Skip to main content

Sleep- and Wake-Like States in Small Networks In Vivo and In Vitro

  • Chapter
  • First Online:
Sleep-Wake Neurobiology and Pharmacology

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 253))

Abstract

Wakefulness and sleep are highly complex and heterogeneous processes, involving multiple neurotransmitter systems and a sophisticated interplay between global and local networks of neurons and non-neuronal cells. Macroscopic approaches applied at the level of the whole organism, view sleep as a global behaviour and allow for investigation into aspects such as the effects of insufficient or disrupted sleep on cognitive function, metabolism, thermoregulation and sensory processing. While significant progress has been achieved using such large-scale approaches, the inherent complexity of sleep-wake regulation has necessitated the development of methods which tackle specific aspects of sleep in isolation. One way this may be achieved is by investigating specific cellular or molecular phenomena in the whole organism in situ, either during spontaneous or induced sleep-wake states. This approach has greatly advanced our knowledge about the electrophysiology and pharmacology of ion channels, specific receptors, intracellular pathways and the small networks implicated in the control and regulation of the sleep-wake cycle. Importantly though, there are a variety of external and internal factors that influence global behavioural states which are difficult to control for using these approaches. For this reason, over the last few decades, ex vivo experimental models have become increasingly popular and have greatly advanced our understanding of many fundamental aspects of sleep, including the neuroanatomy and neurochemistry of sleep states, sleep regulation, the origin and dynamics of specific sleep oscillations, network homeostasis as well as the functional roles of sleep. This chapter will focus on the use of small neuronal networks as experimental models and will highlight the most significant and novel insights these approaches have provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott LF, Nelson SB (2000) Synaptic plasticity: taming the beast. Nat Neurosci 3(Suppl):1178–1183

    Article  CAS  PubMed  Google Scholar 

  • Aeschbach D, Dijk DJ, Trachsel L, Brunner DP, Borbely AA (1994) Dynamics of slow-wave activity and spindle frequency activity in the human sleep EEG: effect of midazolam and zopiclone. Neuropsychopharmacology 11:237–244

    Article  CAS  PubMed  Google Scholar 

  • Ahissar E, Vaadia E, Ahissar M, Bergman H, Arieli A, Abeles M (1992) Dependence of cortical plasticity on correlated activity of single neurons and on behavioral context. Science 257:1412–1415

    Article  CAS  PubMed  Google Scholar 

  • Allada R, Siegel JM (2008) Unearthing the phylogenetic roots of sleep. Curr Biol 18:R670–R679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amar A (2018) Drugs affecting sleep and wakefulness: a review. Int J Basic Clin Pharmacol 7:1057–1064

    Article  Google Scholar 

  • Apergis-Schoute J, Iordanidou P, Faure C, Jego S, Schone C, Aitta-Aho T, Adamantidis A, Burdakov D (2015) Optogenetic evidence for inhibitory signaling from orexin to MCH neurons via local microcircuits. J Neurosci 35:5435–5441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arieli A, Sterkin A, Grinvald A, Aertsen A (1996) Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273:1868–1871

    Article  CAS  PubMed  Google Scholar 

  • Aston-Jones G, Bloom FE (1981) Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci 1:876–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Astori S, Wimmer RD, Luthi A (2013) Manipulating sleep spindles – expanding views on sleep, memory, and disease. Trends Neurosci 36:738–748

    Article  CAS  PubMed  Google Scholar 

  • Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, Jacob Filho W, Lent R, Herculano-Houzel S (2009) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513:532–541

    Article  PubMed  Google Scholar 

  • Bartho P, Slezia A, Matyas F, Faradzs-Zade L, Ulbert I, Harris KD, Acsady L (2014) Ongoing network state controls the length of sleep spindles via inhibitory activity. Neuron 82:1367–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ (2002) Model of thalamocortical slow-wave sleep oscillations and transitions to activated States. J Neurosci 22:8691–8704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beltramo R, D’Urso G, Dal Maschio M, Farisello P, Bovetti S, Clovis Y, Lassi G, Tucci V, De Pietri Tonelli D, Fellin T (2013) Layer-specific excitatory circuits differentially control recurrent network dynamics in the neocortex. Nat Neurosci 16:227–234

    Article  CAS  PubMed  Google Scholar 

  • Berdyyeva T, Otte S, Aluisio L, Ziv Y, Burns LD, Dugovic C, Yun S, Ghosh KK, Schnitzer MJ, Lovenberg T et al (2014) Zolpidem reduces hippocampal neuronal activity in freely behaving mice: a large scale calcium imaging study with miniaturized fluorescence microscope. PLoS One 9:e112068

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berezowskyj JL, McEwen JA, Anderson GB, Jenkins LC (1976) A study of anaesthesia depth by power spectral analysis of the electroencephalogram (EEG). Can Anaesth Soc J 23:1–8

    Article  CAS  PubMed  Google Scholar 

  • Blumberg MS, Sokoloff G, Tiriac A, Del Rio-Bermudez C (2015) A valuable and promising method for recording brain activity in behaving newborn rodents. Dev Psychobiol 57:506–517

    Article  PubMed  PubMed Central  Google Scholar 

  • Borbély AA (1982) A two process model of sleep regulation. Hum Neurobiol 1:195–204

    PubMed  Google Scholar 

  • Borbely AA, Mattmann P, Loepfe M, Strauch I, Lehmann D (1985) Effect of benzodiazepine hypnotics on all-night sleep EEG spectra. Hum Neurobiol 4:189–194

    CAS  PubMed  Google Scholar 

  • Braun AR, Balkin TJ, Wesenten NJ, Carson RE, Varga M, Baldwin P, Selbie S, Belenky G, Herscovitch P (1997) Regional cerebral blood flow throughout the sleep-wake cycle. An H2(15)O PET study. Brain 120(Pt 7):1173–1197

    Article  PubMed  Google Scholar 

  • Bushey D, Tononi G, Cirelli C (2015) Sleep- and wake-dependent changes in neuronal activity and reactivity demonstrated in fly neurons using in vivo calcium imaging. Proc Natl Acad Sci U S A 112:4785–4790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buzsáki G (2006) Rhythms of the brain. Oxford University Press, Oxford and New York

    Book  Google Scholar 

  • Buzsaki G, Anastassiou CA, Koch C (2012) The origin of extracellular fields and currents – EEG, ECoG, LFP and spikes. Nat Rev Neurosci 13:407–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buzsaki G, Logothetis N, Singer W (2013) Scaling brain size, keeping timing: evolutionary preservation of brain rhythms. Neuron 80:751–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell SS, Tobler I (1984) Animal sleep: a review of sleep duration across phylogeny. Neurosci Biobehav Rev 8:269–300

    Article  CAS  PubMed  Google Scholar 

  • Castelnovo A, Lopez R, Proserpio P, Nobili L, Dauvilliers Y (2018) NREM sleep parasomnias as disorders of sleep-state dissociation. Nat Rev Neurol 14:470–481

    Article  PubMed  Google Scholar 

  • Chamberlin NL, Arrigoni E, Chou TC, Scammell TE, Greene RW, Saper CB (2003) Effects of adenosine on gabaergic synaptic inputs to identified ventrolateral preoptic neurons. Neuroscience 119:913–918

    Article  CAS  PubMed  Google Scholar 

  • Chauvette S, Volgushev M, Timofeev I (2010) Origin of active states in local neocortical networks during slow sleep oscillation. Cereb Cortex 20:2660–2674

    Article  PubMed  PubMed Central  Google Scholar 

  • Chauvette S, Crochet S, Volgushev M, Timofeev I (2011) Properties of slow oscillation during slow-wave sleep and anesthesia in cats. J Neurosci 31:14998–15008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiappalone M, Bove M, Vato A, Tedesco M, Martinoia S (2006) Dissociated cortical networks show spontaneously correlated activity patterns during in vitro development. Brain Res 1093:41–53

    Article  CAS  PubMed  Google Scholar 

  • Civillico EF, Contreras D (2012) Spatiotemporal properties of sensory responses in vivo are strongly dependent on network context. Front Syst Neurosci 6:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Clinton JM, Davis CJ, Zielinski MR, Jewett KA, Krueger JM (2011) Biochemical regulation of sleep and sleep biomarkers. J Clin Sleep Med 7:S38–S42

    Article  PubMed  PubMed Central  Google Scholar 

  • Connelly WM, Crunelli V, Errington AC (2015) The global spike: conserved dendritic properties enable unique Ca2+ spike generation in low-threshold spiking neurons. J Neurosci 35:15505–15522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corner MA (2008) Spontaneous neuronal burst discharges as dependent and independent variables in the maturation of cerebral cortex tissue cultured in vitro: a review of activity-dependent studies in live ‘model’ systems for the development of intrinsically generated bioelectric slow-wave sleep patterns. Brain Res Rev 59:221–244

    Article  PubMed  Google Scholar 

  • Corner MA (2013) From neural plate to cortical arousal-a neuronal network theory of sleep derived from in vitro “model” systems for primordial patterns of spontaneous bioelectric activity in the vertebrate central nervous system. Brain Sci 3:800–820

    Article  PubMed  PubMed Central  Google Scholar 

  • Cox J, Pinto L, Dan Y (2016) Calcium imaging of sleep-wake related neuronal activity in the dorsal pons. Nat Commun 7:10763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crestani F, Martin JR, Möhler H, Rudolph U (2000) Mechanism of action of the hypnotic zolpidem in vivo. Br J Pharmacol 131:1251–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crochet S, Chauvette S, Boucetta S, Timofeev I (2005) Modulation of synaptic transmission in neocortex by network activities. Eur J Neurosci 21:1030–1044

    Article  PubMed  Google Scholar 

  • Crunelli V, Hughes SW (2009) The slow (<1 Hz) rhythm of non-REM sleep: a dialogue between three cardinal oscillators. Nat Neurosci 13:9–17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crunelli V, Toth TI, Cope DW, Blethyn K, Hughes SW (2005) The ‘window’ T-type calcium current in brain dynamics of different behavioural states. J Physiol 562:121–129

    Article  CAS  PubMed  Google Scholar 

  • Crunelli V, David F, Lorincz ML, Hughes SW (2015) The thalamocortical network as a single slow wave-generating unit. Curr Opin Neurobiol 31:72–80

    Article  CAS  PubMed  Google Scholar 

  • Dämgen K, Lüddens H (1999) Zaleplon displays a selectivity to recombinant GABAA receptors different from zolipdem, zopiclone and benzodiazepines. Neurosci Res Commun 25:139–148

    Article  Google Scholar 

  • Datta S, Siwek DF (2002) Single cell activity patterns of pedunculopontine tegmentum neurons across the sleep-wake cycle in the freely moving rats. J Neurosci Res 70:611–621

    Article  CAS  PubMed  Google Scholar 

  • David F, Schmiedt JT, Taylor HL, Orban G, Di Giovanni G, Uebele VN, Renger JJ, Lambert RC, Leresche N, Crunelli V (2013) Essential thalamic contribution to slow waves of natural sleep. J Neurosci 33:19599–19610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Destexhe A, Contreras D, Steriade M (1999) Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states. J Neurosci 19:4595–4608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dijk DJ, Beersma DG, Daan S (1987) EEG power density during nap sleep: reflection of an hourglass measuring the duration of prior wakefulness. J Biol Rhythm 2:207–219

    Article  CAS  Google Scholar 

  • Dijk DJ, James LM, Peters S, Walsh JK, Deacon S (2010) Sex differences and the effect of gaboxadol and zolpidem on EEG power spectra in NREM and REM sleep. J Psychopharmacol 24:1613–1618

    Article  CAS  PubMed  Google Scholar 

  • Eban-Rothschild A, Appelbaum L, de Lecea L (2018) Neuronal mechanisms for sleep/wake regulation and modulatory drive. Neuropsychopharmacology 43:937–952

    Article  PubMed  PubMed Central  Google Scholar 

  • Einstein MC, Polack PO, Tran DT, Golshani P (2017) Visually evoked 3-5 Hz membrane potential oscillations reduce the responsiveness of visual cortex neurons in awake behaving mice. J Neurosci 37:5084–5098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Errington AC, Hughes SW, Crunelli V (2012) Rhythmic dendritic Ca2+ oscillations in thalamocortical neurons during slow non-REM sleep-related activity in vitro. J Physiol 590:3691–3700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espie CA, MacMahon KMA, Kelly H-L, Broomfield NM, Douglas NJ, Engleman HM, McKinstry B, Morin CM, Walker A, Wilson P (2007) Randomized clinical effectiveness trial of nurse-administered small-group cognitive behavior therapy for persistent insomnia in general practice. Sleep 30:574–584

    Article  PubMed  Google Scholar 

  • Esser SK, Hill SL, Tononi G (2007) Sleep homeostasis and cortical synchronization: I. Modeling the effects of synaptic strength on sleep slow waves. Sleep 30:1617–1630

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferron JF, Kroeger D, Chever O, Amzica F (2009) Cortical inhibition during burst suppression induced with isoflurane anesthesia. J Neurosci 29:9850–9860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiath R, Kerekes BP, Wittner L, Toth K, Beregszaszi P, Horvath D, Ulbert I (2016) Laminar analysis of the slow wave activity in the somatosensory cortex of anesthetized rats. Eur J Neurosci 44:1935–1951

    PubMed  Google Scholar 

  • Finelli LA, Borbely AA, Achermann P (2001) Functional topography of the human nonREM sleep electroencephalogram. Eur J Neurosci 13:2282–2290

    Article  CAS  PubMed  Google Scholar 

  • Fisher SP, Vyazovskiy VV (2014) Local sleep taking care of high-maintenance cortical circuits under sleep restriction. Sleep 37:1727–1730

    Article  PubMed  PubMed Central  Google Scholar 

  • Fisher SP, Cui N, McKillop LE, Gemignani J, Bannerman DM, Oliver PL, Peirson SN, Vyazovskiy VV (2016) Stereotypic wheel running decreases cortical activity in mice. Nat Commun 7:13138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontanini A, Katz DB (2008) Behavioral states, network states, and sensory response variability. J Neurophysiol 100:1160–1168

    Article  PubMed  PubMed Central  Google Scholar 

  • Franken P, Dijk DJ, Tobler I, Borbely AA (1991) Sleep deprivation in rats: effects on EEG power spectra, vigilance states, and cortical temperature. Am J Phys 261:R198–R208

    CAS  Google Scholar 

  • Franks NP (2008) General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat Rev Neurosci 9:370–386

    Article  CAS  PubMed  Google Scholar 

  • Freeman D, Sheaves B, Goodwin GM, Yu L-M, Harrison PJ, Emsley R, Bostock S, Foster RG, Wadekar V, Hinds C et al (2015) Effects of cognitive behavioural therapy for insomnia on the mental health of university students: study protocol for a randomized controlled trial. Trials 16:236

    Article  PubMed  PubMed Central  Google Scholar 

  • Fucke T, Suchanek D, Nawrot MP, Seamari Y, Heck DH, Aertsen A, Boucsein C (2011) Stereotypical spatiotemporal activity patterns during slow-wave activity in the neocortex. J Neurophysiol 106:3035–3044

    Article  PubMed  Google Scholar 

  • Funk CM, Peelman K, Bellesi M, Marshall W, Cirelli C, Tononi G (2017) Role of somatostatin-positive cortical interneurons in the generation of sleep slow waves. J Neurosci 37:9132–9148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallopin T, Fort P, Eggermann E, Cauli B, Luppi PH, Rossier J, Audinat E, Muhlethaler M, Serafin M (2000) Identification of sleep-promoting neurons in vitro. Nature 404:992–995

    Article  CAS  PubMed  Google Scholar 

  • Gerashchenko D, Wisor JP, Burns D, Reh RK, Shiromani PJ, Sakurai T, de la Iglesia HO, Kilduff TS (2008) Identification of a population of sleep-active cerebral cortex neurons. Proc Natl Acad Sci U S A 105:10227–10232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gervasoni D, Peyron C, Rampon C, Barbagli B, Chouvet G, Urbain N, Fort P, Luppi PH (2000) Role and origin of the GABAergic innervation of dorsal raphe serotonergic neurons. J Neurosci 20:4217–4225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gil Z, Connors BW, Amitai Y (1997) Differential regulation of neocortical synapses by neuromodulators and activity. Neuron 19:679–686

    Article  CAS  PubMed  Google Scholar 

  • González-Rueda A, Pedrosa V, Feord RC, Clopath C, Paulsen O (2018) Activity-dependent downscaling of subthreshold synaptic inputs during slow-wave-sleep-like activity in vivo. Neuron 97:1244–1252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guillaumin MCC, McKillop LE, Cui N, Fisher SP, Foster RG, de Vos M, Peirson SN, Achermann P, Vyazovskiy VV (2018) Cortical region-specific sleep homeostasis in mice: effects of time of day and waking experience. Sleep 41

    Google Scholar 

  • Haider B, Duque A, Hasenstaub AR, McCormick DA (2006) Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. J Neurosci 26:4535–4545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haider B, Duque A, Hasenstaub AR, Yu Y, McCormick DA (2007) Enhancement of visual responsiveness by spontaneous local network activity in vivo. J Neurophysiol 97:4186–4202

    Article  PubMed  Google Scholar 

  • Halassa MM, Chen Z, Wimmer RD, Brunetti PM, Zhao S, Zikopoulos B, Wang F, Brown EN, Wilson MA (2014) State-dependent architecture of thalamic reticular subnetworks. Cell 158:808–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammond MW, Xydas D, Downes JH, Bucci G, Becerra V, Warwick K, Constanti A, Nasuto SJ, Whalley BJ (2013) Endogenous cholinergic tone modulates spontaneous network level neuronal activity in primary cortical cultures grown on multi-electrode arrays. BMC Neurosci 14:38

    Article  PubMed  PubMed Central  Google Scholar 

  • Hill S, Tononi G (2005) Modeling sleep and wakefulness in the thalamocortical system. J Neurophysiol 93:1671–1698

    Article  PubMed  Google Scholar 

  • Hinard V, Mikhail C, Pradervand S, Curie T, Houtkooper RH, Auwerx J, Franken P, Tafti M (2012) Key electrophysiological, molecular, and metabolic signatures of sleep and wakefulness revealed in primary cortical cultures. J Neurosci 32:12506–12517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirsch JA, Gilbert CD (1991) Synaptic physiology of horizontal connections in the cat’s visual cortex. J Neurosci 11:1800–1809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoel EP, Albantakis L, Cirelli C, Tononi G (2016) Synaptic refinement during development and its effect on slow-wave activity: a computational study. J Neurophysiol 115:2199–2213

    Article  PubMed  PubMed Central  Google Scholar 

  • Hwang E, McNally JM, Choi JH (2013) Reduction in cortical gamma synchrony during depolarized state of slow wave activity in mice. Front Syst Neurosci 7:107

    Article  PubMed  PubMed Central  Google Scholar 

  • Isaacson JS, Scanziani M (2011) How inhibition shapes cortical activity. Neuron 72:231–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson J, Ayzenshtat I, Karnani MM, Yuste R (2016) VIP+ interneurons control neocortical activity across brain states. J Neurophysiol 115:3008–3017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jean-Marc F, Hanns M (2004) GABAA-receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits. J Comp Neurol 359:154–194

    Google Scholar 

  • Jewett KA, Taishi P, Sengupta P, Roy S, Davis CJ, Krueger JM (2015) Tumor necrosis factor enhances the sleep-like state and electrical stimulation induces a wake-like state in co-cultures of neurons and glia. Eur J Neurosci 42:2078–2090

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones BE (2004) Paradoxical REM sleep promoting and permitting neuronal networks. Arch Ital Biol 142:379–396

    CAS  PubMed  Google Scholar 

  • Jones EG (2009) Synchrony in the interconnected circuitry of the thalamus and cerebral cortex. Ann N Y Acad Sci 1157:10–23

    Article  PubMed  Google Scholar 

  • Kattler H, Dijk DJ, Borbely AA (1994) Effect of unilateral somatosensory stimulation prior to sleep on the sleep EEG in humans. J Sleep Res 3:159–164

    Article  CAS  PubMed  Google Scholar 

  • Kennedy C, Gillin JC, Mendelson W, Suda S, Miyaoka M, Ito M, Nakamura RK, Storch FI, Pettigrew K, Mishkin M et al (1982) Local cerebral glucose utilization in non-rapid eye movement sleep. Nature 297:325–327

    Article  CAS  PubMed  Google Scholar 

  • Kisley MA, Gerstein GL (1999) Trial-to-trial variability and state-dependent modulation of auditory-evoked responses in cortex. J Neurosci 19:10451–10460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopp C, Rudolph U, Keist R, Tobler I (2003) Diazepam-induced changes on sleep and the EEG spectrum in mice: role of the α3-GABAA receptor subtype. Eur J Neurosci 17:2226–2230

    Article  CAS  PubMed  Google Scholar 

  • Kopp C, Rudolph U, Low K, Tobler I (2004a) Modulation of rhythmic brain activity by diazepam: GABA(A) receptor subtype and state specificity. Proc Natl Acad Sci U S A 101:3674–3679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopp C, Rudolph U, Tobler I (2004b) Sleep EEG changes after zolpidem in mice. Neuroreport 15:2299–2302

    Article  CAS  PubMed  Google Scholar 

  • Kosse C, Gonzalez A, Burdakov D (2015) Predictive models of glucose control: roles for glucose-sensing neurones. Acta Physiol (Oxf) 213:7–18

    Article  CAS  Google Scholar 

  • Kovalzon VM (2009) Some notes on the biography of Maria Manasseina. J Hist Neurosci 18:312–319

    Article  PubMed  Google Scholar 

  • Kripke DF (2000) Chronic hypnotic use: deadly risks, doubtful benefit. REVIEW ARTICLE. Sleep Med Rev 4:5–20

    Article  PubMed  Google Scholar 

  • Kroeger D, Amzica F (2007) Hypersensitivity of the anesthesia-induced comatose brain. J Neurosci 27:10597–10607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krueger JM, Obal F (1993) A neuronal group theory of sleep function. J Sleep Res 2:63–69

    Article  CAS  PubMed  Google Scholar 

  • Krueger JM, Rector DM, Roy S, Van Dongen HP, Belenky G, Panksepp J (2008) Sleep as a fundamental property of neuronal assemblies. Nat Rev Neurosci 9:910–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krueger JM, Huang YH, Rector DM, Buysse DJ (2013) Sleep: a synchrony of cell activity-driven small network states. Eur J Neurosci 38:2199–2209

    Article  PubMed  PubMed Central  Google Scholar 

  • Krueger JM, Frank MG, Wisor JP, Roy S (2016) Sleep function: toward elucidating an enigma. Sleep Med Rev 28:42–50

    Article  Google Scholar 

  • Kuki T, Ohshiro T, Ito S, Ji ZG, Fukazawa Y, Matsuzaka Y, Yawo H, Mushiake H (2013) Frequency-dependent entrainment of neocortical slow oscillation to repeated optogenetic stimulation in the anesthetized rat. Neurosci Res 75:35–45

    Article  PubMed  Google Scholar 

  • Kvitsiani D, Ranade S, Hangya B, Taniguchi H, Huang JZ, Kepecs A (2013) Distinct behavioural and network correlates of two interneuron types in prefrontal cortex. Nature 498:363–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lancel M (1999) Role of GABAA receptors in the regulation of sleep: initial sleep responses to peripherally administered modulators and agonists. Sleep 22:33–42

    Article  CAS  PubMed  Google Scholar 

  • Lancel M, Crönlein TAM, Faulhaber J (1996) Role of GABAA receptors in sleep regulation. Neuropsychopharmacology 15:63–74

    Article  CAS  PubMed  Google Scholar 

  • Lancel M, Faulhaber J, Schiffelholz T, Mathias S, Deisz RA (1997) Muscimol and midazolam do not potentiate each other’s effects on sleep EEG in the rat. J Neurophysiol 77:1624–1629

    Article  CAS  PubMed  Google Scholar 

  • Landolt HP, Borbely AA (2001) Age-dependent changes in sleep EEG topography. Clin Neurophysiol 112:369–377

    Article  CAS  PubMed  Google Scholar 

  • Laplante F, Morin Y, Quirion R, Vaucher E (2005) Acetylcholine release is elicited in the visual cortex, but not in the prefrontal cortex, by patterned visual stimulation: a dual in vivo microdialysis study with functional correlates in the rat brain. Neuroscience 132:501–510

    Article  CAS  PubMed  Google Scholar 

  • Latham PE, Richmond BJ, Nirenberg S, Nelson PG (2000) Intrinsic dynamics in neuronal networks. II. Experiment. J Neurophysiol 83:828–835

    Article  CAS  PubMed  Google Scholar 

  • Lawrence JJ (2008) Cholinergic control of GABA release: emerging parallels between neocortex and hippocampus. Trends Neurosci 31:317–327

    Article  CAS  PubMed  Google Scholar 

  • Lazar AS, Lazar ZI, Dijk DJ (2015) Circadian regulation of slow waves in human sleep: topographical aspects. NeuroImage 116:123–134

    Article  PubMed  Google Scholar 

  • Lee SH, Dan Y (2012) Neuromodulation of brain states. Neuron 76:209–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee RS, Steffensen SC, Henriksen SJ (2001) Discharge profiles of ventral tegmental area GABA neurons during movement, anesthesia, and the sleep-wake cycle. J Neurosci 21:1757–1766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemieux M, Chen JY, Lonjers P, Bazhenov M, Timofeev I (2014) The impact of cortical deafferentation on the neocortical slow oscillation. J Neurosci 34:5689–5703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lemieux M, Chauvette S, Timofeev I (2015) Neocortical inhibitory activities and long-range afferents contribute to the synchronous onset of silent states of the neocortical slow oscillation. J Neurophysiol 113:768–779

    Article  CAS  PubMed  Google Scholar 

  • Leung LC, Wang GX, Mourrain P (2013) Imaging zebrafish neural circuitry from whole brain to synapse. Front Neural Circ 7:76

    Google Scholar 

  • Li KY, Guan YZ, Krnjevic K, Ye JH (2009) Propofol facilitates glutamatergic transmission to neurons of the ventrolateral preoptic nucleus. Anesthesiology 111:1271–1278

    Article  CAS  PubMed  Google Scholar 

  • Lissek T, Obenhaus HA, Ditzel DA, Nagai T, Miyawaki A, Sprengel R, Hasan MT (2016) General anesthetic conditions induce network synchrony and disrupt sensory processing in the cortex. Front Cell Neurosci 10:64

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu YW, Li J, Ye JH (2010) Histamine regulates activities of neurons in the ventrolateral preoptic nucleus. J Physiol 588:4103–4116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Logothetis NK, Augath M, Murayama Y, Rauch A, Sultan F, Goense J, Oeltermann A, Merkle H (2010) The effects of electrical microstimulation on cortical signal propagation. Nat Neurosci 13:1283–1291

    Article  CAS  PubMed  Google Scholar 

  • Luczak A, Bartho P (2012) Consistent sequential activity across diverse forms of UP states under ketamine anesthesia. Eur J Neurosci 36:2830–2838

    Article  PubMed  Google Scholar 

  • Luczak A, Bartho P, Marguet SL, Buzsaki G, Harris KD (2007) Sequential structure of neocortical spontaneous activity in vivo. Proc Natl Acad Sci U S A 104:347–352

    Article  CAS  PubMed  Google Scholar 

  • Mackiewicz M, Naidoo N, Zimmerman JE, Pack AI (2008) Molecular mechanisms of sleep and wakefulness. Ann N Y Acad Sci 1129:335–349

    Article  PubMed  Google Scholar 

  • Mander BA, Winer JR, Walker MP (2017) Sleep and human aging. Neuron 94:19–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manoach DS, Pan JQ, Purcell SM, Stickgold R (2016) Reduced sleep spindles in schizophrenia: a treatable endophenotype that links risk genes to impaired cognition? Biol Psychiatry 80:599–608

    Article  PubMed  Google Scholar 

  • Marks GA, Roffwarg HP (1993) Spontaneous activity in the thalamic reticular nucleus during the sleep/wake cycle of the freely-moving rat. Brain Res 623:241–248

    Article  CAS  PubMed  Google Scholar 

  • Marrocco RT, Lane RF, McClurkin JW, Blaha CD, Alkire MF (1987) Release of cortical catecholamines by visual stimulation requires activity in thalamocortical afferents of monkey and cat. J Neurosci 7:2756–2767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCormick DA, Bal T (1997) Sleep and arousal: thalamocortical mechanisms. Annu Rev Neurosci 20:185–215

    Article  CAS  PubMed  Google Scholar 

  • McCormick DA, Pape HC, Williamson A (1991) Actions of norepinephrine in the cerebral cortex and thalamus: implications for function of the central noradrenergic system. Prog Brain Res 88:293–305

    Article  CAS  PubMed  Google Scholar 

  • McGinley MJ, David SV, McCormick DA (2015) Cortical membrane potential signature of optimal states for sensory signal detection. Neuron 87:179–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKillop LE, Fisher SP, Cui N, Peirson SN, Foster RG, Wafford KA, Vyazovskiy VV (2018) Effects of ageing on cortical neural dynamics and local sleep homeostasis in mice. J Neurosci 38:3911–3928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meisel C, Klaus A, Vyazovskiy VV, Plenz D (2017) The interplay between long- and short-range temporal correlations shapes cortex dynamics across vigilance states. J Neurosci 37:10114–10124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mileykovskiy BY, Kiyashchenko LI, Siegel JM (2005) Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 46:787–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohler H (2011) The rise of a new GABA pharmacology. Neuropharmacology 60:1042–1049

    Article  PubMed  CAS  Google Scholar 

  • Molle M, Born J (2011) Slow oscillations orchestrating fast oscillations and memory consolidation. Prog Brain Res 193:93–110

    Article  PubMed  Google Scholar 

  • Moore JT, Chen J, Han B, Meng QC, Veasey SC, Beck SG, Kelz MB (2012) Direct activation of sleep-promoting VLPO neurons by volatile anesthetics contributes to anesthetic hypnosis. Curr Biol 22:2008–2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morairty SR, Dittrich L, Pasumarthi RK, Valladao D, Heiss JE, Gerashchenko D, Kilduff TS (2013) A role for cortical nNOS/NK1 neurons in coupling homeostatic sleep drive to EEG slow wave activity. Proc Natl Acad Sci U S A 110:20272–20277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morin CM, Bootzin RR, Buysse DJ, Edinger JD, Espie CA, Lichstein KL (2006) Psychological and behavioral treatment of insomnia: update of the recent evidence (1998–2004). Sleep 29:1398–1414

    Article  PubMed  Google Scholar 

  • Moruzzi G (1972) Sleep-waking cycle. Ergebnisse Der Physiologie Biologischen Chemie Und Experimentellen Pharmakologie 64:1–165

    CAS  Google Scholar 

  • Neske GT (2016) The slow oscillation in cortical and thalamic networks: mechanisms and functions. Front Neural Circ 9:88

    Google Scholar 

  • Neske GT, Connors BW (2016) Distinct roles of SOM and VIP interneurons during cortical up states. Front Neural Circ 10:52

    Google Scholar 

  • Niethard N, Hasegawa M, Itokazu T, Oyanedel CN, Born J, Sato TR (2016) Sleep-stage-specific regulation of cortical excitation and inhibition. Curr Biol 26:2739–2749

    Article  CAS  PubMed  Google Scholar 

  • Nir Y, Andrillon T, Marmelshtein A, Suthana N, Cirelli C, Tononi G, Fried I (2017) Selective neuronal lapses precede human cognitive lapses following sleep deprivation. Nat Med 23:1474–1480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olbrich E, Achermann P (2005) Analysis of oscillatory patterns in the human sleep EEG using a novel detection algorithm. J Sleep Res 14:337–346

    Article  CAS  PubMed  Google Scholar 

  • Olbrich E, Achermann P, Wennekers T (2011) The sleeping brain as a complex system. Philos Trans A Math Phys Eng Sci 369:3697–3707

    PubMed  Google Scholar 

  • Olcese U, Faraguna U (2015) Slow cortical rhythms: from single-neuron electrophysiology to whole-brain imaging in vivo. Arch Ital Biol 153:87–98

    PubMed  Google Scholar 

  • Olfson M, King M, Schoenbaum M (2015) Benzodiazepine use in the United States. JAMA Psychiat 72:136–142

    Article  Google Scholar 

  • Olofsen E, Sleigh JW, Dahan A (2008) Permutation entropy of the electroencephalogram: a measure of anaesthetic drug effect. Br J Anaesth 101:810–821

    Article  CAS  PubMed  Google Scholar 

  • Petersen CC, Hahn TT, Mehta M, Grinvald A, Sakmann B (2003) Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex. Proc Natl Acad Sci U S A 100:13638–13643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pigarev IN, Nothdurft HC, Kastner S (1997) Evidence for asynchronous development of sleep in cortical areas. Neuroreport 8:2557–2560

    Article  CAS  PubMed  Google Scholar 

  • Pigeat R, Chausson P, Dreyfus FM, Leresche N, Lambert RC (2015) Sleep slow wave-related homo and heterosynaptic LTD of intrathalamic GABAAergic synapses: involvement of T-type Ca2+ channels and metabotropic glutamate receptors. J Neurosci 35:64–73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pigorini A, Sarasso S, Proserpio P, Szymanski C, Arnulfo G, Casarotto S, Fecchio M, Rosanova M, Mariotti M, Lo Russo G et al (2015) Bistability breaks-off deterministic responses to intracortical stimulation during non-REM sleep. NeuroImage 112:105–113

    Article  PubMed  Google Scholar 

  • Polack PO, Friedman J, Golshani P (2013) Cellular mechanisms of brain state-dependent gain modulation in visual cortex. Nat Neurosci 16:1331–1339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poulet JF, Petersen CC (2008) Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice. Nature 454:881–885

    Article  CAS  PubMed  Google Scholar 

  • Raizen DM, Zimmerman JE, Maycock MH, Ta UD, You YJ, Sundaram MV, Pack AI (2008) Lethargus is a Caenorhabditis elegans sleep-like state. Nature 451:569–572

    Article  CAS  PubMed  Google Scholar 

  • Ramot M, Fisch L, Davidesco I, Harel M, Kipervasser S, Andelman F, Neufeld MY, Kramer U, Fried I, Malach R (2013) Emergence of sensory patterns during sleep highlights differential dynamics of REM and non-REM sleep stages. J Neurosci 33:14715–14728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rector DM, Topchiy IA, Carter KM, Rojas MJ (2005) Local functional state differences between rat cortical columns. Brain Res 1047:45–55

    Article  CAS  PubMed  Google Scholar 

  • Rector DM, Schei JL, Van Dongen HPA, Belenky G, Krueger JM (2009) Physiological markers of local sleep. Eur J Neurosci 29:1771–1778

    Article  PubMed  PubMed Central  Google Scholar 

  • Reig R, Sanchez-Vives MV (2007) Synaptic transmission and plasticity in an active cortical network. PLoS One 2:e670

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reig R, Zerlaut Y, Vergara R, Destexhe A, Sanchez-Vives MV (2015) Gain modulation of synaptic inputs by network state in auditory cortex in vivo. J Neurosci 35:2689–2702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riedner BA, Vyazovskiy VV, Huber R, Massimini M, Esser S, Murphy M, Tononi G (2007) Sleep homeostasis and cortical synchronization: III. A high-density EEG study of sleep slow waves in humans. Sleep 30:1643–1657

    Article  PubMed  PubMed Central  Google Scholar 

  • Roy S, Krueger JM, Rector DM, Wan Y (2008) A network model for activity-dependent sleep regulation. J Theor Biol 253:462–468

    Article  PubMed  PubMed Central  Google Scholar 

  • Rudolph U, Mohler H (2006) GABA-based therapeutic approaches: GABAA receptor subtype functions. Curr Opin Pharmacol 6:18–23

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Mejias M, Ciria-Suarez L, Mattia M, Sanchez-Vives MV (2011) Slow and fast rhythms generated in the cerebral cortex of the anesthetized mouse. J Neurophysiol 106:2910–2921

    Article  PubMed  Google Scholar 

  • Saberi-Moghadam S, Simi A, Setareh H, Mikhail C, Tafti M (2018) In vitro cortical network firing is homeostatically regulated: a model for sleep regulation. Sci Rep 8:6297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sakata S, Harris KD (2012) Laminar-dependent effects of cortical state on auditory cortical spontaneous activity. Front Neural Circ 6:109

    Google Scholar 

  • Saleem AB, Chadderton P, Apergis-Schoute J, Harris KD, Schultz SR (2010) Methods for predicting cortical UP and DOWN states from the phase of deep layer local field potentials. J Comput Neurosci 29:49–62

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Vives MV, Mattia M (2014) Slow wave activity as the default mode of the cerebral cortex. Arch Ital Biol 152:147–155

    CAS  PubMed  Google Scholar 

  • Sanchez-Vives MV, McCormick DA (2000) Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat Neurosci 3:1027–1034

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Vives MV, Mattia M, Compte A, Perez-Zabalza M, Winograd M, Descalzo VF, Reig R (2010) Inhibitory modulation of cortical up states. J Neurophysiol 104:1314–1324

    Article  PubMed  Google Scholar 

  • Sanger DJ, Morel E, Perrault G (1996) Comparison of the pharmacological profiles of the hypnotic drugs, zaleplon and zolpidem. Eur J Pharmacol 313:35–42

    Article  CAS  PubMed  Google Scholar 

  • Saper CB, Chou TC, Scammell TE (2001) The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci 24:726–731

    Article  CAS  PubMed  Google Scholar 

  • Saper CB, Fuller PM, Pedersen NP, Lu J, Scammell TE (2010) Sleep state switching. Neuron 68:1023–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scammell TE, Estabrooke IV, McCarthy MT, Chemelli RM, Yanagisawa M, Miller MS, Saper CB (2000) Hypothalamic arousal regions are activated during modafinil-induced wakefulness. J Neurosci 20:8620–8628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheeringa R, Mazaheri A, Bojak I, Norris DG, Kleinschmidt A (2011) Modulation of visually evoked cortical FMRI responses by phase of ongoing occipital alpha oscillations. J Neurosci 31:3813–3820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schutte-Rodin S, Broch L, Buysse D, Dorsey C, Sateia M (2008) Clinical guideline for the evaluation and management of chronic insomnia in adults. J Clin Sleep Med 4:487–504

    Article  PubMed  PubMed Central  Google Scholar 

  • Seibt J, Aton SJ, Jha SK, Coleman T, Dumoulin MC, Frank MG (2008) The non-benzodiazepine hypnotic zolpidem impairs sleep-dependent cortical plasticity. Sleep 31:1381–1391

    PubMed  PubMed Central  Google Scholar 

  • Seibt J, Richard CJ, Sigl-Glöckner J, Takahashi N, Kaplan DI, Doron G, de Limoges D, Bocklisch C, Larkum ME (2017) Cortical dendritic activity correlates with spindle-rich oscillations during sleep in rodents. Nat Commun 8:684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sela Y, Vyazovskiy VV, Cirelli C, Tononi G, Nir Y (2016) Responses in rat core auditory cortex are preserved during sleep spindle oscillations. Sleep 39:1069–1082

    Article  PubMed  PubMed Central  Google Scholar 

  • Sherin JE, Shiromani PJ, McCarley RW, Saper CB (1996) Activation of ventrolateral preoptic neurons during sleep. Science 271:216–219

    Article  CAS  PubMed  Google Scholar 

  • Sheroziya M, Timofeev I (2014) Global intracellular slow-wave dynamics of the thalamocortical system. J Neurosci 34:8875–8893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siclari F, Bernardi G, Riedner BA, LaRocque JJ, Benca RM, Tononi G (2014) Two distinct synchronization processes in the transition to sleep: a high-density electroencephalographic study. Sleep 37:1621

    Article  PubMed  PubMed Central  Google Scholar 

  • Staiger JF, Zuschratter W, Luhmann HJ, Schubert D (2009) Local circuits targeting parvalbumin-containing interneurons in layer IV of rat barrel cortex. Brain Struct Funct 214:1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staresina BP, Bergmann TO, Bonnefond M, van der Meij R, Jensen O, Deuker L, Elger CE, Axmacher N, Fell J (2015) Hierarchical nesting of slow oscillations, spindles and ripples in the human hippocampus during sleep. Nat Neurosci 18:1679–1686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stepanyants A, Martinez LM, Ferecsko AS, Kisvarday ZF (2009) The fractions of short- and long-range connections in the visual cortex. Proc Natl Acad Sci U S A 106:3555–3560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steriade M (1978) Cortical long-axoned cells and putative interneurons during the sleep-waking cycle. Behav Brain Sci 1:465–485

    Article  Google Scholar 

  • Steriade M (2001) Impact of network activities on neuronal properties in corticothalamic systems. J Neurophysiol 86:1–39

    Article  CAS  PubMed  Google Scholar 

  • Steriade M, Amzica F (1998) Coalescence of sleep rhythms and their chronology in corticothalamic networks. Sleep Res Online 1:1–10

    CAS  PubMed  Google Scholar 

  • Steriade M, Domich L, Oakson G (1986) Reticularis thalami neurons revisited: activity changes during shifts in states of vigilance. J Neurosci 6:68–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steriade M, Domich L, Oakson G, Deschenes M (1987) The deafferented reticular thalamic nucleus generates spindle rhythmicity. J Neurophysiol 57:260–273

    Article  CAS  PubMed  Google Scholar 

  • Steriade M, Datta S, Pare D, Oakson G, Curro Dossi RC (1990) Neuronal activities in brain-stem cholinergic nuclei related to tonic activation processes in thalamocortical systems. J Neurosci 10:2541–2559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steriade M, Nunez A, Amzica F (1993) A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J Neurosci 13:3252–3265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suntsova N, Guzman-Marin R, Kumar S, Alam MN, Szymusiak R, McGinty D (2007) The median preoptic nucleus reciprocally modulates activity of arousal-related and sleep-related neurons in the perifornical lateral hypothalamus. J Neurosci 27:1616–1630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szymusiak R, Alam N, Steininger TL, McGinty D (1998) Sleep-waking discharge patterns of ventrolateral preoptic/anterior hypothalamic neurons in rats. Brain Res 803:178–188

    Article  CAS  PubMed  Google Scholar 

  • Tabarean IV (2013) Functional pharmacology of H1 histamine receptors expressed in mouse preoptic/anterior hypothalamic neurons. Br J Pharmacol 170:415–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timofeev I (2013) Local origin of slow EEG waves during sleep. Zh Vyssh Nerv Deiat Im I P Pavlova 63:105–112

    PubMed  Google Scholar 

  • Timofeev I, Grenier F, Bazhenov M, Sejnowski TJ, Steriade M (2000) Origin of slow cortical oscillations in deafferented cortical slabs. Cereb Cortex 10:1185–1199

    Article  CAS  PubMed  Google Scholar 

  • Timofeev I, Grenier F, Steriade M (2001) Disfacilitation and active inhibition in the neocortex during the natural sleep-wake cycle: an intracellular study. Proc Natl Acad Sci U S A 98:1924–1929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tobler I (2005) Phylogeny of sleep regulation. In: Kryger MH, Roth T, Dement WC (eds) Principles and practice of sleep medicine. W. B. Saunders, Philadelphia

    Google Scholar 

  • Tobler I, Kopp C, Deboer T, Rudolph U (2001) Diazepam-induced changes in sleep: role of the α1 GABAA receptor subtype. Proc Natl Acad Sci 98:6464–6469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Dongen HP, Belenky G, Krueger JM (2011) A local, bottom-up perspective on sleep deprivation and neurobehavioral performance. Curr Top Med Chem 11:2414–2422

    Article  PubMed  PubMed Central  Google Scholar 

  • Volgushev M, Chauvette S, Timofeev I (2011) Long-range correlation of the membrane potential in neocortical neurons during slow oscillation. Prog Brain Res 193:181–199

    Article  PubMed  PubMed Central  Google Scholar 

  • Voss L, Sleigh J (2007) Monitoring consciousness: the current status of EEG-based depth of anaesthesia monitors. Best Pract Res Clin Anaesthesiol 21:313–325. Awareness during Anaesthesia

    Article  Google Scholar 

  • Vyazovskiy VV (2013) Cortical neuronal mechanisms of sleep homeostasis. Zh Vyssh Nerv Deiat Im I P Pavlova 63:13–23

    PubMed  Google Scholar 

  • Vyazovskiy VV (2015) Sleep, recovery, and metaregulation: explaining the benefits of sleep. Nat Sci Sleep 7:171–184

    Article  PubMed  PubMed Central  Google Scholar 

  • Vyazovskiy VV, Delogu A (2014) NREM and REM sleep: complementary roles in recovery after wakefulness. Neuroscientist 20:203–219

    Article  PubMed  Google Scholar 

  • Vyazovskiy VV, Harris KD (2013) Sleep and the single neuron: the role of global slow oscillations in individual cell rest. Nat Rev Neurosci 14:443–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vyazovskiy V, Borbely AA, Tobler I (2000) Unilateral vibrissae stimulation during waking induces interhemispheric EEG asymmetry during subsequent sleep in the rat. J Sleep Res 9:367–371

    Article  CAS  PubMed  Google Scholar 

  • Vyazovskiy VV, Deboer T, Rudy B, Lau D, Borbely AA, Tobler I (2002) Sleep EEG in mice that are deficient in the potassium channel subunit K.v.3.2. Brain Res 947:204–211

    Article  CAS  PubMed  Google Scholar 

  • Vyazovskiy VV, Achermann P, Borbely AA, Tobler I (2004) The dynamics of spindles and EEG slow-wave activity in NREM sleep in mice. Arch Ital Biol 142:511–523

    CAS  PubMed  Google Scholar 

  • Vyazovskiy VV, Achermann P, Tobler I (2007) Sleep homeostasis in the rat in the light and dark period. Brain Res Bull 74:37–44

    Article  CAS  PubMed  Google Scholar 

  • Vyazovskiy VV, Olcese U, Lazimy YM, Faraguna U, Esser SK, Williams JC, Cirelli C, Tononi G (2009) Cortical firing and sleep homeostasis. Neuron 63:865–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vyazovskiy VV, Cirelli C, Tononi G (2011a) Electrophysiological correlates of sleep homeostasis in freely behaving rats. Prog Brain Res 193:17–38

    Article  PubMed  PubMed Central  Google Scholar 

  • Vyazovskiy VV, Olcese U, Hanlon EC, Nir Y, Cirelli C, Tononi G (2011b) Local sleep in awake rats. Nature 472:443–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vyazovskiy VV, Olcese U, Cirelli C, Tononi G (2013) Prolonged wakefulness alters neuronal responsiveness to local electrical stimulation of the neocortex in awake rats. J Sleep Res 22:264–271

    Article  PubMed Central  Google Scholar 

  • Vyazovskiy VV, Cui N, Rodriguez AV, Funk C, Cirelli C, Tononi G (2014) The dynamics of cortical neuronal activity in the first minutes after spontaneous awakening in rats and mice. Sleep 37:1337–1347

    Article  PubMed  PubMed Central  Google Scholar 

  • Wagenaar DA, Madhavan R, Pine J, Potter SM (2005) Controlling bursting in cortical cultures with closed-loop multi-electrode stimulation. J Neurosci 25:680–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe T, Kan S, Koike T, Misaki M, Konishi S, Miyauchi S, Miyahsita Y, Masuda N (2014) Network-dependent modulation of brain activity during sleep. NeuroImage 98:1–10

    Article  PubMed  Google Scholar 

  • Watson BO, MacLean JN, Yuste R (2008) UP states protect ongoing cortical activity from thalamic inputs. PLoS One 3:e3971

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Watson CJ, Baghdoyan HA, Lydic R (2010) Neuropharmacology of sleep and wakefulness. Sleep Med Clin 5:513–528

    Article  PubMed  PubMed Central  Google Scholar 

  • Watson BO, Levenstein D, Greene JP, Gelinas JN, Buzsaki G (2016) Network homeostasis and state dynamics of neocortical sleep. Neuron 90:839–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winsky-Sommerer R (2009) Role of GABAA receptors in the physiology and pharmacology of sleep. Eur J Neurosci 29:1779–1794

    Article  PubMed  Google Scholar 

  • Wirz-Justice A (2009) From the basic neuroscience of circadian clock function to light therapy for depression: on the emergence of chronotherapeutics. J Affect Disord 116:159–160

    Article  PubMed  Google Scholar 

  • Yüzgeç Ö, Prsa M, Zimmermann R, Huber D (2018) Pupil size coupling to cortical states protects the stability of deep sleep via parasympathetic modulation. Curr Biol 28:392–400.e393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zagha E, McCormick DA (2014) Neural control of brain state. Curr Opin Neurobiol 29:178–186

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Ferretti V, Guntan I, Moro A, Steinberg EA, Ye Z, Zecharia AY, Yu X, Vyssotski AL, Brickley SG et al (2015) Neuronal ensembles sufficient for recovery sleep and the sedative actions of alpha2 adrenergic agonists. Nat Neurosci 18:553–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zucca S, D’Urso G, Pasquale V, Vecchia D, Pica G, Bovetti S, Moretti C, Varani S, Molano-Mazón M, Chiappalone M et al (2017) An inhibitory gate for state transition in cortex. elife 6:e26177

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladyslav V. Vyazovskiy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McKillop, L.E., Vyazovskiy, V.V. (2018). Sleep- and Wake-Like States in Small Networks In Vivo and In Vitro. In: Landolt, HP., Dijk, DJ. (eds) Sleep-Wake Neurobiology and Pharmacology . Handbook of Experimental Pharmacology, vol 253. Springer, Cham. https://doi.org/10.1007/164_2018_174

Download citation

Publish with us

Policies and ethics