-inositol antagonizes lithium-induced suppression of rearing behaviour in rats. Brain Res 534:345–347

    Article  CAS  PubMed  Google Scholar 

  • Kollros PE, Goldstein GW, Betz AL (1990) Myo-inositol transport into endothelial cells derived from nervous system microvessels. Brain Res 511:259–264

    Article  CAS  PubMed  Google Scholar 

  • Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884

    Article  CAS  PubMed  Google Scholar 

  • Komulainen T, Lodge T, Hinttala R, Bolszak M, Pietila M, Koivunen P, Hakkola J, Poulton J, Morten KJ, Uusimaa J (2015) Sodium valproate induces mitochondrial respiration dysfunction in HepG2 in vitro cell model. Toxicology 331:47–56

    Article  CAS  PubMed  Google Scholar 

  • Korennykh AV, Egea PF, Korostelev AA, Finer-Moore J, Zhang C, Shokat KM, Stroud RM, Walter P (2009) The unfolded protein response signals through high-order assembly of Ire1. Nature 457:687–693

    Article  CAS  PubMed  Google Scholar 

  • Kumme J, Dietz M, Wagner C, Schuller HJ (2008) Dimerization of yeast transcription factors Ino2 and Ino4 is regulated by precursors of phospholipid biosynthesis mediated by Opi1 repressor. Curr Genet 54:35–45

    Article  CAS  PubMed  Google Scholar 

  • La Marca A, Grisendi V, Dondi G, Sighinolfi G, Cianci A (2015) The menstrual cycle regularization following D-chiro-inositol treatment in PCOS women: a retrospective study. Gynecol Endocrinol 31:52–56

    Article  PubMed  CAS  Google Scholar 

  • Lagana AS, Barbaro L, Pizzo A (2015) Evaluation of ovarian function and metabolic factors in women affected by polycystic ovary syndrome after treatment with D-chiro-inositol. Arch Gynecol Obstet 291:1181–1186

    Article  CAS  PubMed  Google Scholar 

  • Lai K, McGraw P (1994) Dual control of inositol transport in Saccharomyces cerevisiae by irreversible inactivation of permease and regulation of permease synthesis by INO2, INO4, and OPI1. J Biol Chem 269:2245–2251

    Article  CAS  PubMed  Google Scholar 

  • Lai E, Teodoro T, Volchuk A (2007) Endoplasmic reticulum stress: signaling the unfolded protein response. Physiology (Bethesda) 22:193–201

    CAS  Google Scholar 

  • Larner J (2002) D-chiro-inositol – its functional role in insulin action and its deficit in insulin resistance. Int J Exp Diabetes Res 3:47–60

    Article  PubMed  PubMed Central  Google Scholar 

  • Larner J, Craig JW (1996) Urinary myo-inositol-to-chiro-inositol ratios and insulin resistance. Diabetes Care 19:76–78

    Article  CAS  PubMed  Google Scholar 

  • Larner J, Brautigan DL, Thorner MO (2010) D-chiro-inositol glycans in insulin signaling and insulin resistance. Mol Med 16:543–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leboyer M, Soreca I, Scott J, Frye M, Henry C, Tamouza R, Kupfer DJ (2012) Can bipolar disorder be viewed as a multi-system inflammatory disease? J Affect Disord 141:1–10

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee MH, Hong I, Kim M, Lee BH, Kim JH, Kang KS, Kim HL, Yoon BI, Chung H, Kong G, Lee MO (2007) Gene expression profiles of murine fatty liver induced by the administration of valproic acid. Toxicol Appl Pharmacol 220:45–59

    Article  CAS  PubMed  Google Scholar 

  • Levine J (1997) Controlled trials of inositol in psychiatry. Eur Neuropsychopharmacol 7:147–155

    Article  CAS  PubMed  Google Scholar 

  • Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463–477

    Article  CAS  PubMed  Google Scholar 

  • Levine J, Rapaport A, Lev L, Bersudsky Y, Kofman O, Belmaker RH, Shapiro J, Agam G (1993) Inositol treatment raises CSF inositol levels. Brain Res 627:168–170

    Article  CAS  PubMed  Google Scholar 

  • Levine J, Barak Y, Gonzalves M, Szor H, Elizur A, Kofman O, Belmaker RH (1995) Double-blind, controlled trial of inositol treatment of depression. Am J Psychiatry 152:792–794

    Article  CAS  PubMed  Google Scholar 

  • Lewis JH, Zimmerman HJ, Garrett CT, Rosenberg E (1982) Valproate-induced hepatic steatogenesis in rats. Hepatology 2:870–873

    Article  CAS  PubMed  Google Scholar 

  • Li XZ, Chen XP, Zhao K, Bai LM, Zhang H, Zhou XP (2013) Therapeutic effects of valproate combined with lithium carbonate on MPTP-induced parkinsonism in mice: possible mediation through enhanced autophagy. Int J Neurosci 123:73–79

    Article  CAS  PubMed  Google Scholar 

  • Li L, Gu Z, Liu Z, Su L (2014) The effect of reactive oxygen species regulation of expression of Bcl-2 and Bax in apoptosis of human umbilical vein endothelial cell induced by heat stress. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 26:458–463

    PubMed  Google Scholar 

  • Li CT, Bai YM, Hsieh JC, Lee HC, Yang BH, Chen MH, Lin WC, Tsai CF, Tu PC, Wang SJ, Su TP (2015) Peripheral and central glucose utilizations modulated by mitochondrial DNA 10398A in bipolar disorder. Psychoneuroendocrinology 55:72–80

    Article  PubMed  CAS  Google Scholar 

  • Linares GR, Chiu CT, Scheuing L, Leng Y, Liao HM, Maric D, Chuang DM (2016) Preconditioning mesenchymal stem cells with the mood stabilizers lithium and valproic acid enhances therapeutic efficacy in a mouse model of Huntington’s disease. Exp Neurol 281:81–92

    Article  CAS  PubMed  Google Scholar 

  • Lionaki E, Markaki M, Palikaras K, Tavernarakis N (2015) Mitochondria, autophagy and age-associated neurodegenerative diseases: new insights into a complex interplay. Biochim Biophys Acta 1847:1412–1423

    Article  CAS  PubMed  Google Scholar 

  • Lirng JF, Chen HC, Fuh JL, Tsai CF, Liang JF, Wang SJ (2015) Increased myo-inositol level in dorsolateral prefrontal cortex in migraine patients with major depression. Cephalalgia 35:702–709

    Article  PubMed  Google Scholar 

  • Lo WS, Duggan L, Emre NC, Belotserkovskya R, Lane WS, Shiekhattar R, Berger SL (2001) Snf1 – a histone kinase that works in concert with the histone acetyltransferase Gcn5 to regulate transcription. Science 293:1142–1146

    Article  CAS  PubMed  Google Scholar 

  • Lo WS, Gamache ER, Henry KW, Yang D, Pillus L, Berger SL (2005) Histone H3 phosphorylation can promote TBP recruitment through distinct promoter-specific mechanisms. EMBO J 24:997–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lochhead PA, Coghlan M, Rice SQ, Sutherland C (2001) Inhibition of GSK-3 selectively reduces glucose-6-phosphatase and phosphatase and phosphoenolypyruvate carboxykinase gene expression. Diabetes 50:937–946

    Article  CAS  PubMed  Google Scholar 

  • Loewen CJ, Roy A, Levine TP (2003) A conserved ER targeting motif in three families of lipid binding proteins and in Opi1p binds VAP. EMBO J 22:2025–2035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loewy BS, Henry SA (1984) The INO2 and INO4 loci of Saccharomyces cerevisiae are pleiotropic regulatory genes. Mol Cell Biol 4:2479–2485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lopes JM, Henry SA (1991) Interaction of trans and cis regulatory elements in the INO1 promoter of Saccharomyces cerevisiae. Nucleic Acids Res 19:3987–3994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopes JM, Hirsch JP, Chorgo PA, Schulze KL, Henry SA (1991) Analysis of sequences in the INO1 promoter that are involved in its regulation by phospholipid precursors. Nucleic Acids Res 19:1687–1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopes J, Schulze K, Yates J, Hirsch J, Henry S (1993) The INO1 promoter of Saccharomyces cerevisiae includes an upstream repressor sequence (URS1) common to a diverse set of yeast genes. J Bacteriol 175:4235–4238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovestone S, Davis DR, Webster MT, Kaech S, Brion JP, Matus A, Anderton BH (1999) Lithium reduces tau phosphorylation: effects in living cells and in neurons at therapeutic concentrations. Biol Psychiatry 45:995–1003

    Article  CAS  PubMed  Google Scholar 

  • Lubrich B, van Calker D (1999) Inhibition of the high affinity myo-inositol transport system: a common mechanism of action of antibipolar drugs? Neuropsychopharmacology 21:519–529

    Article  CAS  PubMed  Google Scholar 

  • Lubrich B, Spleiss O, Gebicke-Haerter PJ, van Calker D (2000) Differential expression, activity and regulation of the sodium/myo-inositol cotransporter in astrocyte cultures from different regions of the rat brain. Neuropharmacology 39:680–690

    Article  CAS  PubMed  Google Scholar 

  • Luse DS (2014) The RNA polymerase II preinitiation complex. Through what pathway is the complex assembled? Transcription 5:e27050

    Article  PubMed  Google Scholar 

  • Machado-Vieira R, Manji HK, Zarate CA Jr (2009) The role of lithium in the treatment of bipolar disorder: convergent evidence for neurotrophic effects as a unifying hypothesis. Bipolar Disord 11(Suppl 2):92–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machado-Vieira R, Pivovarova NB, Stanika RI, Yuan P, Wang Y, Zhou R, Zarate CA Jr, Drevets WC, Brantner CA, Baum A, Laje G, McMahon FJ, Chen G, Du J, Manji HK, Andrews SB (2011) The Bcl-2 gene polymorphism rs956572AA increases inositol 1,4,5-trisphosphate receptor-mediated endoplasmic reticulum calcium release in subjects with bipolar disorder. Biol Psychiatry 69:344–352

    Article  CAS  PubMed  Google Scholar 

  • Mansur RB, Brietzke E (2012) The “selfish brain” hypothesis for metabolic abnormalities in bipolar disorder and schizophrenia. Trends Psychiatry Psychother 34:121–128

    Article  PubMed  Google Scholar 

  • March WA, Moore VM, Willson KJ, Phillips DI, Norman RJ, Davies MJ (2010) The prevalence of polycystic ovary syndrome in a community sample assessed under contrasting diagnostic criteria. Hum Reprod 25:544–551

    Article  PubMed  Google Scholar 

  • Marin TL, Gongol B, Zhang F, Martin M, Johnson DA, Xiao H, Wang Y, Subramaniam S, Chien S, Shyy JY (2017) AMPK promotes mitochondrial biogenesis and function by phosphorylating the epigenetic factors DNMT1, RBBP7, and HAT1. Sci Signal 10:eaaf7478

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martinowich K, Schloesser RJ, Manji HK (2009) Bipolar disorder: from genes to behavior pathways. J Clin Invest 119:726–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masuda CA, Xavier MA, Mattos KA, Galina A, Montero-Lomeli M (2001) Phosphoglucomutase is an in vivo lithium target in yeast. J Biol Chem 276:37794–37801

    Article  CAS  PubMed  Google Scholar 

  • Matskevitch J, Wagner CA, Risler T, Kwon HM, Handler JS, Waldegger S, Busch AE, Lang F (1998) Effect of extracellular pH on the myo-inositol transporter SMIT expressed in Xenopus oocytes. Pflugers Arch 436:854–857

    Article  CAS  PubMed  Google Scholar 

  • Maurer IC, Schippel P, Volz HP (2009) Lithium-induced enhancement of mitochondrial oxidative phosphorylation in human brain tissue. Bipolar Disord 11:515–522

    Article  CAS  PubMed  Google Scholar 

  • Mellor J, Morillon A (2004) ISWI complexes in Saccharomyces cerevisiae. Biochim Biophys Acta 1677:100–112

    Article  CAS  PubMed  Google Scholar 

  • Menzies FM, Fleming A, Caricasole A, Bento CF, Andrews SP, Ashkenazi A, Fullgrabe J, Jackson A, Jimenez Sanchez M, Karabiyik C, Licitra F, Lopez Ramirez A, Pavel M, Puri C, Renna M, Ricketts T, Schlotawa L, Vicinanza M, Won H, Zhu Y, Skidmore J, Rubinsztein DC (2017) Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities. Neuron 93:1015–1034

    Article  CAS  PubMed  Google Scholar 

  • Merikangas KR, Jin R, He JP, Kessler RC, Lee S, Sampson NA, Viana MC, Andrade LH, Hu C, Karam EG, Ladea M, Medina-Mora ME, Ono Y, Posada-Villa J, Sagar R, Wells JE, Zarkov Z (2011) Prevalence and correlates of bipolar spectrum disorder in the world mental health survey initiative. Arch Gen Psychiatry 68:241–251

    Article  PubMed  PubMed Central  Google Scholar 

  • Mertens J, Wang QW, Kim Y, Yu DX, Pham S, Yang B, Zheng Y, Diffenderfer KE, Zhang J, Soltani S, Eames T, Schafer ST, Boyer L, Marchetto MC, Nurnberger JI, Calabrese JR, Odegaard KJ, McCarthy MJ, Zandi PP, Alda M, Nievergelt CM, The Pharmacogenomics of Bipolar Disorder Study, Mi S, Brennand KJ, Kelsoe JR, Gage FH, Yao J (2015) Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature 527:95–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell PB, Malhi GS (2002) The expanding pharmacopoeia for bipolar disorder. Annu Rev Med 53:173–188

    Article  CAS  PubMed  Google Scholar 

  • Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Modica-Napolitano JS, Renshaw PF (2004) Ethanolamine and phosphoethanolamine inhibit mitochondrial function in vitro: implications for mitochondrial dysfunction hypothesis in depression and bipolar disorder. Biol Psychiatry 55:273–277

    Article  CAS  PubMed  Google Scholar 

  • Monastra G, Unfer V, Harrath AH, Bizzarri M (2017) Combining treatment with myo-inositol and D-chiro-inositol (40:1) is effective in restoring ovary function and metabolic balance in PCOS patients. Gynecol Endocrinol 33:1–9

    Article  CAS  PubMed  Google Scholar 

  • Moore CM, Breeze JL, Kukes TJ, Rose SL, Dager SR, Cohen BM, Renshaw PF (1999) Effects of myo-inositol ingestion on human brain myo-inositol levels: a proton magnetic resonance spectroscopic imaging study. Biol Psychiatry 45:1197–1202

    Article  CAS  PubMed  Google Scholar 

  • Mori K (2009) Signalling pathways in the unfolded protein response: development from yeast to mammals. J Biochem 146:743–750

    Article  CAS  PubMed  Google Scholar 

  • Mukai T, Kishi T, Matsuda Y, Iwata N (2014) A meta-analysis of inositol for depression and anxiety disorders. Hum Psychopharmacol 29:55–63

    Article  CAS  PubMed  Google Scholar 

  • Munoz-Montano JR, Moreno FJ, Avila J, Diaz-Nido J (1997) Lithium inhibits Alzheimer’s disease-like tau protein phosphorylation in neurons. FEBS Lett 411:183–188

    Article  CAS  PubMed  Google Scholar 

  • Murashita J, Kato T, Shioiri T, Inubushi T, Kato N (2000) Altered brain energy metabolism in lithium-resistant bipolar disorder detected by photic stimulated 31P-MR spectroscopy. Psychol Med 30:107–115

    Article  CAS  PubMed  Google Scholar 

  • Nandhu MS, Paul J, Kuruvilla KP, Malat A, Romeo C, Paulose CS (2011) Enhanced glutamate, IP3 and cAMP activity in the cerebral cortex of unilateral 6-hydroxydopamine induced Parkinson’s rats: effect of 5-HT, GABA and bone marrow cell supplementation. J Biomed Sci 18:5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nestler JE, Jakubowicz DJ, Reamer P, Gunn RD, Allan G (1999) Ovulatory and metabolic effects of D-chiro-inositol in the polycystic ovary syndrome. N Engl J Med 340:1314–1320

    Article  CAS  PubMed  Google Scholar 

  • Ng F, Hallam K, Lucas N, Berk M (2007) The role of lamotrigine in the management of bipolar disorder. Neuropsychiatr Dis Treat 3:463–474

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nikawa J, Murakami A, Esumi E, Hosaka K (1995) Cloning and sequence of the SCS2 gene, which can suppress the defect of INO1 expression in an inositol auxotrophic mutant of Saccharomyces cerevisiae. J Biochem 118:39–45

    Article  CAS  PubMed  Google Scholar 

  • Nikoloff DM, Henry SA (1994) Functional characterization of the INO2 gene of Saccharomyces cerevisiae. A positive regulator of phospholipid biosynthesis. J Biol Chem 269:7402–7411

    Article  CAS  PubMed  Google Scholar 

  • Nikoloff DM, McGraw P, Henry SA (1992) The INO2 gene of Saccharomyces cerevisiae encodes a helix-loop-helix protein that is required for activation of phospholipid synthesis. Nucleic Acids Res 20:3253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nordio M, Proietti E (2012) The combined therapy with myo-inositol and D-chiro-inositol reduces the risk of metabolic disease in PCOS overweight patients compared to myo-inositol supplementation alone. Eur Rev Med Pharmacol Sci 16:575–581

    CAS  PubMed  Google Scholar 

  • O’Brien WT, Harper AD, Jove F, Woodgett JR, Maretto S, Piccolo S, Klein PS (2004) Glycogen synthase kinase-3beta haploinsufficiency mimics the behavioral and molecular effects of lithium. J Neurosci 24:6791–6798

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Orio F, Palomba S (2014) Reproductive endocrinology: new guidelines for the diagnosis and treatment of PCOS. Nat Rev Endocrinol 10:130–132

    Article  PubMed  Google Scholar 

  • Ortmeyer HK, Bodkin NL, Lilley K, Larner J, Hansen BC (1993) Chiroinositol deficiency and insulin resistance. I. Urinary excretion rate of chiroinositol is directly associated with insulin resistance in spontaneously diabetic rhesus monkeys. Endocrinology 132:640–645

    Article  CAS  PubMed  Google Scholar 

  • Pak Y, Hong Y, Kim S, Piccariello T, Farese RV, Larner J (1998) In vivo chiro-inositol metabolism in the rat: a defect in chiro-inositol synthesis from myo-inositol and an increased incorporation of chiro-[3H]inositol into phospholipid in the Goto-Kakizaki (G.K) rat. Mol Cells 8:301–309

    CAS  PubMed  Google Scholar 

  • Papaleo E, Unfer V, Baillargeon JP, De Santis L, Fusi F, Brigante C, Marelli G, Cino I, Redaelli A, Ferrari A (2007) Myo-inositol in patients with polycystic ovary syndrome: a novel method for ovulation induction. Gynecol Endocrinol 23:700–703

    Article  CAS  PubMed  Google Scholar 

  • Papaleo E, Unfer V, Baillargeon JP, Fusi F, Occhi F, De Santis L (2009) Myo-inositol may improve oocyte quality in intracytoplasmic sperm injection cycles. A prospective, controlled, randomized trial. Fertil Steril 91:1750–1754

    Article  CAS  PubMed  Google Scholar 

  • Parthasarathy RN, Lakshmanan J, Thangavel M, Seelan RS, Stagner JI, Janckila AJ, Vadnal RE, Casanova MF, Parthasarathy LK (2013) Rat brain myo-inositol 3-phosphate synthase is a phosphoprotein. Mol Cell Biochem 378:83–89

    Article  CAS  PubMed  Google Scholar 

  • Peterson CL, Kruger W, Herskowitz I (1991) A functional interaction between the C-terminal domain of RNA polymerase II and the negative regulator SIN1. Cell 64:1135–1143

    Article  CAS  PubMed  Google Scholar 

  • Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS (2001) Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 276:36734–36741

    Article  CAS  PubMed  Google Scholar 

  • Piatkevich MM, Lisakovich MV, Efimov LA (1984) Method of identifying persons by their skulls using the photomatching technic. Sud Med Ekspert 27:31–33

    CAS  PubMed  Google Scholar 

  • Pollard KJ, Peterson CL (1997) Role for ADA/GCN5 products in antagonizing chromatin-mediated transcriptional repression. Mol Cell Biol 17:6212–6222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ponchaut S, van Hoof F, Veitch K (1992) Cytochrome aa3 depletion is the cause of the deficient mitochondrial respiration induced by chronic valproate administration. Biochem Pharmacol 43:644–647

    Article  CAS  PubMed  Google Scholar 

  • Popkie AP, Zeidner LC, Albrecht AM, D’Ippolito A, Eckardt S, Newsom DE, Groden J, Doble BW, Aronow B, McLaughlin KJ, White P, Phiel CJ (2010) Phosphatidylinositol 3-kinase (PI3K) signaling via glycogen synthase kinase-3 (Gsk-3) regulates DNA methylation of imprinted loci. J Biol Chem 285:41337–41347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Preston AS, Yamauchi A, Kwon HM, Handler JS (1995) Activators of protein kinase A and of protein kinase C inhibit MDCK cell myo-inositol and betaine uptake. J Am Soc Nephrol 6:1559–1564

    Article  CAS  PubMed  Google Scholar 

  • Qiu Y, Hassaninasab A, Han G-S, Carman GM (2016) Phosphorylation of Dgk1 diacylglycerol kinase by casein kinase II regulates phosphatidic acid production in Saccharomyces cerevisiae. J Biol Chem 291:26455–26467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529

    Article  CAS  PubMed  Google Scholar 

  • Rowe MK, Wiest C, Chuang DM (2007) GSK-3 is a viable potential target for therapeutic intervention in bipolar disorder. Neurosci Biobehav Rev 31:920–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rundlett SE, Carmen AA, Suka N, Turner BM, Grunstein M (1998) Transcriptional repression by UME6 involves deacetylation of lysine 5 of histone H4 by RPD3. Nature 392:831–835

    Article  CAS  PubMed  Google Scholar 

  • Salsaa M, Case K, Greenberg ML (2017) Orchestrating phospholipid biosynthesis: phosphatidic acid conducts and Opi1p performs. J Biol Chem 292:18729–18730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkar S, Rubinsztein DC (2006) Inositol and IP3 levels regulate autophagy: biology and therapeutic speculations. Autophagy 2:132–134

    Article  CAS  PubMed  Google Scholar 

  • Sarkar S, Floto RA, Berger Z, Imarisio S, Cordenier A, Pasco M, Cook LJ, Rubinsztein DC (2005) Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol 170:1101–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saveanu R, Etkin A, Duchemin AM, Goldstein-Piekarski A, Gyurak A, Debattista C, Schatzberg AF, Sood S, Day CV, Palmer DM, Rekshan WR, Gordon E, Rush AJ, Williams LM (2015) The international Study to Predict Optimized Treatment in Depression (iSPOT-D): outcomes from the acute phase of antidepressant treatment. J Psychiatr Res 61:1–12

    Article  PubMed  Google Scholar 

  • Scheuing L, Chiu CT, Liao HM, Linares GR, Chuang DM (2014) Preclinical and clinical investigations of mood stabilizers for Huntington’s disease: what have we learned? Int J Biol Sci 10:1024–1038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schiebler M, Brown K, Hegyi K, Newton SM, Renna M, Hepburn L, Klapholz C, Coulter S, Obregon-Henao A, Henao Tamayo M, Basaraba R, Kampmann B, Henry KM, Burgon J, Renshaw SA, Fleming A, Kay RR, Anderson KE, Hawkins PT, Ordway DJ, Rubinsztein DC, Floto RA (2015) Functional drug screening reveals anticonvulsants as enhancers of mTOR-independent autophagic killing of Mycobacterium tuberculosis through inositol depletion. EMBO Mol Med 7:127–139

    Article  CAS  PubMed  Google Scholar 

  • Schwank S, Ebbert R, Rautenstrauss K, Schweizer E, Schuller HJ (1995) Yeast transcriptional activator INO2 interacts as an Ino2p/Ino4p basic helix-loop-helix heteromeric complex with the inositol/choline-responsive element necessary for expression of phospholipid biosynthetic genes in Saccharomyces cerevisiae. Nucleic Acids Res 23:230–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwank S, Hoffmann B, Sch-uller HJ (1997) Influence of gene dosage and autoregulation of the regulatory genes INO2 and INO4 on inositol/choline-repressible gene transcription in the yeast Saccharomyces cerevisiae. Curr Genet 31:462–468

    Article  CAS  PubMed  Google Scholar 

  • Shaldubina A, Johanson RA, O'Brien WT, Buccafusca R, Agam G, Belmaker RH, Klein PS, Bersudsky Y, Berry GT (2006) SMIT1 haploinsufficiency causes brain inositol deficiency without affecting lithium-sensitive behavior. Mol Genet Metab 88:384–388

    Article  CAS  PubMed  Google Scholar 

  • Shaldubina A, Buccafusca R, Johanson RA, Agam G, Belmaker RH, Berry GT, Bersudsky Y (2007) Behavioural phenotyping of sodium-myo-inositol cotransporter heterozygous knockout mice with reduced brain inositol. Genes Brain Behav 6:253–259

    Article  CAS  PubMed  Google Scholar 

  • Shao L, Sun X, Xu L, Young LT, Wang JF (2006) Mood stabilizing drug lithium increases expression of endoplasmic reticulum stress proteins in primary cultured rat cerebral cortical cells. Life Sci 78:1317–1323

    Article  CAS  PubMed  Google Scholar 

  • Shapiro J, Belmaker RH, Biegon A, Seker A, Agam G (2000) Scyllo-inositol in post-mortem brain of bipolar, unipolar and schizophrenic patients. J Neural Transm (Vienna) 107:603–607

    Article  CAS  Google Scholar 

  • Shears SB (2009) Diphosphoinositol polyphosphates: metabolic messengers? Mol Pharmacol 76:236–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shears SB (2015) Inositol pyrophosphates: why so many phosphates? Adv Biol Regul 57:203–216

    Article  CAS  PubMed  Google Scholar 

  • Shetty A, Lopes JM (2010) Derepression of INO1 transcription requires cooperation between the Ino2p-Ino4p heterodimer and Cbf1p and recruitment of the ISW2 chromatin-remodeling complex. Eukaryot Cell 9:1845–1855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Azab AN, Thompson MN, Greenberg ML (2006) Inositol phosphates and phosphoinositides in health and disease. Subcell Biochem 39:265–292

    Article  PubMed  Google Scholar 

  • Shimon H, Agam G, Belmaker RH, Hyde TM, Kleinman JE (1997) Reduced frontal cortex inositol levels in postmortem brain of suicide victims and patients with bipolar disorder. Am J Psychiatry 154:1148–1150

    Article  CAS  PubMed  Google Scholar 

  • Shirra MK, Patton-Vogt J, Ulrich A, Liuta-Tehlivets O, Kohlwein SD, Henry SA, Arndt KM (2001) Inhibition of acetyl coenzyme A carboxylase activity restores expression of the INO1 gene in a snf1 mutant strain of Saccharomyces cerevisiae. Mol Cell Biol 21:5710–5722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirra MK, Rogers SE, Alexander DE, Arndt KM (2005) The Snf1 protein kinase and Sit4 protein phosphatase have opposing functions in regulating TATA-binding protein association with the Saccharomyces cerevisiae INO1 promoter. Genetics 169:1957–1972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shorter E (2009) The history of lithium therapy. Bipolar Disord 11(Suppl 2):4–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva MF, Aires CC, Luis PB, Ruiter JP, IJlst L, Duran M, Wanders RJ, de Almeida IT (2008) Valproic acid metabolism and its effects on mitochondrial fatty acid oxidation: a review. J Inherit Metab Dis 31:205–216

    Article  CAS  PubMed  Google Scholar 

  • Silverstone PH, Wu RH, O’Donnell T, Ulrich M, Asghar SJ, Hanstock CC (2002) Chronic treatment with both lithium and sodium valproate may normalize phosphoinositol cycle activity in bipolar patients. Hum Psychopharmacol 17:321–327

    Article  CAS  PubMed  Google Scholar 

  • Simonsen A, Wurmser AE, Emr SD, Stenmark H (2001) The role of phosphoinositides in membrane transport. Curr Opin Cell Biol 13:485–492

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Halliday AC, Thomas JM, Kuznetsova OV, Baldwin R, Woon EC, Aley PK, Antoniadou I, Sharp T, Vasudevan SR, Churchill GC (2013) A safe lithium mimetic for bipolar disorder. Nat Commun 4:1332

    Article  PubMed  CAS  Google Scholar 

  • Sitarz KS, Elliott HR, Karaman BS, Relton C, Chinnery PF, Horvath R (2014) Valproic acid triggers increased mitochondrial biogenesis in POLG-deficient fibroblasts. Mol Genet Metab 112:57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slekar KH, Henry SA (1995) SIN3 works through two different promoter elements to regulate INO1 gene expression in yeast. Nucleic Acids Res 23:1964–1969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • So J, Warsh JJ, Li PP (2007) Impaired endoplasmic reticulum stress response in B-lymphoblasts from patients with bipolar-I disorder. Biol Psychiatry 62:141–147

    Article  CAS  PubMed  Google Scholar 

  • Soeiro-de-Souza MG, Dias VV, Figueira ML, Forlenza OV, Gattaz WF, Zarate CA Jr, Machado-Vieira R (2012) Translating neurotrophic and cellular plasticity: from pathophysiology to improved therapeutics for bipolar disorder. Acta Psychiatr Scand 126:332–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song D, Du T, Li B, Cai L, Gu L, Li H, Chen Y, Hertz L, Peng L (2008) Astrocytic alkalinization by therapeutically relevant lithium concentrations: implications for myo-inositol depletion. Psychopharmacology 200:187–195

    Article  CAS  PubMed  Google Scholar 

  • Spector R (1976) Inositol accumulation by brain slices in vitro. J Neurochem 27:1273–1276

    Article  CAS  PubMed  Google Scholar 

  • Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840

    Article  CAS  PubMed  Google Scholar 

  • Sreenivas A, Villa-Garcia MJ, Henry SA, Carman GM (2001) Phosphorylation of the yeast phospholipid synthesis regulatory protein Opi1p by protein kinase C. J Biol Chem 276:29915–29923

    Article  CAS  PubMed  Google Scholar 

  • Stambolic V, Ruel L, Woodgett JR (1996) Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr Biol 6:1664–1668

    Article  CAS  PubMed  Google Scholar 

  • Stokes CE, Hawthorne JN (1987) Reduced phosphoinositide concentrations in anterior temporal cortex of Alzheimer-diseased brains. J Neurochem 48:1018–1021

    Article  CAS  PubMed  Google Scholar 

  • Stokes CE, Gillon KR, Hawthorne JN (1983) Free and total lipid myo-inositol concentrations decrease with age in human brain. Biochim Biophys Acta 753:136–138

    Article  CAS  PubMed  Google Scholar 

  • Stork C, Renshaw PF (2005) Mitochondrial dysfunction in bipolar disorder: evidence from magnetic resonance spectroscopy research. Mol Psychiatry 10:900–919

    Article  CAS  PubMed  Google Scholar 

  • Strange K (1992) Regulation of solute and water balance and cell volume in the central nervous system. J Am Soc Nephrol 3:12–27

    Article  CAS  PubMed  Google Scholar 

  • Strange K, Morrison R, Heilig CW, DiPietro S, Gullans SR (1991) Upregulation of inositol transport mediates inositol accumulation in hyperosmolar brain cells. Am J Phys 260:C784–C790

    Article  CAS  Google Scholar 

  • Struewing IT, Barnett CD, Tang T, Mao CD (2007) Lithium increases PGC-1alpha expression and mitochondrial biogenesis in primary bovine aortic endothelial cells. FEBS J 274:2749–2765

    Article  CAS  PubMed  Google Scholar 

  • Sun TH, Heimark DB, Nguygen T, Nadler JL, Larner J (2002) Both myo-inositol to chiro-inositol epimerase activities and chiro-inositol to myo-inositol ratios are decreased in tissues of GK type 2 diabetic rats compared to Wistar controls. Biochem Biophys Res Commun 293:1092–1098

    Article  CAS  PubMed  Google Scholar 

  • Sveinbjornsdottir S (2016) The clinical symptoms of Parkinson’s disease. J Neurochem 139(Suppl 1):318–324

    Article  CAS  PubMed  Google Scholar 

  • Szijgyarto Z, Garedew A, Azevedo C, Saiardi A (2011) Influence of inositol pyrophosphates on cellular energy dynamics. Science 334:802–805

    Article  CAS  PubMed  Google Scholar 

  • Tamaru H, Selker EU (2001) A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414:277–283

    Article  CAS  PubMed  Google Scholar 

  • Tamaru H, Zhang X, McMillen D, Singh PB, Nakayama J, Grewal SI, Allis CD, Cheng X, Selker EU (2003) Trimethylated lysine 9 of histone H3 is a mark for DNA methylation in Neurospora crassa. Nat Genet 34:75–79

    Article  CAS  PubMed  Google Scholar 

  • Tang TS, Tu H, Chan EY, Maximov A, Wang Z, Wellington CL, Hayden MR, Bezprozvanny I (2003) Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1,4,5) triphosphate receptor type 1. Neuron 39:227–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang TS, Slow E, Lupu V, Stavrovskaya IG, Sugimori M, Llinas R, Kristal BS, Hayden MR, Bezprozvanny I (2005) Disturbed Ca2+ signaling and apoptosis of medium spiny neurons in Huntington’s disease. Proc Natl Acad Sci U S A 102:2602–2607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang TS, Guo C, Wang H, Chen X, Bezprozvanny I (2009) Neuroprotective effects of inositol 1,4,5-trisphosphate receptor C-terminal fragment in a Huntington’s disease mouse model. J Neurosci 29:1257–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarasov AI, Griffiths EJ, Rutter GA (2012) Regulation of ATP production by mitochondrial Ca(2+). Cell Calcium 52:28–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas MP, Mills SJ, Potter BV (2016) The “other” inositols and their phosphates: synthesis, biology, and medicine (with recent advances in myo-inositol chemistry). Angew Chem Int Ed Engl 55:1614–1650

    Article  CAS  PubMed  Google Scholar 

  • Toker A (2002) Phosphoinositides and signal transduction. Cell Mol Life Sci 59:761–779

    Article  CAS  PubMed  Google Scholar 

  • Toker L, Agam G (2015) Mitochondrial dysfunction in psychiatric morbidity: current evidence and therapeutic prospects. Neuropsychiatr Dis Treat 11:2441–2447

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uldry M, Ibberson M, Horisberger JD, Chatton JY, Riederer BM, Thorens B (2001) Identification of a mammalian H(+)-myo-inositol symporter expressed predominantly in the brain. EMBO J 20:4467–4477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unfer V, Carlomagno G, Dante G, Facchinetti F (2012) Effects of myo-inositol in women with PCOS: a systematic review of randomized controlled trials. Gynecol Endocrinol 28:509–515

    Article  CAS  PubMed  Google Scholar 

  • Vaden DL, Ding D, Peterson B, Greenberg ML (2001) Lithium and valproate decrease inositol mass and increase expression of the yeast INO1 and INO2 genes for inositol biosynthesis. J Biol Chem 276:15466–15471

    Article  CAS  PubMed  Google Scholar 

  • Valvezan AJ, Klein PS (2012) GSK-3 and Wnt signaling in neurogenesis and bipolar disorder. Front Mol Neurosci 5:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner C, Blank M, Strohmann B, Schuller HJ (1999) Overproduction of the Opi1 repressor inhibits transcriptional activation of structural genes required for phospholipid biosynthesis in the yeast Saccharomyces cerevisiae. Yeast 15:843–854

    Article  CAS  PubMed  Google Scholar 

  • Wagner C, Dietz M, Wittmann J, Albrecht A, Schuller HJ (2001) The negative regulator Opi1 of phospholipid biosynthesis in yeast contacts the pleiotropic repressor Sin3 and the transcriptional activator Ino2. Mol Microbiol 41:155–166

    Article  CAS  PubMed  Google Scholar 

  • Walker FO (2007) Huntington’s disease. Semin Neurol 27:143–150

    Article  PubMed  Google Scholar 

  • Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081–1086

    Article  CAS  PubMed  Google Scholar 

  • Warby SC, Graham RK, Hayden MR (1993) Huntington disease. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mefford HC, Stephens K, Amemiya A, Ledbetter N (eds) GeneReviews(R). University of Washington, Seattle

    Google Scholar 

  • Weaver R (2012) Molecular biology. McGraw-Hill, New York

    Google Scholar 

  • White MJ, Hirsch JP, Henry SA (1991) The OPI1 gene of Saccharomyces cerevisiae, a negative regulator of phospholipid biosynthesis, encodes a protein containing polyglutamine tracts and a leucine zipper. J Biol Chem 266:863–872

    Article  CAS  PubMed  Google Scholar 

  • Whiteford HA, Degenhardt L, Rehm J, Baxter AJ, Ferrari AJ, Erskine HE, Charlson FJ, Norman RE, Flaxman AD, Johns N, Burstein R, Murray CJ, Vos T (2013) Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010. Lancet 382:1575–1586

    Article  PubMed  Google Scholar 

  • Whiting PH, Palmano KP, Hawthorne JN (1979) Enzymes of myo-inositol and inositol lipid metabolism in rats with streptozotocin-induced diabetes. Biochem J 179:549–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams RS, Cheng L, Mudge AW, Harwood AJ (2002) A common mechanism of action for three mood-stabilizing drugs. Nature 417:292–295

    Article  CAS  PubMed  Google Scholar 

  • Wilson MS, Livermore TM, Saiardi A (2013) Inositol pyrophosphates: between signalling and metabolism. Biochem J 452:369–379

    Article  CAS  PubMed  Google Scholar 

  • Wolfson M, Bersudsky Y, Zinger E, Simkin M, Belmaker RH, Hertz L (2000) Chronic treatment of human astrocytoma cells with lithium, carbamazepine or valproic acid decreases inositol uptake at high inositol concentrations but increases it at low inositol concentrations. Brain Res 855:158–161

    Article  CAS  PubMed  Google Scholar 

  • Yadon AN, Singh BN, Hampsey M, Tsukiyama T (2013) DNA looping facilitates targeting of a chromatin remodeling enzyme. Mol Cell 50:93–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830

    Article  CAS  PubMed  Google Scholar 

  • Ye C, Greenberg ML (2015) Inositol synthesis regulates the activation of GSK-3alpha in neuronal cells. J Neurochem 133:273–283

    Article  CAS  PubMed  Google Scholar 

  • Ye C, Bandara WM, Greenberg ML (2013) Regulation of inositol metabolism is fine-tuned by inositol pyrophosphates in Saccharomyces cerevisiae. J Biol Chem 288:24898–24908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107:881–891

    Article  CAS  PubMed  Google Scholar 

  • Yu W, Greenberg ML (2016) Inositol depletion, GSK3 inhibition and bipolar disorder. Future Neurol 11:135–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu W, Ye C, Greenberg ML (2016) Inositol hexakisphosphate kinase 1 (IP6K1) regulates inositol synthesis in mammalian cells. J Biol Chem 291:10437–10444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu W, Daniel J, Mehta D, Maddipati KR, Greenberg ML (2017) MCK1 is a novel regulator of myo-inositol phosphate synthase (MIPS) that is required for inhibition of inositol synthesis by the mood stabilizer valproate. PLoS One 12:e0182534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zheng H, Zhang L, Li L, Liu P, Gao J, Liu X, Zou J, Zhang Y, Liu J, Zhang Z, Li Z, Men W (2010) High-frequency rTMS treatment increases left prefrontal myo-inositol in young patients with treatment-resistant depression. Prog Neuro-Psychopharmacol Biol Psychiatry 34:1189–1195

    Article  Google Scholar 

Download references

Acknowledgments

The Greenberg lab gratefully acknowledges support from grant R01 GM 125082 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam L. Greenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Case, K.C., Salsaa, M., Yu, W., Greenberg, M.L. (2018). Regulation of Inositol Biosynthesis: Balancing Health and Pathophysiology. In: Gomez-Cambronero, J., Frohman, M. (eds) Lipid Signaling in Human Diseases. Handbook of Experimental Pharmacology, vol 259. Springer, Cham. https://doi.org/10.1007/164_2018_181

Download citation

Publish with us

Policies and ethics