Advertisement

pp 1-22 | Cite as

Pharmacology of MDMA- and Amphetamine-Like New Psychoactive Substances

  • Linda D. Simmler
  • Matthias E. Liechti
Chapter
Part of the Handbook of Experimental Pharmacology book series

Abstract

New psychoactive substances (NPS) with amphetamine-, aminoindan-, and benzofuran basic chemical structures have recently emerged for recreational drug use. Detailed information about their psychotropic effects and health risks is often limited. At the same time, it emerged that the pharmacological profiles of these NPS resemble those of amphetamine or 3,4-methylenedioxymethamphetamine (MDMA). Amphetamine-like NPS induce psychostimulation and euphoria mediated predominantly by norepinephrine (NE) and dopamine (DA) transporter (NET and DAT) inhibition and transporter-mediated release of NE and DA, thus showing a more catecholamine-selective profile. MDMA-like NPS frequently induce well-being, empathy, and prosocial effects and have only moderate psychostimulant properties. These MDMA-like substances primarily act by inhibiting the serotonin (5-HT) transporter (SERT) and NET, also inducing 5-HT and NE release. Monoamine receptor interactions vary considerably among amphetamine- and MDMA-like NPS. Clinically, amphetamine- and MDMA-like NPS can induce sympathomimetic toxicity. The aim of this chapter is to review the state of knowledge regarding these substances with a focus on the description of the in vitro pharmacology of selected amphetamine- and MDMA-like NPS. In addition, it is aimed to provide links between pharmacological profiles and in vivo effects and toxicity, which leads to the conclusion that abuse liability for amphetamine-like NPS may be higher than for MDMA-like NPS, but that the risk for developing the life-threatening serotonin syndrome may be increased for MDMA-like NPS.

Keywords

4-FA 4-Fluoroamphetamine 5-IT Aminoindans Amphetamine Benzofurans DAT Dopamine MDMA Monoamines NET Noradrenaline NPS Release Serotonin SERT Uptake 

Acronyms of the Discussed New Psychoactive Substances (NPS)

2-AI

2-Aminoindane

3-MMC

3-Methyl-N-methylcathinone

4-APB

4-(2-Aminopropyl)benzofuran

4-FA

4-Fluoroamphetamine

4-MA

4-Methylamphetamine

4-MTA

4-Methylthioamphetamine

5-APB

5-(2-Aminopropyl)benzofuran

5-APDB

5-(2-Aminopropyl)-2,3-dihydrobenzofuran

5-EAPB

5-(2-Ethylaminopropyl)benzofuran

5-IAI

5-Iodoaminoindan

5-IT, 5-API

5-(2-Aminopropyl)indole

5-MAPDB

1-(2,3-Dihydrobenzofuran-5-yl)-N-methylpropan-2-amine

6-APB

6-(2-Aminopropyl)benzofuran

6-APDB

6-(2-Aminopropyl)-2,3-dihydrobenzofuran

7-APB

7-(2-Aminopropyl)benzofuran

MBDB

3,4-Methylenedioxyphenyl-N-methyl-2-butanamine

MDA

3,4-Methylenedioxyamphetamine

MDAI

3,4-Methylenedioxyaminoindan

MDEA

3,4-Methylenedioxy-N-ethylamphetamine

MMAI

5-Methoxy-6-methyl-2-aminoindan

PMA

para-Methoxyamphetamine

PMMA

para-Methoxymethamphetamine

Notes

Acknowledgments

The authors would like to thank Dr. Patrick Burch for the design of Fig. 1. LDS is supported by the Swiss National Science Foundation (SNSF; PZ00P3_174178). MEL is supported by the Federal Office of Public Health (16.921318) and the SNSF (320030149493 and 320030_170249).

References

  1. Adamowicz P, Zuba D, Byrska B (2014) Fatal intoxication with 3-methyl-N-methylcathinone (3-MMC) and 5-(2-aminopropyl)benzofuran (5-APB). Forensic Sci Int 245:126–132.  https://doi.org/10.1016/j.forsciint.2014.10.016CrossRefGoogle Scholar
  2. Aerts LA, Mallaret M, Rigter H (2000) N-methyl-1-(1,3-benzodioxol-5-yl)-2-butanamine (MBDB): its properties and possible risks. Addict Biol 5(3):269–282.  https://doi.org/10.1111/j.1369-1600.2000.tb00191.xCrossRefGoogle Scholar
  3. Alex KD, Pehek EA (2007) Pharmacologic mechanisms of serotonergic regulation of dopamine neurotransmission. Pharmacol Ther 113(2):296–320.  https://doi.org/10.1016/j.pharmthera.2006.08.004CrossRefGoogle Scholar
  4. Bäckberg M, Beck O, Hulten P, Rosengren-Holmberg J, Helander A (2014) Intoxications of the new psychoactive substance 5-(2-aminopropyl)indole (5-IT): a case series from the Swedish STRIDA project. Clin Toxicol (Phila) 52(6):618–624.  https://doi.org/10.3109/15563650.2014.920088CrossRefGoogle Scholar
  5. Bauer CT, Banks ML, Blough BE, Negus SS (2013) Use of intracranial self-stimulation to evaluate abuse-related and abuse-limiting effects of monoamine releasers in rats. Br J Pharmacol 168(4):850–862.  https://doi.org/10.1111/j.1476-5381.2012.02214.xCrossRefGoogle Scholar
  6. Baumann MH, Wang X, Rothman RB (2007) 3,4-Methylenedioxymethamphetamine (MDMA) neurotoxicity in rats: a reappraisal of past and present findings. Psychopharmacology 189(4):407–424.  https://doi.org/10.1007/s00213-006-0322-6CrossRefGoogle Scholar
  7. Baumann MH, Clark RD, Woolverton WL, Wee S, Blough BE, Rothman RB (2011) In vivo effects of amphetamine analogs reveal evidence for serotonergic inhibition of mesolimbic dopamine transmission in the rat. J Pharmacol Exp Ther 337(1):218–225.  https://doi.org/10.1124/jpet.110.176271CrossRefGoogle Scholar
  8. Baumann MH, Ayestas MA Jr, Partilla JS, Sink JR, Shulgin AT, Daley PF, Brandt SD, Rothman RB, Ruoho AE, Cozzi NV (2012) The designer methcathinone analogs, mephedrone and methylone, are substrates for monoamine transporters in brain tissue. Neuropsychopharmacology 37(5):1192–1203.  https://doi.org/10.1038/npp.2011.304CrossRefGoogle Scholar
  9. Baumann MH, Partilla JS, Lehner KR, Thorndike EB, Hoffman AF, Holy M, Rothman RB, Goldberg SR, Lupica CR, Sitte HH, Brandt SD, Tella SR, Cozzi NV, Schindler CW (2013) Powerful cocaine-like actions of 3,4-methylenedioxypyrovalerone (MDPV), a principal constituent of psychoactive ‘bath salts’ products. Neuropsychopharmacology 38(4):552–562.  https://doi.org/10.1038/npp.2012.204CrossRefGoogle Scholar
  10. Bershad AK, Miller MA, Baggott MJ, de Wit H (2016) The effects of MDMA on socio-emotional processing: does MDMA differ from other stimulants? J Psychopharmacol 30:1248–1258.  https://doi.org/10.1177/0269881116663120CrossRefGoogle Scholar
  11. Blakely RD, Defelice LJ, Galli A (2005) Biogenic amine neurotransmitter transporters: just when you thought you knew them. Physiology 20:225–231.  https://doi.org/10.1152/physiol.00013.2005CrossRefGoogle Scholar
  12. Blanckaert P, van Amsterdam J, Brunt T, van den Berg J, Van Durme F, Maudens K, van Bussel J (2013) 4-Methyl-amphetamine: a health threat for recreational amphetamine users. J Psychopharmacol 27(9):817–822.  https://doi.org/10.1177/0269881113487950CrossRefGoogle Scholar
  13. Bonano JS, Glennon RA, De Felice LJ, Banks ML, Negus SS (2014) Abuse-related and abuse-limiting effects of methcathinone and the synthetic “bath salts” cathinone analogs methylenedioxypyrovalerone (MDPV), methylone and mephedrone on intracranial self-stimulation in rats. Psychopharmacology 231(1):199–207.  https://doi.org/10.1007/s00213-013-3223-5CrossRefGoogle Scholar
  14. Bradaia A, Trube G, Stalder H, Norcross RD, Ozmen L, Wettstein JG, Pinard A, Buchy D, Gassmann M, Hoener MC, Bettler B (2009) The selective antagonist EPPTB reveals TAAR1-mediated regulatory mechanisms in dopaminergic neurons of the mesolimbic system. Proc Natl Acad Sci U S A 106(47):20081–20086.  https://doi.org/10.1073/pnas.0906522106CrossRefGoogle Scholar
  15. Brandt SD, Braithwaite RA, Evans-Brown M, Kicman AT (2013) Aminoindane analogues. In: Dargan PI, Wood DM (eds) Novel psychoactive substances: classification, pharmacology and toxicology. Elsevier, London, pp 261–283.  https://doi.org/10.1016/B978-0-12-415816-0.00011-0CrossRefGoogle Scholar
  16. Bunzow JR, Sonders MS, Arttamangkul S, Harrison LM, Zhang G, Quigley DI, Darland T, Suchland KL, Pasumamula S, Kennedy JL, Olson SB, Magenis RE, Amara SG, Grandy DK (2001) Amphetamine, 3,4-methylenedioxymethamphetamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor. Mol Pharmacol 60(6):1181–1188.  https://doi.org/10.1124/mol.60.6.1181CrossRefGoogle Scholar
  17. Carmo H, Remiao F, Carvalho F, Fernandes E, de Boer D, dos Reys LA, de Lourdes Bastos M (2003) 4-Methylthioamphetamine-induced hyperthermia in mice: influence of serotonergic and catecholaminergic pathways. Toxicol Appl Pharmacol 190(3):262–271Google Scholar
  18. Colado MI, Granados R, O’Shea E, Esteban B, Green AR (1999) The acute effect in rats of 3,4-methylenedioxyethamphetamine (MDEA, “eve”) on body temperature and long term degeneration of 5-HT neurones in brain: a comparison with MDMA (“ecstasy”). Pharmacol Toxicol 84(6):261–266Google Scholar
  19. Cole JC, Sumnall HR (2003) Altered states: the clinical effects of ecstasy. Pharmacol Ther 98(1):35–58Google Scholar
  20. Corkery JM, Elliott S, Schifano F, Corazza O, Ghodse AH (2013) MDAI (5,6-methylenedioxy-2-aminoindane; 6,7-dihydro-5H-cyclopenta[f][1,3]benzodioxol-6-amine; ‘sparkle’; ‘mindy’) toxicity: a brief overview and update. Hum Psychopharmacol 28(4):345–355.  https://doi.org/10.1002/hup.2298CrossRefGoogle Scholar
  21. Cruickshank CC, Dyer KR (2009) A review of the clinical pharmacology of methamphetamine. Addiction 104(7):1085–1099.  https://doi.org/10.1111/j.1360-0443.2009.02564.xCrossRefGoogle Scholar
  22. Daw ND, Kakade S, Dayan P (2002) Opponent interactions between serotonin and dopamine. Neural Netw 15(4–6):603–616.  https://doi.org/10.1016/S0893-6080(02)00052-7CrossRefGoogle Scholar
  23. Dawson P, Opacka-Juffry J, Moffatt JD, Daniju Y, Dutta N, Ramsey J, Davidson C (2014) The effects of benzofury (5-APB) on the dopamine transporter and 5-HT2-dependent vasoconstriction in the rat. Prog Neuro-Psychopharmacol Biol Psychiatry 48:57–63.  https://doi.org/10.1016/j.pnpbp.2013.08.013CrossRefGoogle Scholar
  24. Di Cara B, Maggio R, Aloisi G, Rivet JM, Lundius EG, Yoshitake T, Svenningsson P, Brocco M, Gobert A, De Groote L, Cistarelli L, Veiga S, De Montrion C, Rodriguez M, Galizzi JP, Lockhart BP, Coge F, Boutin JA, Vayer P, Verdouw PM, Groenink L, Millan MJ (2011) Genetic deletion of trace amine 1 receptors reveals their role in auto-inhibiting the actions of ecstasy (MDMA). J Neurosci 31(47):16928–16940.  https://doi.org/10.1523/JNEUROSCI.2502-11.2011CrossRefGoogle Scholar
  25. Dolder PC, Strajhar P, Vizeli P, Hammann F, Odermatt A, Liechti ME (2017) Pharmacokinetics and pharmacodynamics of lisdexamfetamine compared with D-amphetamine in healthy subjects. Front Pharmacol 8:617.  https://doi.org/10.3389/fphar.2017.00617CrossRefGoogle Scholar
  26. Dukat M, Young R, Glennon RA (2002) Effect of PMA optical isomers and 4-MTA in PMMA-trained rats. Pharmacol Biochem Behav 72(1–2):299–305.  https://doi.org/10.1016/S0091-3057(01)00776-6CrossRefGoogle Scholar
  27. Elliott S, Evans J (2014) A 3-year review of new psychoactive substances in casework. Forensic Sci Int 243:55–60.  https://doi.org/10.1016/j.forsciint.2014.04.017CrossRefGoogle Scholar
  28. EMCDDA (2014) Report on the risk assessment of 5-(2-aminopropyl)indole in the framework of the Council Decision on new psychoactive substances, risk assessment. Publications Office of the European Union, Luxembourg.  https://doi.org/10.2810/21296CrossRefGoogle Scholar
  29. EMCDDA (2016) European drug report 2016. European Monitoring Centre for Drugs and Drug Addiction (EMCDDA), Luxembourg.  https://doi.org/10.2810/084165CrossRefGoogle Scholar
  30. Eshleman AJ, Wolfrum KM, Reed JF, Kim SO, Swanson T, Johnson RA, Janowsky A (2017) Structure-activity relationships of substituted cathinones, with transporter binding, uptake, and release. J Pharmacol Exp Ther 360(1):33–47.  https://doi.org/10.1124/jpet.116.236349CrossRefGoogle Scholar
  31. Gannon BM, Sulima A, Rice KC, Collins GT (2018) Inhibition of cocaine and 3,4-methylenedioxypyrovalerone (MDPV) self-administration by lorcaserin is mediated by 5-HT2C receptors in rats. J Pharmacol Exp Ther 364(2):359–366.  https://doi.org/10.1124/jpet.117.246082CrossRefGoogle Scholar
  32. Gatch MB, Dolan SB, Forster MJ (2016) Locomotor, discriminative stimulus, and place conditioning effects of MDAI in rodents. Behav Pharmacol 27(6):497–505.  https://doi.org/10.1097/FBP.0000000000000237CrossRefGoogle Scholar
  33. Gillman PK (2005) Monoamine oxidase inhibitors, opioid analgesics and serotonin toxicity. Br J Anaesth 95(4):434–441.  https://doi.org/10.1093/bja/aei210CrossRefGoogle Scholar
  34. Glennon RA, Young R, Hauck AE, McKenney JD (1984) Structure-activity studies on amphetamine analogs using drug discrimination methodology. Pharmacol Biochem Behav 21(6):895–901Google Scholar
  35. Glennon RA, Yousif M, Patrick G (1988) Stimulus properties of 1-(3,4-methylenedioxyphenyl)-2-aminopropane (MDA) analogs. Pharmacol Biochem Behav 29(3):443–449Google Scholar
  36. Glennon RA, Young R, Dukat M, Chang-Fong J, El-Zahabi M (2007) N-methyl-1-(4-methoxyphenyl)-2-aminopropane (PMMA) and N-methyl-1-(3,4-methylenedioxyphenyl)-2-aminopropane (MDMA) produce non-identical discriminative stimuli in rats. Pharmacol Biochem Behav 86(3):477–484.  https://doi.org/10.1016/j.pbb.2007.01.007CrossRefGoogle Scholar
  37. Harro J (2015) Neuropsychiatric adverse effects of amphetamine and methamphetamine. Int Rev Neurobiol 120:179–204.  https://doi.org/10.1016/bs.irn.2015.02.004CrossRefGoogle Scholar
  38. Hartung TK, Schofield E, Short AI, Parr MJ, Henry JA (2002) Hyponatraemic states following 3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’) ingestion. QJM 95(7):431–437Google Scholar
  39. Heal DJ, Smith SL, Gosden J, Nutt DJ (2013) Amphetamine, past and present – a pharmacological and clinical perspective. J Psychopharmacol 27(6):479–496.  https://doi.org/10.1177/0269881113482532CrossRefGoogle Scholar
  40. Herraiz T, Brandt SD (2014) 5-(2-Aminopropyl)indole (5-IT): a psychoactive substance used for recreational purposes is an inhibitor of human monoamine oxidase (MAO). Drug Test Anal 6(7–8):607–613.  https://doi.org/10.1002/dta.1530CrossRefGoogle Scholar
  41. Hill SL, Thomas SH (2011) Clinical toxicology of newer recreational drugs. Clin Toxicol (Phila) 49(8):705–719.  https://doi.org/10.3109/15563650.2011.615318CrossRefGoogle Scholar
  42. Holden R, Jackson MA (1996) Near-fatal hyponatraemic coma due to vasopressin over-secretion after “ecstasy” (3,4-MDMA). Lancet 347(9007):1052Google Scholar
  43. Hondebrink L, Nugteren-van Lonkhuyzen JJ, Rietjens SJ, Brunt TM, Venhuis B, Soerdjbalie-Maikoe V, Smink BE, van Riel A, de Vries I (2017) Fatalities, cerebral hemorrhage, and severe cardiovascular toxicity after exposure to the new psychoactive substance 4-fluoroamphetamine: a prospective cohort study. Ann Emerg Med.  https://doi.org/10.1016/j.annemergmed.2017.07.482
  44. Horn AS, Snyder SH (1972) Steric requirements for catecholamine uptake by rat brain synaptosomes: studies with rigid analogs of amphetamine. J Pharmacol Exp Ther 180(3):523–530Google Scholar
  45. Hysek CM, Vollenweider FX, Liechti ME (2010) Effects of a beta-blocker on the cardiovascular response to MDMA (ecstasy). Emerg Med J 27(8):586–589.  https://doi.org/10.1136/emj.2009.079905CrossRefGoogle Scholar
  46. Hysek CM, Simmler LD, Ineichen M, Grouzmann E, Hoener MC, Brenneisen R, Huwyler J, Liechti ME (2011) The norepinephrine transporter inhibitor reboxetine reduces stimulant effects of MDMA (“ecstasy”) in humans. Clin Pharmacol Ther 90(2):246–255.  https://doi.org/10.1038/clpt.2011.78CrossRefGoogle Scholar
  47. Hysek CM, Schmid Y, Rickli A, Simmler LD, Donzelli M, Grouzmann E, Liechti ME (2012a) Carvedilol inhibits the cardiostimulant and thermogenic effects of MDMA in humans. Br J Pharmacol 166(8):2277–2288.  https://doi.org/10.1111/j.1476-5381.2012.01936.xCrossRefGoogle Scholar
  48. Hysek CM, Brugger R, Simmler LD, Bruggisser M, Donzelli M, Grouzmann E, Hoener MC, Liechti ME (2012b) Effects of the alpha(2)-adrenergic agonist clonidine on the pharmacodynamics and pharmacokinetics of 3,4-methylenedioxymethamphetamine in healthy volunteers. J Pharmacol Exp Ther 340(2):286–294.  https://doi.org/10.1124/jpet.111.188425CrossRefGoogle Scholar
  49. Hysek CM, Simmler LD, Nicola VG, Vischer N, Donzelli M, Krahenbuhl S, Grouzmann E, Huwyler J, Hoener MC, Liechti ME (2012c) Duloxetine inhibits effects of MDMA (“ecstasy”) in vitro and in humans in a randomized placebo-controlled laboratory study. PLoS One 7(5):e36476.  https://doi.org/10.1371/journal.pone.0036476CrossRefGoogle Scholar
  50. Hysek CM, Schmid Y, Simmler LD, Domes G, Heinrichs M, Eisenegger C, Preller KH, Quednow BB, Liechti ME (2014a) MDMA enhances emotional empathy and prosocial behavior. Soc Cogn Affect Neurosci 9(11):1645–1652.  https://doi.org/10.1093/scan/nst161CrossRefGoogle Scholar
  51. Hysek CM, Simmler LD, Schillinger N, Meyer N, Schmid Y, Donzelli M, Grouzmann E, Liechti ME (2014b) Pharmacokinetic and pharmacodynamic effects of methylphenidate and MDMA administered alone or in combination. Int J Neuropsychopharmacol 17(3):371–381.  https://doi.org/10.1017/S1461145713001132CrossRefGoogle Scholar
  52. Iversen L, Gibbons S, Treble R, Setola V, Huang XP, Roth BL (2013) Neurochemical profiles of some novel psychoactive substances. Eur J Pharmacol 700(1–3):147–151.  https://doi.org/10.1016/j.ejphar.2012.12.006CrossRefGoogle Scholar
  53. Johnson MP, Conarty PF, Nichols DE (1991) [3H]monoamine releasing and uptake inhibition properties of 3,4-methylenedioxymethamphetamine and p-chloroamphetamine analogues. Eur J Pharmacol 200(1):9–16Google Scholar
  54. Kehr J, Ichinose F, Yoshitake S, Goiny M, Sievertsson T, Nyberg F, Yoshitake T (2011) Mephedrone, compared to MDMA (ecstasy) and amphetamine, rapidly increases both dopamine and serotonin levels in nucleus accumbens of awake rats. Br J Pharmacol.  https://doi.org/10.1111/j.1476-5381.2011.01499.x
  55. Koob GF, Volkow ND (2016) Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry 3(8):760–773.  https://doi.org/10.1016/S2215-0366(16)00104-8CrossRefGoogle Scholar
  56. Liechti ME (2014) Effects of MDMA on body temperature in humans. Temperature (Austin) 1(3):192–200.  https://doi.org/10.4161/23328940.2014.955433CrossRefGoogle Scholar
  57. Liechti M (2015) Novel psychoactive substances (designer drugs): overview and pharmacology of modulators of monoamine signaling. Swiss Med Wkly 145:w14043.  https://doi.org/10.4414/smw.2015.14043CrossRefGoogle Scholar
  58. Liechti ME, Saur MR, Gamma A, Hell D, Vollenweider FX (2000) Psychological and physiological effects of MDMA (“ecstasy”) after pretreatment with the 5-HT(2) antagonist ketanserin in healthy humans. Neuropsychopharmacology 23(4):396–404.  https://doi.org/10.1016/S0893-133X(00)00126-3CrossRefGoogle Scholar
  59. Liechti ME, Gamma A, Vollenweider FX (2001) Gender differences in the subjective effects of MDMA. Psychopharmacology 154(2):161–168Google Scholar
  60. Lindemann L, Meyer CA, Jeanneau K, Bradaia A, Ozmen L, Bluethmann H, Bettler B, Wettstein JG, Borroni E, Moreau JL, Hoener MC (2008) Trace amine-associated receptor 1 modulates dopaminergic activity. J Pharmacol Exp Ther 324(3):948–956.  https://doi.org/10.1124/jpet.107.132647CrossRefGoogle Scholar
  61. Linsen F, Koning RP, van Laar M, Niesink RJ, Koeter MW, Brunt TM (2015) 4-Fluoroamphetamine in the Netherlands: more than a one-night stand. Addiction 110(7):1138–1143.  https://doi.org/10.1111/add.12932CrossRefGoogle Scholar
  62. Luethi D, Kolaczynska KE, Docci L, Krahenbuhl S, Hoener MC, Liechti ME (2017) Pharmacological profile of mephedrone analogs and related new psychoactive substances. Neuropharmacology.  https://doi.org/10.1016/j.neuropharm.2017.07.026
  63. Lurie Y, Gopher A, Lavon O, Almog S, Sulimani L, Bentur Y (2012) Severe paramethoxymethamphetamine (PMMA) and paramethoxyamphetamine (PMA) outbreak in Israel. Clin Toxicol (Phila) 50(1):39–43.  https://doi.org/10.3109/15563650.2011.635148CrossRefGoogle Scholar
  64. Luscher C, Malenka RC (2011) Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron 69(4):650–663.  https://doi.org/10.1016/j.neuron.2011.01.017CrossRefGoogle Scholar
  65. Marusich JA, Antonazzo KR, Blough BE, Brandt SD, Kavanagh PV, Partilla JS, Baumann MH (2016) The new psychoactive substances 5-(2-aminopropyl)indole (5-IT) and 6-(2-aminopropyl)indole (6-IT) interact with monoamine transporters in brain tissue. Neuropharmacology 101:68–75.  https://doi.org/10.1016/j.neuropharm.2015.09.004CrossRefGoogle Scholar
  66. Mash DC, Duque L, Pablo J, Qin Y, Adi N, Hearn WL, Hyma BA, Karch SB, Druid H, Wetli CV (2009) Brain biomarkers for identifying excited delirium as a cause of sudden death. Forensic Sci Int 190(1–3):e13–e19.  https://doi.org/10.1016/j.forsciint.2009.05.012CrossRefGoogle Scholar
  67. Matsumoto T, Maeno Y, Kato H, Seko-Nakamura Y, Monma-Ohtaki J, Ishiba A, Nagao M, Aoki Y (2014) 5-Hydroxytryptamine- and dopamine-releasing effects of ring-substituted amphetamines on rat brain: a comparative study using in vivo microdialysis. Eur Neuropsychopharmacol 24(8):1362–1370.  https://doi.org/10.1016/j.euroneuro.2014.04.009CrossRefGoogle Scholar
  68. McIntyre IM, Gary RD, Trochta A, Stolberg S, Stabley R (2015) Acute 5-(2-aminopropyl)benzofuran (5-APB) intoxication and fatality: a case report with postmortem concentrations. J Anal Toxicol 39(2):156–159.  https://doi.org/10.1093/jat/bku131CrossRefGoogle Scholar
  69. Monte AP, Marona-Lewicka D, Cozzi NV, Nichols DE (1993) Synthesis and pharmacological examination of benzofuran, indan, and tetralin analogues of 3,4-(methylenedioxy)amphetamine. J Med Chem 36(23):3700–3706Google Scholar
  70. Mrongovius RI, Bolt AG, Hellyer RO (1978) Comparison of the anorectic and motor activity effects of some aminoindanes, 2-aminotetralin and amphetamine in the rat. Clin Exp Pharmacol Physiol 5(6):635–640Google Scholar
  71. Nichols DE (1986) Differences between the mechanism of action of MDMA, MBDB, and the classic hallucinogens. Identification of a new therapeutic class: entactogens. J Psychoactive Drugs 18(4):305–313.  https://doi.org/10.1080/02791072.1986.10472362CrossRefGoogle Scholar
  72. Nichols DE (2004) Hallucinogens. Pharmacol Ther 101(2):131–181.  https://doi.org/10.1016/j.pharmthera.2003.11.002CrossRefGoogle Scholar
  73. Nichols DE (2017) Chemistry and structure-activity relationships of psychedelics. Curr Top Behav Neurosci.  https://doi.org/10.1007/7854_2017_475
  74. Nichols DE, Brewster WK, Johnson MP, Oberlender R, Riggs RM (1990) Nonneurotoxic tetralin and indan analogues of 3,4-(methylenedioxy)amphetamine (MDA). J Med Chem 33(2):703–710Google Scholar
  75. Nichols DE, Johnson MP, Oberlender R (1991) 5-Iodo-2-aminoindan, a nonneurotoxic analogue of p-iodoamphetamine. Pharmacol Biochem Behav 38(1):135–139Google Scholar
  76. Palenicek T, Lhotkova E, Zidkova M, Balikova M, Kuchar M, Himl M, Miksatkova P, Cegan M, Vales K, Tyls F, Horsley RR (2016) Emerging toxicity of 5,6-methylenedioxy-2-aminoindane (MDAI): pharmacokinetics, behaviour, thermoregulation and LD50 in rats. Prog Neuro-Psychopharmacol Biol Psychiatry 69:49–59.  https://doi.org/10.1016/j.pnpbp.2016.04.004CrossRefGoogle Scholar
  77. Pascoli V, Terrier J, Hiver A, Luscher C (2015) Sufficiency of mesolimbic dopamine neuron stimulation for the progression to addiction. Neuron.  https://doi.org/10.1016/j.neuron.2015.10.017
  78. Pei Y, Lee J, Leo D, Gainetdinov RR, Hoener MC, Canales JJ (2014) Activation of the trace amine-associated receptor 1 prevents relapse to cocaine seeking. Neuropsychopharmacology 39(10):2299–2308.  https://doi.org/10.1038/npp.2014.88CrossRefGoogle Scholar
  79. Pei Y, Mortas P, Hoener MC, Canales JJ (2015) Selective activation of the trace amine-associated receptor 1 decreases cocaine’s reinforcing efficacy and prevents cocaine-induced changes in brain reward thresholds. Prog Neuro-Psychopharmacol Biol Psychiatry 63:70–75.  https://doi.org/10.1016/j.pnpbp.2015.05.014CrossRefGoogle Scholar
  80. Pinterova N, Horsley RR, Palenicek T (2017) Synthetic aminoindanes: a summary of existing knowledge. Front Psych 8:236.  https://doi.org/10.3389/fpsyt.2017.00236CrossRefGoogle Scholar
  81. Prosser JM, Nelson LS (2012) The toxicology of bath salts: a review of synthetic cathinones. J Med Toxicol 8(1):33–42.  https://doi.org/10.1007/s13181-011-0193-zCrossRefGoogle Scholar
  82. Rickli A, Hoener MC, Liechti ME (2015a) Monoamine transporter and receptor interaction profiles of novel psychoactive substances: para-halogenated amphetamines and pyrovalerone cathinones. Eur Neuropsychopharmacol 25(3):365–376.  https://doi.org/10.1016/j.euroneuro.2014.12.012CrossRefGoogle Scholar
  83. Rickli A, Kopf S, Hoener MC, Liechti ME (2015b) Pharmacological profile of novel psychoactive benzofurans. Br J Pharmacol 172(13):3412–3425.  https://doi.org/10.1111/bph.13128CrossRefGoogle Scholar
  84. Rickli A, Luethi D, Reinisch J, Buchy D, Hoener MC, Liechti ME (2015c) Receptor interaction profiles of novel N-2-methoxybenzyl (NBOMe) derivatives of 2,5-dimethoxy-substituted phenethylamines (2C drugs). Neuropharmacology 99:546–553.  https://doi.org/10.1016/j.neuropharm.2015.08.034CrossRefGoogle Scholar
  85. Roth BL (2007) Drugs and valvular heart disease. N Engl J Med 356(1):6–9.  https://doi.org/10.1056/NEJMp068265CrossRefGoogle Scholar
  86. Rothman RB, Baumann MH (2006) Balance between dopamine and serotonin release modulates behavioral effects of amphetamine-type drugs. Ann N Y Acad Sci 1074:245–260.  https://doi.org/10.1196/annals.1369.064CrossRefGoogle Scholar
  87. Sainsbury PD, Kicman AT, Archer RP, King LA, Braithwaite RA (2011) Aminoindanes – the next wave of ‘legal highs’? Drug Test Anal 3(7–8):479–482.  https://doi.org/10.1002/dta.318CrossRefGoogle Scholar
  88. Schindler CW, Thorndike EB, Goldberg SR, Lehner KR, Cozzi NV, Brandt SD, Baumann MH (2016) Reinforcing and neurochemical effects of the “bath salts” constituents 3,4-methylenedioxypyrovalerone (MDPV) and 3,4-methylenedioxy-N-methylcathinone (methylone) in male rats. Psychopharmacology 233(10):1981–1990.  https://doi.org/10.1007/s00213-015-4057-0CrossRefGoogle Scholar
  89. Schmid Y, Hysek CM, Simmler LD, Crockett MJ, Quednow BB, Liechti ME (2014) Differential effects of MDMA and methylphenidate on social cognition. J Psychopharmacol 28(9):847–856.  https://doi.org/10.1177/0269881114542454CrossRefGoogle Scholar
  90. Scorza C, Silveira R, Nichols DE, Reyes-Parada M (1999) Effects of 5-HT-releasing agents on the extracellullar hippocampal 5-HT of rats. Implications for the development of novel antidepressants with a short onset of action. Neuropharmacology 38(7):1055–1061Google Scholar
  91. Simmler LD, Hysek CM, Liechti ME (2011) Sex differences in the effects of MDMA (ecstasy) on plasma copeptin in healthy subjects. J Clin Endocrinol Metab 96(9):2844–2850.  https://doi.org/10.1210/jc.2011-1143CrossRefGoogle Scholar
  92. Simmler LD, Buser TA, Donzelli M, Schramm Y, Dieu LH, Huwyler J, Chaboz S, Hoener MC, Liechti ME (2013) Pharmacological characterization of designer cathinones in vitro. Br J Pharmacol 168(2):458–470.  https://doi.org/10.1111/j.1476-5381.2012.02145.xCrossRefGoogle Scholar
  93. Simmler LD, Rickli A, Hoener MC, Liechti ME (2014a) Monoamine transporter and receptor interaction profiles of a new series of designer cathinones. Neuropharmacology 79:152–160.  https://doi.org/10.1016/j.neuropharm.2013.11.008CrossRefGoogle Scholar
  94. Simmler LD, Rickli A, Schramm Y, Hoener MC, Liechti ME (2014b) Pharmacological profiles of aminoindanes, piperazines, and pipradrol derivatives. Biochem Pharmacol 88(2):237–244.  https://doi.org/10.1016/j.bcp.2014.01.024CrossRefGoogle Scholar
  95. Simmler LD, Buchy D, Chaboz S, Hoener MC, Liechti ME (2016) In vitro characterization of psychoactive substances at rat, mouse, and human trace amine-associated receptor 1. J Pharmacol Exp Ther 357(1):134–144.  https://doi.org/10.1124/jpet.115.229765CrossRefGoogle Scholar
  96. Simmler LD, Anacker AMJ, Levin MH, Vaswani NM, Gresch PJ, Nackenoff AG, Anastasio NC, Stutz SJ, Cunningham KA, Wang J, Zhang B, Henry LK, Stewart A, Veenstra-VanderWeele J, Blakely RD (2017) Blockade of the 5-HT transporter contributes to the behavioural, neuronal and molecular effects of cocaine. Br J Pharmacol 174(16):2716–2738.  https://doi.org/10.1111/bph.13899CrossRefGoogle Scholar
  97. Sprague JE, Brutcher RE, Mills EM, Caden D, Rusyniak DE (2004) Attenuation of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy)-induced rhabdomyolysis with alpha1- plus beta3-adrenoreceptor antagonists. Br J Pharmacol 142(4):667–670.  https://doi.org/10.1038/sj.bjp.0705823CrossRefGoogle Scholar
  98. Sulzer D (2011) How addictive drugs disrupt presynaptic dopamine neurotransmission. Neuron 69(4):628–649.  https://doi.org/10.1016/j.neuron.2011.02.010CrossRefGoogle Scholar
  99. Suyama JA, Sakloth F, Kolanos R, Glennon RA, Lazenka MF, Negus SS, Banks ML (2016) Abuse-related neurochemical effects of para-substituted methcathinone analogs in rats: microdialysis studies of nucleus accumbens dopamine and serotonin. J Pharmacol Exp Ther 356(1):182–190.  https://doi.org/10.1124/jpet.115.229559CrossRefGoogle Scholar
  100. Tessel RE, Rutledge CO (1976) Specificity of release of biogenic amines from isolated rat brain tissue as a function of the meta substituent of N-ethylamphetamine derivatives. J Pharmacol Exp Ther 197(2):253–262Google Scholar
  101. Tessel RE, Woods JH (1975) Fenfluramine and N-ethyl amphetamine: comparison of the reinforcing and rate-decreasing actions in the rhesus monkey. Psychopharmacologia 43(3):239–244Google Scholar
  102. Tessel RE, Woods JH, Counsell RE, Lu M (1975) Structure-activity relationships between meta-substituted N-ethylamphetamines and locomotor activity in mice. J Pharmacol Exp Ther 192(2):310–318Google Scholar
  103. Torres GE, Gainetdinov RR, Caron MG (2003) Plasma membrane monoamine transporters: structure, regulation and function. Nat Rev Neurosci 4(1):13–25.  https://doi.org/10.1038/nrn1008CrossRefGoogle Scholar
  104. Verrico CD, Miller GM, Madras BK (2007) MDMA (ecstasy) and human dopamine, norepinephrine, and serotonin transporters: implications for MDMA-induced neurotoxicity and treatment. Psychopharmacology 189(4):489–503.  https://doi.org/10.1007/s00213-005-0174-5CrossRefGoogle Scholar
  105. Vevelstad M, Oiestad EL, Middelkoop G, Hasvold I, Lilleng P, Delaveris GJ, Eggen T, Morland J, Arnestad M (2012) The PMMA epidemic in Norway: comparison of fatal and non-fatal intoxications. Forensic Sci Int 219(1–3):151–157.  https://doi.org/10.1016/j.forsciint.2011.12.014CrossRefGoogle Scholar
  106. Vizeli P, Liechti ME (2017) Safety pharmacology of acute MDMA administration in healthy subjects. J Psychopharmacol 31(5):576–588.  https://doi.org/10.1177/0269881117691569CrossRefGoogle Scholar
  107. Wee S, Anderson KG, Baumann MH, Rothman RB, Blough BE, Woolverton WL (2005) Relationship between the serotonergic activity and reinforcing effects of a series of amphetamine analogs. J Pharmacol Exp Ther 313(2):848–854.  https://doi.org/10.1124/jpet.104.080101CrossRefGoogle Scholar
  108. Welter-Luedeke J, Maurer HH (2016) New psychoactive substances: chemistry, pharmacology, metabolism, and detectability of amphetamine derivatives with modified ring systems. Ther Drug Monit 38(1):4–11.  https://doi.org/10.1097/FTD.0000000000000240CrossRefGoogle Scholar
  109. Wijers CH, van Litsenburg RT, Hondebrink L, Niesink RJ, Croes EA (2017) Acute toxic effects related to 4-fluoroamphetamine. Lancet 389(10069):600.  https://doi.org/10.1016/S0140-6736(17)30281-7CrossRefGoogle Scholar
  110. Woolverton WL, English JA (1997) Effects of some phenylethylamines in rhesus monkeys trained to discriminate (+)-amphetamine from saline. Drug Alcohol Depend 44(2–3):79–85Google Scholar
  111. Zwartsen A, Verboven AHA, van Kleef R, Wijnolts FMJ, Westerink RHS, Hondebrink L (2017) Measuring inhibition of monoamine reuptake transporters by new psychoactive substances (NPS) in real-time using a high-throughput, fluorescence-based assay. Toxicol In Vitro 45(Pt 1):60–71.  https://doi.org/10.1016/j.tiv.2017.05.010CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Basic NeurosciencesUniversity of GenevaGenevaSwitzerland
  2. 2.Division of Clinical Pharmacology and ToxicologyUniversity Hospital BaselBaselSwitzerland

Personalised recommendations