Skip to main content

Toxicokinetics of NPS: Update 2017

  • Chapter
  • First Online:
New Psychoactive Substances

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 252))

Abstract

This summarizing and descriptive review article is an update on previously published reviews. It covers English-written and PubMed-listed review articles and original studies published between May 2016 and November 2017 on the toxicokinetics of new psychoactive substances (NPS). Compounds covered include stimulants and entactogens, synthetic cannabinoids, tryptamines, phenethylamine and phencyclidine-like drugs, benzodiazepines, and opioids. First, an overview and discussion is provided on selected review articles followed by an overview and discussion on selected original studies. Both sections are then concluded by an opinion on these latest developments. The present review shows that the NPS market is still highly dynamic and that studies regarding their toxicokinetics are necessary to understand risks associated with their consumption. Data collection and studies are encouraged to allow for detection of NPS in biological matrices in cases of acute intoxications or chronic consumption. Although some data are available, scientific papers dealing with the mechanistic reasons behind acute and chronic toxicity are still lacking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

25B-NBOMe:

2-(4-Bromo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine

25C-NBOMe:

2-(4-Bhloro-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine

25I-NBOH:

2-(((4-Iodo-2,5-dimethoxyphenethyl)amino)methyl)phenol

25I-NBOMe:

2-(4-Iodo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine

3-MeO-PCP:

3-Methoxyphencyclidine

3-MeO-PCPy:

3-Methoxyrolicyclidine

4-FA:

4-Fluoroamphetamine

4-methoxy-alpha-PVP:

4-Methoxy-alpha-pyrrolidinovalerophenone

4Cl-iBF:

4-Chloroisobutyrfentanyl

4F-iBF:

4-Fluoroisobutyrfentanyl

5-APB:

5-(2-Aminopropyl)benzofuran

5-API:

5-(2-Aminopropyl)indole

5-EAPB:

5-(2-Ethylaminopropyl)benzofuran

5-MAPB:

5-(2-Methylaminopropyl)benzofuran

5-MeO-2-Me-ALCHT:

5-Methoxy-2-methyl-N-allyl-N-cyclohexyltryptamine

5-MeO-2-Me-DALT:

5-Methoxy-2-methyl-N,N-diallyltryptamine

5-MeO-2-Me-DIPT:

5-Methoxy-2-methyl-N,N-diisopropyltryptamine

5-MeO-MIPT:

5-Methoxy-N-methyl-N-isopropyltryptamine

5F-ADB:

Methyl (2S)-2-{[1-(5-fluoropentyl)-1H-indazole-3-carbonyl]amino}-3,3-dimethylbutanoate

5F-CUMYL-P7AICA:

1-(5-Fluoropentyl)-N-(2-phenylpropan-2-yl)-1H-pyrrolo[2,3-b]pyridine-3-carboxamide

5F-CUMYL-PINACA:

1-(5-Fluoropentyl)-N-(2-phenylpropan-2-yl)-1H-indazole-3-carboxamide

5F-MN-18:

1-(5-Fluoropentyl)-N-(naphthalen-1-yl)-1H-indazole-3-carboxamide

7-Me-AMT:

7-Methyl-alpha-methyltryptamine

AB-PINACA:

N-[(2S)-1-Amino-3-methyl-1-oxobutan-2-yl]-1-pentyl-1H-indazole-3-carboxamide

ADB-FUBINACA:

N-[(2S)-1-Amino-3,3-dimethyl-1-oxobutan-2-yl]-1-[(4-fluorophenyl)methyl]-1H-indazole-3-carboxamide

AH-7921:

3,4-Dichloro-N-[(1-dimethylamino)cyclohexylmethyl]benzamide

alpha-PHP:

α-Pyrrolidinohexanophenone

alpha-PVP:

α-Pyrrolidinovalerophenone

AM-2201:

[1-(5-Fluoropentyl)-1H-indol-3-yl](naphthalen-1-yl)methanone

AMT:

α-Methyltryptamine

cis-4,4′-DMAR:

cis-4,4′-Dimethylaminorex

CUMYL-4CN-B7AICA:

1-(4-Cyanobutyl)-N-(2-phenylpropan-2-yl)-1H-pyrrolo[2,3-b]pyridine-3-carboxamide

CUMYL-4CN-BINACA:

1-(4-Cyanobutyl)-N-(2-phenylpropan-2-yl)-1H-indazole-3-carboxamide

CUMYL-PINACA:

1-Pentyl-N-(2-phenylpropan-2-yl)-1H-indazole-3-carboxamide

DALT:

N,N-Diallyltryptamine

FUB-PB-22:

Quinolin-8-yl 1-[(4-fluorophenyl)methyl]-1H-indole-3-carboxylate

JWH-018:

(Naphthalen-1-yl)(1-pentyl-1H-indol-3-yl)methanone

mCPP:

1-(3-Chlorophenyl)piperazine

MDBD:

2-Methylamino-1-(3,4-methyledioxyphenyl)butane

MDMA:

3,4-Methylenedioxymethamphetamine

MDMB-CHMICA:

Methyl (2S)-2-{[1-(cyclohexylmethyl)-1H-indole-3-carbonyl]amino}-3,3-dimethylbutanoate

MDBP:

1-(3,4-Methylenedioxybenzyl)piperazine

MDPPP:

3,4-Methylenedioxy-alpha-pyrrolidinopropiophenone

MDPV:

3,4-Methylenedioxypyrovalerone

MN-18:

N-(Naphthalen-1-yl)-1-pentyl-1H-indazole-3-carboxamide

MT-45:

1-Myclohexyl-4-(1,2-diphenylethyl)piperazine

MXE:

Methoxetamine

PV8:

1-Phenyl-2-(pyrrolidin-1-yl)heptan-1-one

THF-F:

Tetrahydrofuranylfentanyl

U-47700:

trans-3,4-Dichloro-N-(2-(dimethylamino)cyclohexyl)-N-methylbenzamide

U-50488:

3,4-Dichloro-N-methyl-N-[(1R,2R)-2-(1-pyrrolidinyl)cyclohexyl]-benzeneacetamide

XLR-11:

[1-(5-Fluoropentyl)-1H-indol-3-yl](2,2,3,3-tetramethylcyclopropyl)methanone

References

  • Backberg M, Westerbergh J, Beck O, Helander A (2016) Adverse events related to the new psychoactive substance 3-fluorophenmetrazine – results from the Swedish STRIDA project. Clin Toxicol (Phila) 54:819–825

    Article  Google Scholar 

  • Backberg M, Jonsson KH, Beck O, Helander A (2017a) Investigation of drug products received for analysis in the Swedish STRIDA project on new psychoactive substances. Drug Test Anal. https://doi.org/10.1002/dta.2226

    Article  Google Scholar 

  • Backberg M, Tworek L, Beck O, Helander A (2017b) Analytically confirmed intoxications involving MDMB-CHMICA from the STRIDA project. J Med Toxicol 13:52–60

    Article  Google Scholar 

  • Barcelo B, Gomila I, Rotolo MC et al (2017) Intoxication caused by new psychostimulants: analytical methods to disclose acute and chronic use of benzofurans and ethylphenidate. Int J Legal Med 131:1543–1553

    Article  Google Scholar 

  • Beck O, Franzen L, Backberg M, Signell P, Helander A (2016) Toxicity evaluation of alpha-pyrrolidinovalerophenone (alpha-PVP): results from intoxication cases within the STRIDA project. Clin Toxicol (Phila) 54:568–575

    Article  CAS  Google Scholar 

  • Beck O, Backberg M, Signell P, Helander A (2017) Intoxications in the STRIDA project involving a panorama of psychostimulant pyrovalerone derivatives, MDPV copycats. Clin Toxicol (Phila). https://doi.org/10.1080/15563650.2017.1370097

    Article  Google Scholar 

  • Carlier J, Diao X, Wohlfarth A, Scheidweiler K, Huestis MA (2017) In vitro metabolite profiling of ADB-FUBINACA, a new synthetic cannabinoid. Curr Neuropharmacol 15:682–691

    Article  CAS  Google Scholar 

  • Caspar AT, Brandt SD, Stoever AE, Meyer MR, Maurer HH (2017a) Metabolic fate and detectability of the new psychoactive substances 2-(4-bromo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine (25B-NBOMe) and 2-(4-chloro-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine (25C-NBOMe) in human and rat urine by GC-MS, LC-MS(n), and LC-HR-MS/MS approaches. J Pharm Biomed Anal 134:158–169

    Article  CAS  Google Scholar 

  • Caspar AT, Gaab JB, Michely JA, Brandt SD, Meyer MR, Maurer HH (2017b) Metabolism of the tryptamine-derived new psychoactive substances 5-MeO-2-Me-DALT, 5-MeO-2-Me-ALCHT, and 5-MeO-2-Me-DIPT and their detectability in urine studied by GC-MS, LC-MS(n), and LC-HR-MS/MS. Drug Test Anal. https://doi.org/10.1002/dta.2197

    Article  Google Scholar 

  • Coopman V, Cordonnier J, De Leeuw M, Cirimele V (2016) Ocfentanil overdose fatality in the recreational drug scene. Forensic Sci Int 266:469–473

    Article  CAS  Google Scholar 

  • CURIA (2014) Court of Justice of the European Union (C-358/13 and C-181/14). vol 2014/07/10

    Google Scholar 

  • Daveluy A, Castaing N, Cherifi H et al (2016) Acute methiopropamine intoxication after “synthacaine” consumption. J Anal Toxicol 40:758–760

    CAS  PubMed  Google Scholar 

  • Diao X, Huestis MA (2017) Approaches, challenges, and advances in metabolism of new synthetic cannabinoids and identification of optimal urinary marker metabolites. Clin Pharmacol Ther 101:239–253

    Article  CAS  Google Scholar 

  • Diao X, Carlier J, Zhu M, Huestis MA (2017) Human hepatocyte metabolism of novel synthetic cannabinoids MN-18 and its 5-fluoro analog 5F-MN-18. Clin Chem 63:1753–1763

    Article  CAS  Google Scholar 

  • Ellefsen KN, Concheiro M, Huestis MA (2016) Synthetic cathinone pharmacokinetics, analytical methods, and toxicological findings from human performance and postmortem cases. Drug Metab Rev 48:237–265

    Article  CAS  Google Scholar 

  • EMCDDA (2017) European drug report 2017: trends and developments publications of the European Union. European Monitoring Centre for Drugs and Drug Addiction, Luxembourg

    Google Scholar 

  • Fabregat-Safont D, Barneo-Munoz M, Martinez-Garcia F, Sancho JV, Hernandez F, Ibanez M (2017) Proposal of 5-methoxy-N-methyl-N-isopropyltryptamine consumption biomarkers through identification of in vivo metabolites from mice. J Chromatogr A 1508:95–105

    Article  CAS  Google Scholar 

  • Franz F, Angerer V, Moosmann B, Auwarter V (2017) Phase I metabolism of the highly potent synthetic cannabinoid MDMB-CHMICA and detection in human urine samples. Drug Test Anal 9:744–753

    Article  CAS  Google Scholar 

  • Fujita Y, Mita T, Usui K et al (2017) Toxicokinetics of the synthetic cathinone alpha-pyrrolidinohexanophenone. J Anal Toxicol. https://doi.org/10.1093/jat/bkx080

    Article  Google Scholar 

  • Gatch MB, Dolan SB, Forster MJ (2017) Locomotor activity and discriminative stimulus effects of a novel series of synthetic cathinone analogs in mice and rats. Psychopharmacology (Berl) 234:1237–1245

    Article  CAS  Google Scholar 

  • Grafinger KE, Hadener M, Konig S, Weinmann W (2017) Study of the in vitro and in vivo metabolism of the tryptamine 5-MeO-MiPT using human liver microsomes and real case samples. Drug Test Anal. https://doi.org/10.1002/dta.2245

    Article  Google Scholar 

  • Grapp M, Kaufmann C, Ebbecke M (2017) Toxicological investigation of forensic cases related to the designer drug 3,4-methylenedioxypyrovalerone (MDPV): detection, quantification and studies on human metabolism by GC-MS. Forensic Sci Int 273:1–9

    Article  CAS  Google Scholar 

  • Helander A, Backberg M, Signell P, Beck O (2017a) Intoxications involving acrylfentanyl and other novel designer fentanyls – results from the Swedish STRIDA project. Clin Toxicol (Phila) 55:589–599

    Article  CAS  Google Scholar 

  • Helander A, Bradley M, Hasselblad A et al (2017b) Acute skin and hair symptoms followed by severe, delayed eye complications in subjects using the synthetic opioid MT-45. Br J Dermatol 176:1021–1027

    Article  CAS  Google Scholar 

  • Holm NB, Noble C, Linnet K (2016) JWH-018 omega-OH, a shared hydroxy metabolite of the two synthetic cannabinoids JWH-018 and AM-2201, undergoes oxidation by alcohol dehydrogenase and aldehyde dehydrogenase enzymes in vitro forming the carboxylic acid metabolite. Toxicol Lett 259:35–43

    Article  CAS  Google Scholar 

  • Hondebrink L, Verboven AHA, Drega WS et al (2016) Neurotoxicity screening of (illicit) drugs using novel methods for analysis of microelectrode array (MEA) recordings. Neurotoxicology 55:1–9

    Article  CAS  Google Scholar 

  • Huppertz LM, Moosmann B, Auwarter V (2017) Flubromazolam – basic pharmacokinetic evaluation of a highly potent designer benzodiazepine. Drug Test Anal. https://doi.org/10.1002/dta.2203

    Article  Google Scholar 

  • Kusano M, Zaitsu K, Taki K et al (2017) Fatal intoxication by 5F-ADB and diphenidine: detection, quantification, and investigation of their main metabolic pathways in humans by LC/MS/MS and LC/Q-TOFMS. Drug Test Anal. https://doi.org/10.1002/dta.2215

    Article  Google Scholar 

  • Lopez-Arnau R, Buenrostro-Jauregui M, Munoz-Villegas P et al (2017) The combination of MDPV and ethanol results in decreased cathinone and increased alcohol levels. Study of such pharmacological interaction. Prog Neuropsychopharmacol Biol Psychiatry 76:19–28

    Article  CAS  Google Scholar 

  • Lucchetti J, Marzo CM, Di Clemente A, Cervo L, Gobbi M (2017) A validated, sensitive HPLC-MS/MS method for quantification of cis-para-methyl-4-methylaminorex (cis-4,4′-DMAR) in rat and human plasma: application to pharmacokinetic studies in rats. Drug Test Anal 9:870–879

    Article  CAS  Google Scholar 

  • Luethi D, Liechti ME, Krahenbuhl S (2017) Mechanisms of hepatocellular toxicity associated with new psychoactive synthetic cathinones. Toxicology 387:57–66

    Article  CAS  Google Scholar 

  • Manchester KR, Lomas EC, Waters L, Dempsey FC, Maskell PD (2017) The emergence of new psychoactive substance (NPS) benzodiazepines: a review. Drug Test Anal. https://doi.org/10.1002/dta.2211

    Article  Google Scholar 

  • Mardal M, Miserez B, Bade R et al (2016) 3-Fluorophenmetrazine, a fluorinated analogue of phenmetrazine: studies on in vivo metabolism in rat and human, in vitro metabolism in human CYP isoenzymes and microbial biotransformation in Pseudomonas Putida and wastewater using GC and LC coupled to (HR)-MS techniques. J Pharm Biomed Anal 128:485–495

    Article  CAS  Google Scholar 

  • McLaughlin G, Morris N, Kavanagh PV et al (2017a) Analytical characterization and pharmacological evaluation of the new psychoactive substance 4-fluoromethylphenidate (4F-MPH) and differentiation between the (+/−)-threo and (+/−)-erythro diastereomers. Drug Test Anal 9:347–357

    Article  CAS  Google Scholar 

  • McLaughlin G, Morris N, Kavanagh PV et al (2017b) Synthesis, characterization and monoamine transporter activity of the new psychoactive substance mexedrone and its N-methoxy positional isomer, N-methoxymephedrone. Drug Test Anal 9:358–368

    Article  CAS  Google Scholar 

  • Meyer MR (2016) New psychoactive substances: an overview on recent publications on their toxicodynamics and toxicokinetics. Arch Toxicol 90:2421–2444

    Article  CAS  Google Scholar 

  • Michely JA, Brandt SD, Meyer MR, Maurer HH (2017a) Biotransformation and detectability of the new psychoactive substances N,N-diallyltryptamine (DALT) derivatives 5-fluoro-DALT, 7-methyl-DALT, and 5,6-methylenedioxy-DALT in urine using GC-MS, LC-MS(n), and LC-HR-MS/MS. Anal Bioanal Chem 409:1681–1695

    Article  CAS  Google Scholar 

  • Michely JA, Manier SK, Caspar AT, Brandt SD, Wallach J, Maurer HH (2017b) New psychoactive substances 3-methoxyphencyclidine (3-MeO-PCP) and 3-methoxyrolicyclidine (3-MeO-PCPy): metabolic fate elucidated with rat urine and human liver preparations and their detectability in urine by GC-MS, “LC-(high resolution)-MSn” and “LC-(high resolution)-MS/MS”. Curr Neuropharmacol 15:692–712

    Article  CAS  Google Scholar 

  • Mogler L, Franz F, Rentsch D et al (2017) Detection of the recently emerged synthetic cannabinoid 5F-MDMB-PICA in ‘legal high’ products and human urine samples. Drug Test Anal. https://doi.org/10.1002/dta.2201

    Article  Google Scholar 

  • Moosmann B, Bisel P, Franz F, Huppertz LM, Auwarter V (2016) Characterization and in vitro phase I microsomal metabolism of designer benzodiazepines – an update comprising adinazolam, cloniprazepam, fonazepam, 3-hydroxyphenazepam, metizolam and nitrazolam. J Mass Spectrom 51:1080–1089

    Article  CAS  Google Scholar 

  • Nielsen LM, Holm NB, Leth-Petersen S, Kristensen JL, Olsen L, Linnet K (2017) Characterization of the hepatic cytochrome P450 enzymes involved in the metabolism of 25I-NBOMe and 25I-NBOH. Drug Test Anal 9:671–679

    Article  CAS  Google Scholar 

  • Noble C, Mardal M, Bjerre Holm N, Stybe Johansen S, Linnet K (2017) In vitro studies on flubromazolam metabolism and detection of its metabolites in authentic forensic samples. Drug Test Anal 9:1182–1191

    Article  CAS  Google Scholar 

  • Olesti E, Farre M, Papaseit E et al (2017a) Pharmacokinetics of mephedrone and its metabolites in human by LC-MS/MS. AAPS J 19:1767–1778

    Article  CAS  Google Scholar 

  • Olesti E, Pujadas M, Papaseit E et al (2017b) GC-MS quantification method for mephedrone in plasma and urine: application to human pharmacokinetics. J Anal Toxicol 41:100–106

    CAS  PubMed  Google Scholar 

  • Papaseit E, Olesti E, de la Torre R, Torrens M, Farre M (2017) Mephedrone concentrations in cases of clinical intoxication. Curr Pharm Des. https://doi.org/10.2174/1381612823666170704130213

  • Pettersson Bergstrand M, Meyer MR, Beck O, Helander A (2017) Human urinary metabolic patterns of the designer benzodiazepines flubromazolam and pyrazolam studied by liquid chromatography-high resolution mass spectrometry. Drug Test Anal. https://doi.org/10.1002/dta.2243

    Article  Google Scholar 

  • Richter LHJ, Flockerzi V, Maurer HH, Meyer MR (2017a) Pooled human liver preparations, HepaRG, or HepG2 cell lines for metabolism studies of new psychoactive substances? A study using MDMA, MDBD, butylone, MDPPP, MDPV, MDPB, 5-MAPB, and 5-API as examples. J Pharm Biomed Anal 143:32–42

    Article  CAS  Google Scholar 

  • Richter LHJ, Maurer HH, Meyer MR (2017b) New psychoactive substances: studies on the metabolism of XLR-11, AB-PINACA, FUB-PB-22, 4-methoxy-alpha-PVP, 25-I-NBOMe, and meclonazepam using human liver preparations in comparison to primary human hepatocytes, and human urine. Toxicol Lett 280:142–150

    Article  CAS  Google Scholar 

  • Sahai MA, Davidson C, Khelashvili G et al (2017) Combined in vitro and in silico approaches to the assessment of stimulant properties of novel psychoactive substances – the case of the benzofuran 5-MAPB. Prog Neuropsychopharmacol Biol Psychiatry 75:1–9

    Article  CAS  Google Scholar 

  • Simmler LD, Liechti ME (2017) Interactions of Cathinone NPS with human transporters and receptors in transfected cells. Curr Top Behav Neurosci 32:49–72

    Article  Google Scholar 

  • Staeheli SN, Poetzsch M, Veloso VP et al (2017) In vitro metabolism of the synthetic cannabinoids CUMYL-PINACA, 5F-CUMYL-PINACA, CUMYL-4CN-BINACA, 5F-CUMYL-P7AICA and CUMYL-4CN-B7AICA. Drug Test Anal. https://doi.org/10.1002/dta.2298

    Article  Google Scholar 

  • Steuer AE, Williner E, Staeheli SN, Kraemer T (2017) Studies on the metabolism of the fentanyl-derived designer drug butyrfentanyl in human in vitro liver preparations and authentic human samples using liquid chromatography-high resolution mass spectrometry (LC-HRMS). Drug Test Anal 9:1085–1092

    Article  CAS  Google Scholar 

  • Swortwood MJ, Ellefsen KN, Wohlfarth A et al (2016) First metabolic profile of PV8, a novel synthetic cathinone, in human hepatocytes and urine by high-resolution mass spectrometry. Anal Bioanal Chem 408:4845–4856

    Article  CAS  Google Scholar 

  • Temporal KH, Scott KS, Mohr ALA, Logan BK (2017) Metabolic profile determination of NBOMe compounds using human liver microsomes and comparison with findings in authentic human blood and urine. J Anal Toxicol 41:646–657

    Article  CAS  Google Scholar 

  • Ventura L, Carvalho F, Dinis-Oliveira RJ (2017) Opioids in the frame of new psychoactive substances network: a complex pharmacological and toxicological issue. Curr Mol Pharmacol. https://doi.org/10.2174/1874467210666170704110146

    Article  CAS  Google Scholar 

  • Wagmann L, Brandt SD, Kavanagh PV, Maurer HH, Meyer MR (2017) In vitro monoamine oxidase inhibition potential of alpha-methyltryptamine analog new psychoactive substances for assessing possible toxic risks. Toxicol Lett 272:84–93

    Article  CAS  Google Scholar 

  • Wohlfarth A, Roman M, Andersson M et al (2017) 25C-NBOMe and 25I-NBOMe metabolite studies in human hepatocytes, in vivo mouse and human urine with high-resolution mass spectrometry. Drug Test Anal 9:680–698

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The author would like to thank Achim Caspar for his support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus R. Meyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meyer, M.R. (2018). Toxicokinetics of NPS: Update 2017. In: Maurer, H., Brandt, S. (eds) New Psychoactive Substances . Handbook of Experimental Pharmacology, vol 252. Springer, Cham. https://doi.org/10.1007/164_2018_102

Download citation

Publish with us

Policies and ethics